JPS6356230B2 - - Google Patents

Info

Publication number
JPS6356230B2
JPS6356230B2 JP54047679A JP4767979A JPS6356230B2 JP S6356230 B2 JPS6356230 B2 JP S6356230B2 JP 54047679 A JP54047679 A JP 54047679A JP 4767979 A JP4767979 A JP 4767979A JP S6356230 B2 JPS6356230 B2 JP S6356230B2
Authority
JP
Japan
Prior art keywords
mol
resorcin
resorcinol
spirochroman
aliphatic ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54047679A
Other languages
Japanese (ja)
Other versions
JPS55139383A (en
Inventor
Kazuo Matsunaga
Tsutomu Choda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP4767979A priority Critical patent/JPS55139383A/en
Publication of JPS55139383A publication Critical patent/JPS55139383A/en
Publication of JPS6356230B2 publication Critical patent/JPS6356230B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスピロクロマン誘導体の製造法に関
し、更に詳しくは脂肪族ケトンとレゾルシンを、
脂肪族ケトン1モル当りレゾルシンを1モル以上
3モル未満の割合で、レゾルシン1モルに対して
0.5当量以上の無機酸の存在下に反応させること
からなる下記構造式()で示されるスピロクロ
マン誘導体の製造法である。 (式中、R1はメチル基またはエチル基を示し、
R2は水素原子またはメチル基を示す。) 上記構造式()で示されるスピロクロマン誘
導体はエポキシ樹脂用モノマー、写真フイルム用
助剤、炭化水素化合物や食品等の熱安定剤として
有用であり、このものはたとえば米国特許第
2746871号明細書に記載のハイドロキノンとアセ
トンとの縮合反応に準じて製造されることが知ら
れている(米国特許第3859097号明細書)。 しかしながら、これらの方法に準拠してレゾル
シンと脂肪族ケトンを反応させた場合には、反応
に極めて長時間を要するのみならず、生成物の純
度、収率が非常に低く、工業的に極めて不利であ
つた。 すなわち、レゾルシンと脂肪族ケトンを強酸性
領域で反応させると目的化合物以外にフラバン誘
導体が生成したり、レゾルシンと脂肪族ケトンと
の縮合物に更に脂肪族ケトンが付加重合したと思
われるポリマー等が生成し、最終製品としての純
度、収率を低下させる。 このようなことから、本発明者らはレゾルシン
と脂肪族ケトンとから構造式()で示されるス
ピロクロマン誘導体を選択的に合成し、短時間の
うちに高純度、高収率で製造すべく鋭意検討の結
果、脂肪族ケトンとレゾルシンを、脂肪族ケトン
1モルに対してレゾルシンを1モル以上3モル未
満の割合で、レゾルシン1モル当り0.5当量以上
の無機酸の存在下に反応させることにより極めて
短時間で、高純度、高収率で目的化合物が得られ
ることを見出した。 本発明において、原料として用いられる脂肪族
ケトンとはアセトン、メチルエチルケトンであ
る。 本発明においてレゾルシンと脂肪族ケトンとの
モル比は極めて重要であつて、レゾルシンは脂肪
族ケトン1モル当り1モル以上3モル未満の範囲
であることが必要である。すなわち、本反応にお
いてレゾルシンと脂肪族ケトンとの理論的モル比
は2:3であるが、本発明者らはレゾルシンがか
かる理論比よりも過剰で、しかも前記範囲内の割
合とすることにより目的化合物が選択的に生成
し、収率が著しく向上することを見出したのであ
る。 ここで、脂肪族ケトン1モルに対してレゾルシ
ンが3モル以上になるとフラバン化合物が並行し
て、あるいは選択的に生成し、またレゾルシンが
1モル未満ではポリマー化が起こり易くなつて目
的化合物の選択性、収率が低下する。 この反応において無機酸の存在は不可欠である
が、かかる無機酸としては塩酸、硫酸、リン酸等
が例示され、特に好ましくは塩酸、硫酸が用いら
れる。本発明においてはこの無機酸量も極めて重
要であつて、反応に供するレゾルシン1モル当り
0.5当量以上であることが必要である。ここでそ
の使用量が少ないとフラバン化合物の副生が多く
なる傾向があり、また、その上限には特に製限さ
れないがあまりに過剰に用いるとポリマー化が起
こり易くなる傾向があるため、その後の精製工程
等を考慮すると1.0〜4.0当量の範囲で用いるのが
好ましい。 尚、上記無機酸量をモル数で表示すれば、たと
えば塩酸の場合にはレゾルシン1モル当り0.5モ
ル以上であり、硫酸の場合には0.25モル以上とな
る。 反応温度は40〜80℃が最適であり、これより高
くなるとポリマー化が促進され、また、これより
低いと反応性が低下し、全く異質のポリマーが生
成する等の傾向があるため目的化合物の収率が低
下する。 本発明の方法により得られたスピロクロマン誘
導体はそのまま製品としてもよいし、或いは必要
に応じてたとえばクロロホルム等による再結晶な
どの精製処理を施すことにより、更に高純度品と
することもできる。 尚、本発明の方法では理論値よりも過剰のレゾ
ルシンを使用するが、反応終了後の過剰分のレゾ
ルシンはそのまま次回の反応にリサイクル使用で
きるため実際上何ら損失とならない。 かくして、本発明の方法によれば構造式()
で示されるスピロクロマン誘導体は極めて短時間
のうちに高純度、高収率で製造することができ、
その工業的意義は極めて高い。 以下に本発明を実施例により説明する。 実施例 1 レゾルシン110g(1モル)を36%塩酸100g
(HClとして1モル)に混合溶解し、液温43〜44
℃で、アセトン29g(0.5モル)を滴下速度0.75
モル/Hrで滴下する。滴下終了后液温を50〜55
℃に昇温し、同温度で2時間保持して反応させ
る。 反応終了後、反応液にクロロホルムを300g加
え、よく撹拌したのち析出結晶を別する。 別結晶は水洗―中和後乾燥する。 一方、液は水層とクロロホルム層に分液す
る。 水層は未反応レゾルシンおよび塩酸であり、こ
れは次回の反応に使用される。 クロロホルム層はこれを水洗―中和したのち、
クロロホルムを蒸発除去し、乾燥する。これを先
の別結晶の乾燥物と合わせ、よく混合して7,
7′―ジヒドロキシ―4,4,4′,4′―テトラメチ
ル―ビス―2,2′―スピロクロマンの粗製物56.8
gを得た。粗成物中の純度、目的化合物の収率は
第1表に示すとおりであつた。 実施例2〜7および比較例1〜2 第1表に示す条件以外は全て実施例1と全く同
様にして7,7′―ジヒドロキシ―4,4,4′,
4′―テトラメチル―ビス―2,2′―スピロクロマ
ンを製造し、第1表に示す結果を得た。
The present invention relates to a method for producing spirochroman derivatives, and more specifically, the present invention relates to a method for producing spirochroman derivatives, and more specifically, an aliphatic ketone and resorcinol,
At a ratio of 1 mol or more and less than 3 mol of resorcinol per mol of aliphatic ketone, with respect to 1 mol of resorcinol.
This is a method for producing a spirochroman derivative represented by the following structural formula (), which comprises reacting in the presence of an inorganic acid of 0.5 equivalent or more. (In the formula, R 1 represents a methyl group or an ethyl group,
R 2 represents a hydrogen atom or a methyl group. ) Spirochroman derivatives represented by the above structural formula () are useful as monomers for epoxy resins, auxiliary agents for photographic films, and heat stabilizers for hydrocarbon compounds, foods, etc., and are disclosed in, for example, U.S. Pat.
It is known that it can be produced according to the condensation reaction of hydroquinone and acetone described in US Pat. No. 2,746,871 (US Pat. No. 3,859,097). However, when resorcinol and aliphatic ketone are reacted according to these methods, not only does the reaction take an extremely long time, but the purity and yield of the product are extremely low, which is extremely disadvantageous industrially. It was hot. In other words, when resorcinol and aliphatic ketones are reacted in a strongly acidic region, flavan derivatives are produced in addition to the target compound, and polymers that are thought to be addition polymerized with aliphatic ketones to condensates of resorcinol and aliphatic ketones are produced. This reduces the purity and yield of the final product. For this reason, the present inventors have made efforts to selectively synthesize spirochroman derivatives represented by the structural formula () from resorcinol and aliphatic ketones, and to produce them with high purity and high yield in a short period of time. As a result of the study, it was found that by reacting an aliphatic ketone and resorcin in a ratio of 1 mol or more but less than 3 mol of resorcin to 1 mol of aliphatic ketone in the presence of 0.5 equivalent or more of an inorganic acid per 1 mol of resorcin, extremely It has been found that the target compound can be obtained with high purity and high yield in a short time. In the present invention, the aliphatic ketones used as raw materials are acetone and methyl ethyl ketone. In the present invention, the molar ratio of resorcinol to aliphatic ketone is extremely important, and it is necessary that the amount of resorcinol is in the range of 1 mol or more and less than 3 mol per 1 mol of aliphatic ketone. That is, although the theoretical molar ratio of resorcin and aliphatic ketone in this reaction is 2:3, the present inventors achieved the objective by adjusting the ratio of resorcin to an excess of the theoretical ratio and within the above range. They found that the compound was selectively produced and the yield was significantly improved. Here, if the amount of resorcinol is 3 or more moles per 1 mole of aliphatic ketone, flavan compounds will be produced in parallel or selectively, and if the amount of resorcinol is less than 1 mole, polymerization will easily occur, so that the desired compound can be selected. performance and yield will decrease. The presence of an inorganic acid is essential in this reaction, and examples of such inorganic acids include hydrochloric acid, sulfuric acid, and phosphoric acid, with hydrochloric acid and sulfuric acid being particularly preferred. In the present invention, the amount of this inorganic acid is also extremely important;
It is necessary that the amount is 0.5 equivalent or more. If the amount used is small, the by-product of flavan compounds tends to increase, and although there is no particular upper limit, if it is used in excess, polymerization tends to occur, so subsequent purification Considering the process etc., it is preferable to use it in the range of 1.0 to 4.0 equivalents. Incidentally, if the amount of the inorganic acid is expressed in moles, for example, in the case of hydrochloric acid, it is 0.5 mol or more per 1 mol of resorcinol, and in the case of sulfuric acid, it is 0.25 mol or more. The optimum reaction temperature is 40 to 80°C; higher temperatures promote polymerization, while lower temperatures tend to reduce reactivity and produce completely different polymers. Yield decreases. The spirochroman derivative obtained by the method of the present invention may be used as a product as it is, or it may be made into a highly purified product by performing a purification treatment such as recrystallization with chloroform or the like, if necessary. In the method of the present invention, an excess of resorcin is used compared to the theoretical value, but the excess resorcin after the completion of the reaction can be recycled as it is for the next reaction, so there is no actual loss. Thus, according to the method of the invention, the structural formula ()
The spirochroman derivative shown can be produced with high purity and high yield in an extremely short time.
Its industrial significance is extremely high. The present invention will be explained below using examples. Example 1 110g (1 mol) of resorcinol and 100g of 36% hydrochloric acid
(1 mol as HCl) mixed and dissolved, liquid temperature 43~44
℃, 29 g (0.5 mol) of acetone was added at a dropping rate of 0.75
Drop in mol/Hr. After dropping, lower the liquid temperature to 50-55.
The temperature was raised to ℃ and kept at the same temperature for 2 hours to react. After the reaction is complete, add 300 g of chloroform to the reaction solution, stir well, and separate the precipitated crystals. Separate crystals are washed with water, neutralized, and then dried. Meanwhile, the liquid is separated into an aqueous layer and a chloroform layer. The aqueous layer contains unreacted resorcinol and hydrochloric acid, which will be used in the next reaction. After washing the chloroform layer with water and neutralizing it,
Evaporate off the chloroform and dry. Combine this with the dry crystals from above and mix well.7.
Crude 7'-dihydroxy-4,4,4',4'-tetramethyl-bis-2,2'-spirochroman 56.8
I got g. The purity of the crude product and the yield of the target compound were as shown in Table 1. Examples 2 to 7 and Comparative Examples 1 to 2 7,7'-dihydroxy-4,4,4',
4'-tetramethyl-bis-2,2'-spirochroman was produced and the results shown in Table 1 were obtained.

【表】 *3:アセトン滴下後の保持温度
[Table] *3: Holding temperature after dropping acetone

Claims (1)

【特許請求の範囲】 1 脂肪族ケトンとレゾルシンを、脂肪族ケトン
1モル当りレゾルシンを1モル以上3モル未満の
割合で、レゾルシン1モルに対して0.5当量以上
の無機酸の存在下に反応させることを特徴とする
下記構造式で示されるスピロクロマン誘導体の製
造法。 (式中、R1はメチル基またはエチル基を示し、
R2は水素原子またはメチル基を示す。)。
[Scope of Claims] 1. Reacting an aliphatic ketone and resorcin at a ratio of 1 mole or more but less than 3 moles of resorcin per 1 mole of aliphatic ketone in the presence of 0.5 equivalent or more of an inorganic acid per mole of resorcin. A method for producing a spirochroman derivative represented by the following structural formula, characterized by: (In the formula, R 1 represents a methyl group or an ethyl group,
R 2 represents a hydrogen atom or a methyl group. ).
JP4767979A 1979-04-17 1979-04-17 Production of spirochroman derivative Granted JPS55139383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4767979A JPS55139383A (en) 1979-04-17 1979-04-17 Production of spirochroman derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4767979A JPS55139383A (en) 1979-04-17 1979-04-17 Production of spirochroman derivative

Publications (2)

Publication Number Publication Date
JPS55139383A JPS55139383A (en) 1980-10-31
JPS6356230B2 true JPS6356230B2 (en) 1988-11-07

Family

ID=12781957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4767979A Granted JPS55139383A (en) 1979-04-17 1979-04-17 Production of spirochroman derivative

Country Status (1)

Country Link
JP (1) JPS55139383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215880A (en) * 1988-12-30 1990-08-28 Ppg Ind Inc Transparent laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715568B2 (en) 1986-01-20 1995-02-22 コニカ株式会社 Silver halide color photographic light-sensitive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215880A (en) * 1988-12-30 1990-08-28 Ppg Ind Inc Transparent laminate

Also Published As

Publication number Publication date
JPS55139383A (en) 1980-10-31

Similar Documents

Publication Publication Date Title
JPS6318951B2 (en)
JP2001518904A (en) Method for preparing 4-bromomethyldiphenyl compound
JPH115798A (en) Production of octaphenylcyclotetrasiloxane
JPS6356230B2 (en)
JPS6157308B2 (en)
JPH0366300B2 (en)
JPS58180488A (en) Polyhydric alcohol derivative and its preparation
JP3011493B2 (en) Method for producing 4-alkyl-3-thiosemicarbazide
JP3945834B2 (en) Method for producing high-purity N-alkoxymethyl (meth) acrylamide
JPS6053015B2 (en) 5-n-butyl-2-thiopicolinanilide and its manufacturing method
JPH0244472B2 (en)
JP2808489B2 (en) Water-soluble thiourea dioxide derivative and method for producing the same
JP2002255954A (en) METHOD FOR PRODUCING 2-n-BUTYL-5-NITROBENZOFURAN
JPH0597782A (en) Production of bevantolol hydrochloride
JPH07215904A (en) Production of hydroxypivalaldehyde
JPS63188647A (en) Production of bis(3-tert-butyl-4-hydroxyphenyl)acetic acids
JPH0442392B2 (en)
JPS6126988B2 (en)
US4621154A (en) Process for preparing 4-(4-biphenylyl)-4-oxo-butanoic acid
KR800001550B1 (en) Preparing process for 5-(4-hyroxy phenyl)hydantoins
JPS6127979A (en) Preparation of hydroxyflavan compound
JP2708617B2 (en) Method for producing 4,4-dialkyl-substituted thiazolidinethione
JPS6067465A (en) Production of imidazole
JPH0637441B2 (en) Method for producing 3-halo-2-hydroxypropyltrialkylammonium halide aqueous solution
HU203516B (en) Process for producing 1-naphtyl-acetic acid