JP2011099029A - Polysaccharide derivative - Google Patents

Polysaccharide derivative Download PDF

Info

Publication number
JP2011099029A
JP2011099029A JP2009254077A JP2009254077A JP2011099029A JP 2011099029 A JP2011099029 A JP 2011099029A JP 2009254077 A JP2009254077 A JP 2009254077A JP 2009254077 A JP2009254077 A JP 2009254077A JP 2011099029 A JP2011099029 A JP 2011099029A
Authority
JP
Japan
Prior art keywords
formula
group
polysaccharide derivative
represented
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009254077A
Other languages
Japanese (ja)
Inventor
Taishi Tanaka
大士 田中
Masaya Ito
雅弥 伊東
Hiroaki Kaneko
博章 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009254077A priority Critical patent/JP2011099029A/en
Publication of JP2011099029A publication Critical patent/JP2011099029A/en
Ceased legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polysaccharide derivative which becomes a hydrogel holding high viscoelasticity even when it is subjected to high pressure steam sterilization after mixture with water and is useful as an antiadhesive material, and to provide a method for producing the same. <P>SOLUTION: In the polysaccharide derivative, both a β-alanine derivative and -CH<SB>2</SB>CONHY (Y denotes an alkyl group which has the number of carbons of 70 or less and may be substituted) are bonded to a side chain. There is also provided the method for producing the same. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、多糖類に側鎖としてβ−アラニン誘導体とホスファチジルエタノールアミンの両方が結合した多糖類誘導体、その製造方法、およびそのハイドロゲルである。本発明の多糖類誘導体は水と混合すると、高圧蒸気滅菌後も高い粘弾性を保持するゲルとなり、医療材料などに利用される。   The present invention is a polysaccharide derivative in which both a β-alanine derivative and phosphatidylethanolamine are bonded as side chains to the polysaccharide, a method for producing the same, and a hydrogel thereof. When the polysaccharide derivative of the present invention is mixed with water, it becomes a gel that retains high viscoelasticity even after high-pressure steam sterilization, and is used as a medical material.

化学的に修飾された多糖類は、そのハイドロゲル特性・生体親和性から、食品用途、日用品用途、化粧品用途などで広く利用されており、その用途は医療分野にも及んでいる。例えば、特許文献1、特許文献2を基に開発されたヒアルロン酸とカルボキシメチルセルロースを架橋した化合物からなる組成物で、フィルム状の癒着防止材「セプラフィルム」(登録商標、Genzyme社製)が市販されている。   Chemically modified polysaccharides are widely used in food applications, daily necessities applications, cosmetic applications, etc. due to their hydrogel properties and biocompatibility, and their applications extend to the medical field. For example, a composition comprising a compound obtained by crosslinking hyaluronic acid and carboxymethylcellulose, which was developed based on Patent Document 1 and Patent Document 2, and a film-like adhesion preventing material “Seprafilm” (registered trademark, manufactured by Genzyme) is commercially available. Has been.

なかでも、多糖類誘導体のハイドロゲルであって流動性があるものは、体内に注射器などを用いて注入することが可能であり、内視鏡手術時でも低侵襲な条件下で使用できる医療材料となりうる。また、創傷部位を湿潤状態に保つ創傷被覆剤や、組織修復のための充填材、細胞培養の培地、薬物輸送システムの担体などの医療分野への幅広い応用が期待される。   Among them, polysaccharide hydrogels that have fluidity can be injected into the body using a syringe, and can be used under minimally invasive conditions even during endoscopic surgery. It can be. In addition, a wide range of applications in the medical field such as a wound dressing that keeps the wound site moist, a filler for tissue repair, a cell culture medium, and a carrier for a drug delivery system are expected.

医療材料としてゲルを用いる場合、必ず滅菌処理を施さなければならない。滅菌方法としては、乾熱法、高圧蒸気法(オートクレーブ法)、流通蒸気法、煮沸法、間けつ法、ろ過法、γ線法、電子線法、紫外線法、高周波法、ガス法(エチレンオキサイド法、ホルムアルデヒド法)等が知られており、日本薬局方にも記載されている。この中でも、最終形態のゲルに直接適用でき、かつ、化学変化を引き起こさない滅菌方法として、高圧蒸気法が優れている。例えば、特許文献3にはアルギン酸ナトリウムと水とからなる組成物を高圧蒸気滅菌し、癒着防止材として用いることが記載されている。しかし、高圧蒸気滅菌後の組成物の粘度は低く、高圧蒸気滅菌後の粘度が1Pa・s以上になるためには、アルギン酸ナトリウムの重量濃度を5%まで上げなければならなかった。このため、低重量濃度の多糖類誘導体から、体内での十分な滞留性をもったゲルを作り出すことが課題であった。   When using gel as a medical material, it must be sterilized. Sterilization methods include dry heat method, high pressure steam method (autoclave method), flow steam method, boiling method, intermittent method, filtration method, γ ray method, electron beam method, ultraviolet ray method, high frequency method, gas method (ethylene oxide) Method, formaldehyde method) and the like are also described in the Japanese Pharmacopoeia. Among these, the high pressure steam method is excellent as a sterilization method that can be directly applied to the gel in the final form and does not cause a chemical change. For example, Patent Document 3 describes that a composition comprising sodium alginate and water is subjected to high-pressure steam sterilization and used as an adhesion preventing material. However, the viscosity of the composition after high-pressure steam sterilization is low, and in order for the viscosity after high-pressure steam sterilization to be 1 Pa · s or more, the weight concentration of sodium alginate had to be increased to 5%. For this reason, it has been a problem to produce a gel having sufficient retention in the body from a polysaccharide derivative having a low weight concentration.

特許文献4にはカルボキシメチルセルロースとホスファチジルエタノールアミンとを1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドを縮合剤として縮合させる反応が記載されている。しかし、特許文献4では多糖類に導入された側鎖はホスファチジルエタノールアミン部位だけであり、また、そのハイドロゲルの粘弾性については全く記載がない。   Patent Document 4 describes a reaction in which carboxymethylcellulose and phosphatidylethanolamine are condensed using 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide as a condensing agent. However, in Patent Document 4, the side chain introduced into the polysaccharide is only the phosphatidylethanolamine site, and there is no description about the viscoelasticity of the hydrogel.

非特許文献1にはセファロースまたはトリスアクリルにジシクロヘキシルカルボジイミドとN−ヒドロキシスクシンイミドを加え、ロッセン転位反応により側鎖としてβ−アラニン誘導体を導入する反応が記載されている。しかし、この反応では疎水基は同時には導入されておらず、また多糖類誘導体のハイドロゲルの粘弾性については全く記載がない。   Non-Patent Document 1 describes a reaction in which dicyclohexylcarbodiimide and N-hydroxysuccinimide are added to Sepharose or Trisacryl, and a β-alanine derivative is introduced as a side chain by the Losen rearrangement reaction. However, in this reaction, hydrophobic groups are not introduced at the same time, and there is no description about the viscoelasticity of polysaccharide derivative hydrogels.

特表平5−508161号公報Japanese National Patent Publication No. 5-508161 特表平6−508169号公報JP-T 6-508169 特開2003−24431号公報JP 2003-24431 A 米国特許第5064817号明細書US Pat. No. 5,064,817

Biochemistry,1987;26:2155−2161.Biochemistry, 1987; 26: 2155-2161.

本発明が解決しようとする課題は、水と混合後に高圧蒸気滅菌しても高い粘弾性を保持するハイドロゲルとなる多糖類誘導体を提供することである。
さらに、かかる多糖類誘導体の効率的な製造方法を提供することも本発明の課題である。
The problem to be solved by the present invention is to provide a polysaccharide derivative that becomes a hydrogel that retains high viscoelasticity even when autoclaved after mixing with water.
It is another object of the present invention to provide an efficient method for producing such polysaccharide derivatives.

本発明の発明者らは、上記目的のもとで鋭意研究した結果、特定の多糖類誘導体であれば、高圧蒸気滅菌後も高い粘弾性を有するハイドロゲルを形成することを見出し、本発明を完成した。   The inventors of the present invention, as a result of intensive research under the above object, have found that a specific polysaccharide derivative forms a hydrogel having high viscoelasticity even after high-pressure steam sterilization. completed.

すなわち、本発明は下記式(1)で表される繰り返し単位からなる多糖類誘導体ならびにそのハイドロゲルである。   That is, this invention is the polysaccharide derivative which consists of a repeating unit represented by following formula (1), and its hydrogel.

Figure 2011099029
式(1)中、R、R、およびRは、それぞれ独立に、下記式(1−a)、(1−b)、(1−c)、および(1−d)からなる群より選ばれる基を表す。ただし、多糖類誘導体中には、式(1−c)で表される基、および式(1−d)で表される基がいずれも存在する。
Figure 2011099029
In formula (1), R 1 , R 2 , and R 3 are each independently a group consisting of the following formulas (1-a), (1-b), (1-c), and (1-d) Represents a group selected from However, in the polysaccharide derivative, both a group represented by the formula (1-c) and a group represented by the formula (1-d) are present.

Figure 2011099029
式(1−b)および(1−d)中、Xは水素またはアルカリ金属を表し、式(1−c)中、Yは炭素数70以下の置換されていてもよいアルキル基を表す。
Figure 2011099029
In the formulas (1-b) and (1-d), X represents hydrogen or an alkali metal, and in the formula (1-c), Y represents an optionally substituted alkyl group having 70 or less carbon atoms.

また、本発明は下記式(2)で表される繰り返し単位からなるカルボキシメチルセルロースと下記式(3)で表されるアミンとを、下記式(4)で表される縮合剤、およびN−ヒドロキシスクシンイミドまたはその誘導体の存在下で反応させることを特徴とする、上記多糖類誘導体の製造方法である。   Further, the present invention provides a carboxymethyl cellulose composed of a repeating unit represented by the following formula (2) and an amine represented by the following formula (3), a condensing agent represented by the following formula (4), and N-hydroxy. The method for producing a polysaccharide derivative, wherein the reaction is carried out in the presence of succinimide or a derivative thereof.

Figure 2011099029
式(2)中、R11、R21、およびR31はそれぞれ独立に、下記式(2−a)および(2−b)からなる群より選ばれる。
Figure 2011099029
In formula (2), R 11 , R 21 and R 31 are each independently selected from the group consisting of the following formulas (2-a) and (2-b).

Figure 2011099029
式(2−b)中、Xは水素またはアルカリ金属を表す。
Figure 2011099029
In formula (2-b), X represents hydrogen or an alkali metal.

Figure 2011099029
式(3)中、Yは炭素数70以下の置換されていてもよいアルキル基を表す。
Figure 2011099029
In formula (3), Y represents an optionally substituted alkyl group having 70 or less carbon atoms.

Figure 2011099029
式(4)中、RおよびRは、それぞれ独立に、炭素数が20以下の炭化水素基を表し、互いに結合して環構造を形成していてもよい。
Figure 2011099029
In Formula (4), R 6 and R 7 each independently represent a hydrocarbon group having 20 or less carbon atoms, and may be bonded to each other to form a ring structure.

本発明の多糖類誘導体のハイドロゲルは、高圧蒸気滅菌後も高い粘弾性を保持している。   The polysaccharide derivative hydrogel of the present invention retains high viscoelasticity even after high-pressure steam sterilization.

また、本発明の製造方法によれば、多糖類の主鎖にβ−アラニン誘導体が他の置換基と同時に導入される。すなわち、従来の方法では二段階以上の合成工程を経なければならなかったのに対し、本発明の製造方法では一段階で行なうことができ、置換基の導入率も他の触媒を用いた場合と比べて高い。   Moreover, according to the production method of the present invention, the β-alanine derivative is introduced into the main chain of the polysaccharide simultaneously with other substituents. In other words, the conventional method had to go through two or more steps of synthesis, whereas the production method of the present invention can be carried out in one step, and the introduction rate of substituents is also different when other catalysts are used. Higher than

本発明は下記式(1)で表される繰り返し単位からなる多糖類誘導体ならびにそのハイドロゲルである。   The present invention is a polysaccharide derivative composed of a repeating unit represented by the following formula (1) and a hydrogel thereof.

Figure 2011099029
Figure 2011099029

かかる多糖類誘導体の分子量は、目的とする効果を奏する限り、特に限定されない。
上記式(1)中、R、R、およびRは、それぞれ独立に、下記式(1−a)、(1−b)、(1−c)、および(1−d)からなる群より選ばれる基を表す。
The molecular weight of such a polysaccharide derivative is not particularly limited as long as it exhibits the intended effect.
In the above formula (1), R 1 , R 2 , and R 3 each independently comprises the following formulas (1-a), (1-b), (1-c), and (1-d). Represents a group selected from the group;

Figure 2011099029
Figure 2011099029

上記式(1−b)および(1−d)中、Xは水素またはアルカリ金属を表し、式(1−c)中、Yは炭素数70以下の置換されていてもよいアルキル基を表す。
かかるXのアルカリ金属としては、リチウム、ナトリウム、カリウムが好ましく、特にナトリウムが好ましい。
Yの炭素数70以下の置換されていてもよいアルキル基には、分岐しているもの、環構造を形成しているものを含む。かかるYのアルキル基の置換基としては、a)ヒドロキシル基、b)カルボキシル基、c)アミノ基、d)チオール基、e)リン酸基、f)芳香族基などが挙げられる。この中でもヒドロキシル基、カルボキシル基、リン酸基が好ましく、リン酸基が特に好ましい。Yのアルキル基の置換基がイオン性の場合は、その塩もYの定義に含まれる。
かかるYとしては、下記式(1−e)で表される基が好ましい。
In the above formulas (1-b) and (1-d), X represents hydrogen or an alkali metal, and in the formula (1-c), Y represents an alkyl group having 70 or less carbon atoms which may be substituted.
As the alkali metal of X, lithium, sodium and potassium are preferable, and sodium is particularly preferable.
The optionally substituted alkyl group having 70 or less carbon atoms of Y includes a branched one and a ring structure. Examples of the substituent of the alkyl group of Y include a) a hydroxyl group, b) a carboxyl group, c) an amino group, d) a thiol group, e) a phosphoric acid group, and f) an aromatic group. Among these, a hydroxyl group, a carboxyl group, and a phosphate group are preferable, and a phosphate group is particularly preferable. When the substituent of the alkyl group of Y is ionic, the salt is also included in the definition of Y.
Such Y is preferably a group represented by the following formula (1-e).

Figure 2011099029
Figure 2011099029

上記式(1−e)中、Xは水素またはアルカリ金属を表し、RおよびRは、それぞれ独立に炭素数10〜28のアルキル基またはアルケニル基を表す。
かかるXのアルカリ金属としては、リチウム、ナトリウム、カリウムが好ましく、特にナトリウムが好ましい。
また、RおよびRとしては、アルキル基、アルケニル基、アルキニル基が好ましく、特にRおよびRが−CH(CHCH=CH(CHCHであるものが好ましい。
In the formula (1-e), X represents hydrogen or an alkali metal, R 4 and R 5 each independently represent an alkyl group or alkenyl group having 10 to 28 carbon atoms.
As the alkali metal of X, lithium, sodium and potassium are preferable, and sodium is particularly preferable.
Further, as R 4 and R 5 , an alkyl group, an alkenyl group, and an alkynyl group are preferable, and in particular, R 4 and R 5 are —CH 2 (CH 2 ) 6 CH═CH (CH 2 ) 7 CH 3. preferable.

また、上記式(1−d)で表される基の当量は1.0〜20.0[mol%/糖残基]であるものが好ましく、上記式(1−c)で表される基の当量は0.5〜5.0[mol%/糖残基]であるものが好ましい。   Further, the group represented by the above formula (1-d) is preferably 1.0 to 20.0 [mol% / sugar residue], and the group represented by the above formula (1-c). Is preferably 0.5 to 5.0 [mol% / sugar residue].

また、本発明は、下記式(2)で表される繰り返し単位からなるカルボキシメチルセルロースと下記式(3)で表されるアミンとを、下記式(4)で表される縮合剤、およびN−ヒドロキシスクシンイミドまたはその誘導体の存在下で反応させることを特徴とする、上記多糖類誘導体の製造方法である。   Further, the present invention provides a carboxymethyl cellulose composed of a repeating unit represented by the following formula (2) and an amine represented by the following formula (3), a condensing agent represented by the following formula (4), and N- The method for producing a polysaccharide derivative, wherein the reaction is performed in the presence of hydroxysuccinimide or a derivative thereof.

Figure 2011099029
式(2)中、R11、R21、およびR31は、それぞれ独立に、下記式(2−a)および(2−b)からなる群より選ばれる。
Figure 2011099029
In the formula (2), R 11 , R 21 and R 31 are each independently selected from the group consisting of the following formulas (2-a) and (2-b).

Figure 2011099029
式(2−b)中、Xは水素またはアルカリ金属を表す。
Figure 2011099029
In formula (2-b), X represents hydrogen or an alkali metal.

Figure 2011099029
式(3)中、Yは炭素数70以下の置換されていてもよいアルキル基を表す。
Figure 2011099029
In formula (3), Y represents an optionally substituted alkyl group having 70 or less carbon atoms.

Figure 2011099029
式(4)中、RおよびRは、それぞれ独立に、炭素数が20以下の炭化水素基を表し、互いに結合して環構造を形成していてもよい。
Figure 2011099029
In Formula (4), R 6 and R 7 each independently represent a hydrocarbon group having 20 or less carbon atoms, and may be bonded to each other to form a ring structure.

上記式(2)における好ましいXとしては、上記式(1)のXについて前述したものと同じものが好ましく挙げられる。
上記式(2)における好ましいYとしては、下記式(5)で表される基が好ましい。
Preferable X in the above formula (2) is preferably the same as described above for X in the above formula (1).
As preferable Y in the said Formula (2), group represented by following formula (5) is preferable.

Figure 2011099029
Figure 2011099029

式(5)中、Xは水素またはアルカリ金属を表し、RおよびRは、それぞれ独立に炭素数10〜28のアルキル基またはアルケニル基を表す。
式(5)における好ましいX、R、およびRとしては、上記式(1−e)のX、R、およびRについて前述したものと同じものが挙げられる。
In formula (5), X represents hydrogen or an alkali metal, and R 4 and R 5 each independently represents an alkyl group or an alkenyl group having 10 to 28 carbon atoms.
Preferred X, R 4 , and R 5 in the formula (5) include the same as those described above for X, R 4 , and R 5 in the formula (1-e).

上記式(3)で表されるアミンは、カルボキシメチルセルロースの糖残基100当量に対し、0.5〜20当量の割合にて反応させることが好ましい。
上記式(4)で表される縮合剤としては、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドおよびその塩、ジイソプロピルカルボジイミド、ジ−t−ブチルカルボジイミド、ジシクロヘキシルカルボジイミド、ジトリルカルボジイミド、1−t−ブチル−3−エチルカルボジイミド、1−シクロヘキシル−3−(2−モルホリノエチル)カルボジイミドおよびその塩などが挙げられる。この中でも、水溶性、反応性、および医療材料合成の実績の点から、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩が好ましい。
The amine represented by the above formula (3) is preferably reacted at a ratio of 0.5 to 20 equivalents with respect to 100 equivalents of sugar residues of carboxymethyl cellulose.
Examples of the condensing agent represented by the above formula (4) include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and its salt, diisopropylcarbodiimide, di-t-butylcarbodiimide, dicyclohexylcarbodiimide, ditolylcarbodiimide, 1 -T-butyl-3-ethylcarbodiimide, 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide, and salts thereof. Among these, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride is preferable from the viewpoint of water solubility, reactivity, and achievements in medical material synthesis.

本発明の製造方法で用いられるN−ヒドロキシスクシンイミドまたはその誘導体としては、N−ヒドロキシスクシンイミド、N−ヒドロキシスルホスクシンイミドなどが挙げられる。この中でも、溶解性、反応性の点から、N−ヒドロキシスクシンイミドが好ましい。   Examples of N-hydroxysuccinimide or a derivative thereof used in the production method of the present invention include N-hydroxysuccinimide and N-hydroxysulfosuccinimide. Among these, N-hydroxysuccinimide is preferable from the viewpoint of solubility and reactivity.

上記式(4)で表される縮合剤は、カルボキシメチルセルロースの糖残基100当量に対し、1〜50当量用いるのが好ましい。一方、N−ヒドロキシスクシンイミドまたはその誘導体は、カルボキシメチルセルロースの糖残基100当量に対し、1〜50当量用いるのが好ましい。   The condensing agent represented by the above formula (4) is preferably used in an amount of 1 to 50 equivalents per 100 equivalents of sugar residues of carboxymethylcellulose. On the other hand, N-hydroxysuccinimide or a derivative thereof is preferably used in an amount of 1 to 50 equivalents with respect to 100 equivalents of sugar residues of carboxymethyl cellulose.

カルボキシメチルセルロースと上記式(3)で表されるアミンとの反応は、水および水と相溶する有機溶媒を混合した溶媒系、もしくは水単独を溶媒として行なうことができる。その中でも、カルボキシメチルセルロース、上記式(3)で表されるアミン、上記式(4)で表される縮合剤、N−ヒドロキシスクシンイミドまたはその誘導体のすべてが溶解する溶媒系が望ましい。   The reaction between carboxymethyl cellulose and the amine represented by the above formula (3) can be carried out using a solvent system in which water and an organic solvent compatible with water are mixed, or water alone. Among them, a solvent system in which all of carboxymethylcellulose, the amine represented by the above formula (3), the condensing agent represented by the above formula (4), N-hydroxysuccinimide or a derivative thereof is desirable.

上記反応の生成物を精製する方法は特に限定されないが、以下の方法により効率よく精製され、高純度の多糖類誘導体を製造することができる。すなわち、カルボキシメチルセルロースと上記式(3)で表されるアミンとの反応後、溶媒を減圧留去し、その残渣を多糖類の溶解度が大きくない有機溶媒に加えることにより、多糖類誘導体を析出させる。有機溶媒としては、具体的にはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、t−ブタノールなどの1価アルコール類、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、グリセリンなどの多価アルコール類、アセトンなどのケトン類、フェノールなどの芳香族アルコール類を挙げることができる。これらの中でも、生体内での安全性の点から、エタノールが好ましい。   The method for purifying the product of the above reaction is not particularly limited, but it can be efficiently purified by the following method to produce a highly pure polysaccharide derivative. That is, after the reaction between carboxymethyl cellulose and the amine represented by the above formula (3), the solvent is distilled off under reduced pressure, and the residue is added to an organic solvent in which the solubility of the polysaccharide is not large, thereby precipitating the polysaccharide derivative. . Specific examples of the organic solvent include monohydric alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and t-butanol, ethylene glycol, 1,2-propylene glycol, and 1,3-propylene. Examples thereof include polyhydric alcohols such as glycol and glycerin, ketones such as acetone, and aromatic alcohols such as phenol. Among these, ethanol is preferable from the viewpoint of safety in vivo.

<多糖類誘導体によるハイドロゲル>
上記方法によって得られる多糖類誘導体は、ハイドロゲルを形成することができる(かかるハイドロゲルを、以下、単に「ハイドロゲル」と略記することがある)。このとき、水100重量部に対し、本発明の多糖類誘導体を0.1〜5.0重量部、好ましくは0.5〜5.0重量部含むことにより、適度な粘弾性を有するハイドロゲルを得ることができる。
<Hydrogel with polysaccharide derivative>
The polysaccharide derivative obtained by the above method can form a hydrogel (hereinafter, this hydrogel may be simply abbreviated as “hydrogel”). At this time, the hydrogel which has moderate viscoelasticity by containing 0.1-5.0 weight part of the polysaccharide derivative of this invention with respect to 100 weight part of water, Preferably 0.5-5.0 weight part Can be obtained.

通常、いずれのハイドロゲルも、ポリマーの濃度を高めることにより所望のゲル強度を得ることができるが、本発明のハイドロゲルは、水に対して5重量%以下の低いポリマー濃度においても、十分なゲル粘弾性を得ることができる。具体的に好ましいハイドロゲルの物性としては、ハイドロゲルの入った容器を傾けても流れ落ちない程度の粘弾性を有するものであり、スパーテルなどの金属へらで触ると容易に変形することが可能で、患部に塗布することが容易な状態である。また、かかるハイドロゲルは注射器など細管を有する器具で注入することが可能である。また、かかるハイドロゲルは無色透明であり、製造の過程でごみなどの異物が混入した場合、これを検知することが可能であり、工業生産する上でのメリットを有する。   Usually, any hydrogel can obtain a desired gel strength by increasing the concentration of the polymer. However, the hydrogel of the present invention is sufficient even at a low polymer concentration of 5% by weight or less with respect to water. Gel viscoelasticity can be obtained. As a particularly preferred physical property of the hydrogel, it has viscoelasticity that does not flow down even if the container containing the hydrogel is tilted, and can be easily deformed when touched with a metal spatula such as a spatula, It is easy to apply to the affected area. Further, such a hydrogel can be injected with an instrument having a thin tube such as a syringe. Further, such hydrogel is colorless and transparent, and when foreign matters such as dust are mixed in the manufacturing process, it can be detected, and has an advantage in industrial production.

ハイドロゲルの好ましい粘弾性としては、温度37℃の条件で、レオメーターとよばれる動的粘弾性測定装置を用い、角速度10rad/secで測定したときの絶対粘度が、0.2〜100Pa・sが好ましく、さらに好ましくは2〜30Pa・sであり、この範囲が注入型ゲルとしての取扱性の良さと体内での滞留性を同時に満足させられる範囲であるが、使用目的により適宜変更させることができる。   As a preferable viscoelasticity of the hydrogel, an absolute viscosity when measured at an angular velocity of 10 rad / sec using a dynamic viscoelasticity measuring device called a rheometer under a temperature of 37 ° C. is 0.2 to 100 Pa · s. More preferably, it is 2 to 30 Pa · s, and this range is a range in which good handling properties as an injectable gel and retention in the body can be satisfied at the same time. it can.

本発明の多糖類誘導体およびそのハイドロゲルの用途としては、癒着防止材、癒着防止材以外の医療用途(創傷被覆剤・充填材・細胞培養培地・薬物輸送システムの担体など)、ヘアケア製品や肌の保湿剤などの日用品用途、化粧品用途などがある。   The polysaccharide derivative of the present invention and the hydrogel thereof may be used for anti-adhesion materials, medical applications other than anti-adhesion materials (such as wound dressings, fillers, cell culture media, and drug transport system carriers), hair care products and skin. There are daily necessities such as moisturizers and cosmetics.

以下の実施例・比較例により本発明の実施態様をより具体的に説明する。しかし、本発明はこれら実施例に限定されるものではない。   The embodiments of the present invention will be described more specifically with reference to the following examples and comparative examples. However, the present invention is not limited to these examples.

(1)実施例・比較例に使用した材料は以下の通りである。
(i)CMCNa:カルボキシメチルセルロースナトリウム(第一工業製薬(株)製、PM250−L、ヒドロキシル基のカルボキシメチル基への置換度0.7、粘度平均分子量600000)、
(ii)CMCNa:カルボキシメチルセルロースナトリウム(第一工業製薬(株)製、P−603A、ヒドロキシル基のカルボキシメチル基への置換度0.7、粘度平均分子量120000)、
(iii)テトラヒドロフラン(和光純薬工業(株)製)、
(iv)1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩 (WSC・HCl、大阪有機合成(株)製)、
(v)N−ヒドロキシスクシンイミド(HOSu、大阪有機合成(株)製)、
(vi)1−ヒドロキシベンゾトリアゾール一水和物(HOBt・HO、大阪有機合成(株)製)、
(vii)1−ヒドロキシ−7−アザベンゾトリアゾール(HOAt、和光純薬工業(株)製)、
(viii)L−α−ジオレオイルホスファチジルエタノールアミン(DOPE、日本油脂(株)製)。
(1) Materials used in Examples and Comparative Examples are as follows.
(I) CMCNa: carboxymethylcellulose sodium (Daiichi Kogyo Seiyaku Co., Ltd., PM250-L, degree of substitution of hydroxyl group with carboxymethyl group 0.7, viscosity average molecular weight 600000),
(Ii) CMCNa: sodium carboxymethyl cellulose (Daiichi Kogyo Seiyaku Co., Ltd., P-603A, degree of substitution of hydroxyl group with carboxymethyl group 0.7, viscosity average molecular weight 120,000),
(Iii) Tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.)
(Iv) 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC / HCl, manufactured by Osaka Organic Synthesis Co., Ltd.)
(V) N-hydroxysuccinimide (HOSu, Osaka Organic Synthesis Co., Ltd.),
(Vi) 1-hydroxybenzotriazole monohydrate (HOBt · H 2 O, manufactured by Osaka Organic Synthesis Co., Ltd.),
(Vii) 1-hydroxy-7-azabenzotriazole (HOAt, manufactured by Wako Pure Chemical Industries, Ltd.),
(Viii) L-α-dioleoylphosphatidylethanolamine (DOPE, manufactured by NOF Corporation).

(2)多糖類誘導体中のホスファチジルエタノールアミン含量の測定
多糖類誘導体中のホスファチジルエタノールアミン含量は、バナドモリブデン酸吸光光度法による全リン含量の分析またはH−NMRスペクトルのピークの積分比から求めた。
(2) Measurement of phosphatidylethanolamine content in polysaccharide derivatives The phosphatidylethanolamine content in polysaccharide derivatives can be determined by analyzing the total phosphorus content by vanadomolybdic acid spectrophotometry or by integrating the peaks of 1 H-NMR spectrum. Asked.

(3)多糖類誘導体中のβ−アラニン誘導体含量の測定
多糖類誘導体中のβ−アラニン誘導体の割合は、H−NMRスペクトルのピークの積分比から求めた。
(3) Measurement of β-alanine derivative content in polysaccharide derivative The proportion of β-alanine derivative in the polysaccharide derivative was determined from the integral ratio of the peaks of the 1 H-NMR spectrum.

(4)ハイドロゲルの粘弾性の測定
ハイドロゲルの粘弾性は、動的粘弾性測定装置であるRheometer RFIII(TA Instrument)を使用し、37℃、角速度10rad/secで測定した。
(4) Measurement of Viscoelasticity of Hydrogel The viscoelasticity of the hydrogel was measured at 37 ° C. and an angular velocity of 10 rad / sec using a Rheometer RFIII (TA Instrument) which is a dynamic viscoelasticity measuring device.

[実施例1]
CMCNa(PM250−L、置換度0.7、粘度平均分子量600000)3000mgを水とテトラヒドロフランの混合溶媒に溶解させた。この溶液に、L−α−ジオレオイルホスファチジルエタノールアミン(DOPE)144mg(0.194mmol)、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC・HCl)798 mg(4.16 mmol)およびN−ヒドロキシスクシンイミド(HOSu)478mg(4.16mmol)を加えた。反応終了後、反応溶液をエタノールに加えることにより多糖類誘導体を析出させ、ろ取した。得られた固体をエタノールで洗浄し、減圧乾燥した。得られた多糖類誘導体のDOPEの置換度は1.5mol%/糖残基、β−アラニン誘導体の置換度は10.5mol%/糖残基であった。
得られたセルロース誘導体20mgを注射用蒸留水1980mgに溶解し、濃度1重量%のハイドロゲルを調製した。このハイドロゲルを高圧蒸気滅菌(121℃、20分間)した後の貯蔵弾性率は106.2Pa、損失弾性率は18.2Pa、絶対粘度は10.8Pa・sであった。
[Example 1]
3000 mg of CMCNa (PM250-L, degree of substitution 0.7, viscosity average molecular weight 600000) was dissolved in a mixed solvent of water and tetrahydrofuran. In this solution, 144 mg (0.194 mmol) of L-α-dioleoylphosphatidylethanolamine (DOPE), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC · HCl) 798 mg (4. 16 mmol) and 478 mg (4.16 mmol) of N-hydroxysuccinimide (HOSu) were added. After completion of the reaction, the polysaccharide derivative was precipitated by adding the reaction solution to ethanol and collected by filtration. The obtained solid was washed with ethanol and dried under reduced pressure. The degree of substitution of DOPE of the obtained polysaccharide derivative was 1.5 mol% / sugar residue, and the degree of substitution of the β-alanine derivative was 10.5 mol% / sugar residue.
20 mg of the obtained cellulose derivative was dissolved in 1980 mg of distilled water for injection to prepare a hydrogel having a concentration of 1% by weight. The storage elastic modulus of the hydrogel after high-pressure steam sterilization (121 ° C., 20 minutes) was 106.2 Pa, the loss elastic modulus was 18.2 Pa, and the absolute viscosity was 10.8 Pa · s.

[実施例2]
DOPE144mg(0.194mmol)、WSC・HCl 798 mg(4.16 mmol)およびHOSu478mg(4.16mmol)の代わりにDOPE351mg(0.472mmol)、WSC・HCl 399 mg(2.08 mmol)およびHOSu 239 mg(2.08 mmol)を用いたこと以外は実施例1と同様の操作を行い、多糖類誘導体を得た。得られた多糖類誘導体のDOPEの置換度は2.8mol%/糖残基、β−アラニン誘導体の置換度は2.7mol%/糖残基であった。
得られた多糖類誘導体20mgを注射用蒸留水1980mgに溶解し、濃度1重量%のハイドロゲルを調製した。このハイドロゲルを高圧蒸気滅菌(121℃、20分間)した後の貯蔵弾性率は213.0Pa、損失弾性率は26.9Pa、絶対粘度は、21.5Pa・sであった。
[Example 2]
DOPE 351 mg (0.472 mmol), WSC · HCl 399 mg (2.08 mmol) and HOSu 239 mg instead of DOPE 144 mg (0.194 mmol), WSC · HCl 798 mg (4.16 mmol) and HOSu 478 mg (4.16 mmol) A polysaccharide derivative was obtained in the same manner as in Example 1 except that (2.08 mmol) was used. The degree of substitution of DOPE of the obtained polysaccharide derivative was 2.8 mol% / sugar residue, and the degree of substitution of the β-alanine derivative was 2.7 mol% / sugar residue.
20 mg of the obtained polysaccharide derivative was dissolved in 1980 mg of distilled water for injection to prepare a hydrogel having a concentration of 1% by weight. The storage elastic modulus of this hydrogel after high-pressure steam sterilization (121 ° C., 20 minutes) was 213.0 Pa, the loss elastic modulus was 26.9 Pa, and the absolute viscosity was 21.5 Pa · s.

[比較例1]
CMCNa(PM250−L、置換度0.7、粘度平均分子量600000)750mgを水とテトラヒドロフランの混合溶媒に溶解させた。この溶液に、DOPE351mg(0.472mmol)、WSC・HCl 100 mg(0.52 mmol)および1−ヒドロキシベンゾトリアゾール一水和物(HOBt・HO)80 mg(0.52 mmol)を加えた。反応終了後、反応溶液をエタノールに加えることにより多糖類誘導体を析出させ、ろ取した。得られた固体をエタノールで洗浄し、減圧乾燥した。得られた多糖類誘導体のDOPEの置換度は1.5mol%/糖残基であった。
得られた多糖類誘導体20mgを注射用蒸留水1980mgに溶解し、濃度1重量%のハイドロゲルを調製した。このハイドロゲルを高圧蒸気滅菌(121℃、20分間)した後の、貯蔵弾性率は10.1Pa、損失弾性率は3.6Pa、絶対粘度は1.1Pa・sであった。
[Comparative Example 1]
750 mg of CMCNa (PM250-L, substitution degree 0.7, viscosity average molecular weight 600000) was dissolved in a mixed solvent of water and tetrahydrofuran. To this solution, 351 mg (0.472 mmol) of DOPE, 100 mg (0.52 mmol) of WSC · HCl and 80 mg (0.52 mmol) of 1-hydroxybenzotriazole monohydrate (HOBt · H 2 O) were added. . After completion of the reaction, the polysaccharide derivative was precipitated by adding the reaction solution to ethanol and collected by filtration. The obtained solid was washed with ethanol and dried under reduced pressure. The degree of substitution of DOPE in the obtained polysaccharide derivative was 1.5 mol% / sugar residue.
20 mg of the obtained polysaccharide derivative was dissolved in 1980 mg of distilled water for injection to prepare a hydrogel having a concentration of 1% by weight. After hydrosterilization of this hydrogel (121 ° C., 20 minutes), the storage elastic modulus was 10.1 Pa, the loss elastic modulus was 3.6 Pa, and the absolute viscosity was 1.1 Pa · s.

[実施例3]
CMCNa(P−603A、置換度0.7、粘度平均分子量120000)3000mgを水とテトラヒドロフランの混合溶媒に溶解させた。この溶液に、DOPE349mg(0.468mmol)、WSC・HCl 395 mg(2.06 mmol)およびHOSu237mg(2.06mmol)を加えた。反応終了後、反応溶液をエタノールに加えることにより多糖類誘導体を析出させ、ろ取した。得られた固体をエタノールで洗浄し、減圧乾燥した。得られた多糖類誘導体のDOPEの置換度は2.8mol%/糖残基、β−アラニン誘導体の置換度は2.1mol%/糖残基であった。
得られた多糖類誘導体20mgを注射用蒸留水1980mgに溶解し、濃度1重量%のハイドロゲルを調製した。このハイドロゲルを高圧蒸気滅菌(121℃、20分間)した後の貯蔵弾性率は22.6Pa、損失弾性率は6.7Pa、絶対粘度は、2.4Pa・sであった。
[Example 3]
3000 mg of CMCNa (P-603A, degree of substitution 0.7, viscosity average molecular weight 120,000) was dissolved in a mixed solvent of water and tetrahydrofuran. To this solution, 349 mg (0.468 mmol) of DOPE, 395 mg (2.06 mmol) of WSC · HCl and 237 mg (2.06 mmol) of HOSu were added. After completion of the reaction, the polysaccharide derivative was precipitated by adding the reaction solution to ethanol and collected by filtration. The obtained solid was washed with ethanol and dried under reduced pressure. The degree of substitution of DOPE of the obtained polysaccharide derivative was 2.8 mol% / sugar residue, and the degree of substitution of the β-alanine derivative was 2.1 mol% / sugar residue.
20 mg of the obtained polysaccharide derivative was dissolved in 1980 mg of distilled water for injection to prepare a hydrogel having a concentration of 1% by weight. This hydrogel was subjected to high-pressure steam sterilization (121 ° C., 20 minutes), the storage elastic modulus was 22.6 Pa, the loss elastic modulus was 6.7 Pa, and the absolute viscosity was 2.4 Pa · s.

[比較例2]
DOPEを加えなかったこと以外は実施例3と同様の操作を行い、多糖類誘導体を得た。得られた多糖類誘導体のβ−アラニン誘導体の置換度は4.6mol%/糖残基であった。
得られた多糖類誘導体20mgを注射用蒸留水1980mgに溶解し、濃度1重量%のハイドロゲルを調製した。このハイドロゲルを高圧蒸気滅菌(121℃、20分間)した後の、貯蔵弾性率は1.0Pa以下、損失弾性率は1.0Pa以下、絶対粘度は、0.1Pa・s以下であった。
[Comparative Example 2]
The polysaccharide derivative was obtained by performing the same operation as in Example 3 except that DOPE was not added. The substitution degree of the β-alanine derivative of the obtained polysaccharide derivative was 4.6 mol% / sugar residue.
20 mg of the obtained polysaccharide derivative was dissolved in 1980 mg of distilled water for injection to prepare a hydrogel having a concentration of 1% by weight. After the hydrogel was autoclaved (121 ° C., 20 minutes), the storage elastic modulus was 1.0 Pa or less, the loss elastic modulus was 1.0 Pa or less, and the absolute viscosity was 0.1 Pa · s or less.

[比較例3]
HOSu237mg(2.06mmol)の代わりにHOBt・HO 315 mg(2.06 mmol)を用いたこと以外は実施例3と同様の操作を行い、多糖類誘導体を得た。得られた多糖類誘導体のDOPEの置換度は1.5mol%/糖残基であった。
得られた多糖類誘導体20mgを注射用蒸留水1980mgに溶解し、濃度1重量%のハイドロゲルを調製した。このハイドロゲルを高圧蒸気滅菌(121℃、20分間)した後の貯蔵弾性率は1.0Pa以下、損失弾性率は1.0Pa以下、絶対粘度は、0.1Pa・s以下であった。
[Comparative Example 3]
A polysaccharide derivative was obtained in the same manner as in Example 3 except that HOBt · H 2 O 315 mg (2.06 mmol) was used instead of HOSu237 mg (2.06 mmol). The degree of substitution of DOPE in the obtained polysaccharide derivative was 1.5 mol% / sugar residue.
20 mg of the obtained polysaccharide derivative was dissolved in 1980 mg of distilled water for injection to prepare a hydrogel having a concentration of 1% by weight. The storage modulus of the hydrogel after high-pressure steam sterilization (121 ° C., 20 minutes) was 1.0 Pa or less, the loss elastic modulus was 1.0 Pa or less, and the absolute viscosity was 0.1 Pa · s or less.

[比較例4]
HOSu237mg(2.06mmol)の代わりに1−ヒドロキシ−7−アザベンゾトリアゾール(HOAt)280mg(2.06mmol)を用いたこと以外は実施例3と同様の操作を行い、多糖類誘導体を得た。得られた多糖類誘導体のDOPEの置換度は1.2mol%/糖残基であった。
得られた多糖類誘導体20mgを注射用蒸留水1980mgに溶解し、濃度1重量%のハイドロゲルを調製した。このハイドロゲルを高圧蒸気滅菌(121℃、20分間)した後の貯蔵弾性率は1.0Pa以下、損失弾性率は1.0Pa以下、絶対粘度は、0.1Pa・s以下であった。
[Comparative Example 4]
A polysaccharide derivative was obtained in the same manner as in Example 3 except that 280 mg (2.06 mmol) of 1-hydroxy-7-azabenzotriazole (HOAt) was used instead of 237 mg (2.06 mmol) of HOSu. The degree of substitution of DOPE of the obtained polysaccharide derivative was 1.2 mol% / sugar residue.
20 mg of the obtained polysaccharide derivative was dissolved in 1980 mg of distilled water for injection to prepare a hydrogel having a concentration of 1% by weight. The storage modulus of the hydrogel after high-pressure steam sterilization (121 ° C., 20 minutes) was 1.0 Pa or less, the loss elastic modulus was 1.0 Pa or less, and the absolute viscosity was 0.1 Pa · s or less.

実施例1〜3および比較例1〜4の、反応に用いた試薬量、生成物の側鎖の置換度、および高圧蒸気滅菌後のハイドロゲルの粘弾性のデータを表1にまとめた。   Table 1 summarizes the amounts of reagents used in the reactions, the degree of substitution of the side chains of the products, and the viscoelasticity of the hydrogel after high-pressure steam sterilization in Examples 1 to 3 and Comparative Examples 1 to 4.

Figure 2011099029
Figure 2011099029

実施例1と比較例1の比較により、同じ多糖類主鎖に同じ量のDOPE側鎖が導入された多糖類誘導体でも、β−アラニン誘導体が導入されているものの方が、β−アラニン誘導体が導入されていないものよりも高圧蒸気滅菌後のハイドロゲルの粘弾性が高いことが分かった。   According to a comparison between Example 1 and Comparative Example 1, a polysaccharide derivative in which the same amount of DOPE side chain was introduced into the same polysaccharide main chain but a β-alanine derivative was introduced had a better β-alanine derivative. It was found that the hydrogel after high-pressure steam sterilization had higher viscoelasticity than the one not introduced.

また、実施例3と比較例2の比較により、多糖類にβ−アラニン誘導体のみが結合していても高圧蒸気滅菌後のハイドロゲルの粘弾性は低く、高圧蒸気滅菌後のハイドロゲルの粘弾性を高くするには多糖類主鎖に−CHCONHY(Yは炭素数70以下の置換されていてもよいアルキル基)とβ−アラニン誘導体の両方を導入する必要があることが分かった。 Further, according to the comparison between Example 3 and Comparative Example 2, even when only the β-alanine derivative is bonded to the polysaccharide, the hydrogel after high-pressure steam sterilization has low viscoelasticity, and the hydrogel after high-pressure steam sterilization has low viscoelasticity. It has been found that in order to increase the ratio, it is necessary to introduce both —CH 2 CONHY (Y is an optionally substituted alkyl group having 70 or less carbon atoms) and a β-alanine derivative into the polysaccharide main chain.

さらに、実施例3と比較例3および比較例4の比較により、反応に同じ量のCMCNaとDOPEを原料として用いた場合、触媒としてHOSuを用いる方が、HOBt・HOやHOAtを用いるよりも多糖類主鎖により多くのDOPEを導入でき、またβ−アラニン誘導体も同時に多糖類主鎖に導入されるため、高圧蒸気滅菌後のハイドロゲルの粘弾性が高くなることが分かった。 Further, according to comparison between Example 3 and Comparative Examples 3 and 4, when the same amount of CMCNa and DOPE were used as raw materials in the reaction, HOSu was used as a catalyst rather than HOBt / H 2 O or HOAt. It was found that more DOPE can be introduced into the polysaccharide main chain, and the β-alanine derivative is also introduced into the polysaccharide main chain at the same time, so that the viscoelasticity of the hydrogel after high-pressure steam sterilization is increased.

本発明の多糖類誘導体およびそのハイドロゲルは、例えば癒着防止材、創傷被覆剤、充填材、細胞培養培地、薬物輸送システムの担体、ヘアケア製品、肌の保湿剤、化粧品などに用いることができる。   The polysaccharide derivative and hydrogel thereof of the present invention can be used, for example, in anti-adhesion materials, wound dressings, fillers, cell culture media, drug transport system carriers, hair care products, skin moisturizers, cosmetics and the like.

Claims (13)

下記式(1)で表される繰り返し単位からなる多糖類誘導体。
Figure 2011099029
式(1)中、R、R、およびRは、それぞれ独立に、下記式(1−a)、(1−b)、(1−c)、および(1−d)からなる群より選ばれる基を表す。ただし、多糖類誘導体中には、式(1−c)で表される基、および式(1−d)で表される基がいずれも存在する。
Figure 2011099029
式(1−b)および(1−d)中、Xは水素またはアルカリ金属を表し、式(1−c)中、Yは炭素数70以下の置換されていてもよいアルキル基を表す。
The polysaccharide derivative which consists of a repeating unit represented by following formula (1).
Figure 2011099029
In formula (1), R 1 , R 2 , and R 3 are each independently a group consisting of the following formulas (1-a), (1-b), (1-c), and (1-d) Represents a group selected from However, in the polysaccharide derivative, both a group represented by the formula (1-c) and a group represented by the formula (1-d) are present.
Figure 2011099029
In the formulas (1-b) and (1-d), X represents hydrogen or an alkali metal, and in the formula (1-c), Y represents an optionally substituted alkyl group having 70 or less carbon atoms.
Yが下記式(1−e)で表される基である請求項1に記載の多糖類誘導体。
Figure 2011099029
式(1−e)中、Xは水素またはアルカリ金属を表し、RおよびRは、それぞれ独立に炭素数10〜28のアルキル基またはアルケニル基を表す。
The polysaccharide derivative according to claim 1, wherein Y is a group represented by the following formula (1-e).
Figure 2011099029
In formula (1-e), X represents hydrogen or an alkali metal, and R 4 and R 5 each independently represents an alkyl group or an alkenyl group having 10 to 28 carbon atoms.
およびRが−CH(CHCH=CH(CHCHである請求項2に記載の多糖類誘導体。 Polysaccharide derivative according to claim 2 R 4 and R 5 are -CH 2 (CH 2) 6 CH = CH (CH 2) 7 CH 3. 式(1−d)で表される基の当量が1.0〜20.0[mol%/糖残基]である請求項1〜3のいずれかに記載の多糖類誘導体。   The polysaccharide derivative according to any one of claims 1 to 3, wherein the equivalent of the group represented by the formula (1-d) is 1.0 to 20.0 [mol% / sugar residue]. 式(1−c)で表される基の当量が0.5〜5.0[mol%/糖残基]である請求項1〜4のいずれかに記載の多糖類誘導体。   The polysaccharide derivative according to any one of claims 1 to 4, wherein the equivalent of the group represented by the formula (1-c) is 0.5 to 5.0 [mol% / sugar residue]. 下記式(2)で表される繰り返し単位からなるカルボキシメチルセルロースと下記式(3)で表されるアミンとを、下記式(4)で表される縮合剤、およびN−ヒドロキシスクシンイミドまたはその誘導体の存在下で反応させることを特徴とする、請求項1〜5のいずれかに記載の多糖類誘導体の製造方法。
Figure 2011099029
式(2)中、R11、R21、およびR31はそれぞれ独立に、下記式(2−a)および(2−b)からなる群より選ばれる。
Figure 2011099029
式(2−b)中、Xは水素またはアルカリ金属を表す。
Figure 2011099029
式(3)中、Yは炭素数70以下の置換されていてもよいアルキル基を表す。
Figure 2011099029
式(4)中、RおよびRは、それぞれ独立に、炭素数が20以下の炭化水素基を表し、互いに結合して環構造を形成していてもよい。
A carboxymethyl cellulose composed of a repeating unit represented by the following formula (2) and an amine represented by the following formula (3), a condensing agent represented by the following formula (4), and N-hydroxysuccinimide or a derivative thereof: The method for producing a polysaccharide derivative according to any one of claims 1 to 5, wherein the reaction is carried out in the presence.
Figure 2011099029
In formula (2), R 11 , R 21 and R 31 are each independently selected from the group consisting of the following formulas (2-a) and (2-b).
Figure 2011099029
In formula (2-b), X represents hydrogen or an alkali metal.
Figure 2011099029
In formula (3), Y represents an optionally substituted alkyl group having 70 or less carbon atoms.
Figure 2011099029
In Formula (4), R 6 and R 7 each independently represent a hydrocarbon group having 20 or less carbon atoms, and may be bonded to each other to form a ring structure.
Yが下記式(5)で表される基である請求項6に記載の製造方法。
Figure 2011099029
式(5)中、Xは水素またはアルカリ金属を表し、RおよびRは、それぞれ独立に炭素数10〜28のアルキル基またはアルケニル基を表す。
The production method according to claim 6, wherein Y is a group represented by the following formula (5).
Figure 2011099029
In formula (5), X represents hydrogen or an alkali metal, and R 4 and R 5 each independently represents an alkyl group or an alkenyl group having 10 to 28 carbon atoms.
およびRが−CH(CHCH=CH(CHCHである請求項7に記載の製造方法。 The production method according to claim 7, wherein R 4 and R 5 are —CH 2 (CH 2 ) 6 CH═CH (CH 2 ) 7 CH 3 . N−ヒドロキシスクシンイミドまたはその誘導体が、N−ヒドロキシスクシンイミドである請求項6〜8のいずれかに記載の製造方法。   N-hydroxysuccinimide or its derivative (s) is N-hydroxysuccinimide, The manufacturing method in any one of Claims 6-8. 式(4)で表される縮合剤が、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドおよびその塩、ジイソプロピルカルボジイミド、ジ−t−ブチルカルボジイミド、ジシクロヘキシルカルボジイミド、ジトリルカルボジイミド、1−t−ブチル−3−エチルカルボジイミド、1−シクロヘキシル−3−(2−モルホリノエチル)カルボジイミドおよびその塩のうちのいずれかである請求項6〜9のいずれかに記載の製造方法。   The condensing agent represented by the formula (4) is 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide and a salt thereof, diisopropylcarbodiimide, di-t-butylcarbodiimide, dicyclohexylcarbodiimide, ditolylcarbodiimide, 1-t. The production method according to any one of claims 6 to 9, which is any one of -butyl-3-ethylcarbodiimide, 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide and a salt thereof. 式(4)で表される縮合剤が、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドまたはその塩である請求項6〜9のいずれかに記載の製造方法。   The production method according to any one of claims 6 to 9, wherein the condensing agent represented by the formula (4) is 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide or a salt thereof. 請求項1〜5のいずれかに記載の多糖類誘導体と水とを含むハイドロゲル。   A hydrogel comprising the polysaccharide derivative according to any one of claims 1 to 5 and water. 多糖類誘導体の重量比が0.5〜5.0wt%である請求項12に記載のハイドロゲル。   The hydrogel according to claim 12, wherein the weight ratio of the polysaccharide derivative is 0.5 to 5.0 wt%.
JP2009254077A 2009-11-05 2009-11-05 Polysaccharide derivative Ceased JP2011099029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254077A JP2011099029A (en) 2009-11-05 2009-11-05 Polysaccharide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254077A JP2011099029A (en) 2009-11-05 2009-11-05 Polysaccharide derivative

Publications (1)

Publication Number Publication Date
JP2011099029A true JP2011099029A (en) 2011-05-19

Family

ID=44190484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254077A Ceased JP2011099029A (en) 2009-11-05 2009-11-05 Polysaccharide derivative

Country Status (1)

Country Link
JP (1) JP2011099029A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356501A (en) * 1986-08-26 1988-03-11 Chisso Corp Cellulose gel having biochemical affinity and production thereof
JPH0270703A (en) * 1987-10-23 1990-03-09 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem Phospholipase a2 inhibitor composition and its use
JP2004359895A (en) * 2003-06-06 2004-12-24 Mcrotech Kk Medical composition
CN1858066A (en) * 2006-04-25 2006-11-08 江南大学 Process for preparing carboxymethyl cellulose crosslinked amide derivative
WO2007015579A1 (en) * 2005-08-04 2007-02-08 Teijin Limited Cellulose derivative
JP2008189829A (en) * 2007-02-06 2008-08-21 Teijin Ltd Method for preparing phosphatidylethanolamine linked polysaccharide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356501A (en) * 1986-08-26 1988-03-11 Chisso Corp Cellulose gel having biochemical affinity and production thereof
JPH0270703A (en) * 1987-10-23 1990-03-09 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem Phospholipase a2 inhibitor composition and its use
JP2004359895A (en) * 2003-06-06 2004-12-24 Mcrotech Kk Medical composition
WO2007015579A1 (en) * 2005-08-04 2007-02-08 Teijin Limited Cellulose derivative
CN1858066A (en) * 2006-04-25 2006-11-08 江南大学 Process for preparing carboxymethyl cellulose crosslinked amide derivative
JP2008189829A (en) * 2007-02-06 2008-08-21 Teijin Ltd Method for preparing phosphatidylethanolamine linked polysaccharide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014009353; Wilchek,M. et al.: 'Limitations of N-hydroxysuccinimide esters in affinity chromatography and protein immobilization' Biochemistry Vol.26, Issue 8, 1987, p.2155-2161 *

Similar Documents

Publication Publication Date Title
Wang et al. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering
KR101756493B1 (en) Sterilization of biodegradable hydrogels
KR101294451B1 (en) Cellulose derivative
JP5059787B2 (en) Cellulose derivative and method for producing the same
KR20160025026A (en) A process for preparing a cross-linked hyaluronic acid product
US8709450B2 (en) Cellulose derivative and hydrogel thereof
JP2010209130A (en) Alginic acid derivative and method for manufacturing the same
JP2017520674A (en) Method for modifying polysaccharides by grafting polyetheramine, polysaccharides modified by the method, and preparations comprising the polysaccharides and having temperature-sensitive rheological properties
JP5406281B2 (en) Polysaccharide derivatives and hydrogels thereof
JPWO2010016611A1 (en) Hydrogel
JP5242921B2 (en) Method for producing phosphatidylethanolamine-linked polysaccharide
JP5385368B2 (en) Hydrogels of polysaccharide derivatives
JP2011099029A (en) Polysaccharide derivative
JP2007002063A (en) Carboxymethyl cellulose compound
Xiao et al. Optimized preparation of thiolated hyaluronic acid hydrogel with controllable degree of substitution

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20141028