JPS6356036B2 - - Google Patents

Info

Publication number
JPS6356036B2
JPS6356036B2 JP55100472A JP10047280A JPS6356036B2 JP S6356036 B2 JPS6356036 B2 JP S6356036B2 JP 55100472 A JP55100472 A JP 55100472A JP 10047280 A JP10047280 A JP 10047280A JP S6356036 B2 JPS6356036 B2 JP S6356036B2
Authority
JP
Japan
Prior art keywords
alloy
weight
titanium
carbon
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55100472A
Other languages
Japanese (ja)
Other versions
JPS5725300A (en
Inventor
Kyoshi Yamauchi
Ikuhisa Hamada
Tomomi Yokono
Susumu Kami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10047280A priority Critical patent/JPS5725300A/en
Publication of JPS5725300A publication Critical patent/JPS5725300A/en
Publication of JPS6356036B2 publication Critical patent/JPS6356036B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明はインコネル系合金に係り、特に粒界型
応力腐食割れ性に優れたインコネル系合金の組成
にに関するものである。 〔従来技術〕 腐食性環境下で使用される各種工業装置の溶接
部あるいは溶接肉盛部に、13〜20重量%のクロム
と65〜75重量%のニツケルを含有する所謂インコ
ネル系の溶接材料が用いられ、溶接されたままの
状態で腐食性環境下で使用される場合がある。 インコネル系合金は耐食性があるとされている
が、実際にその溶着金属部を粒界腐食または応力
腐食割れの加速試験として知られている硫酸―硫
酸第2鉄腐食試験法(日本工業規格G0572)で評
価すると、従来のものでは粒界腐食が起り、耐食
性の点で必ずしも満足できるものではない。 この耐応力腐食割れ性に優れたニツケル基合金
として、例えば特開昭51−52320号公報に記載さ
れているような発明が提案されている。 この発明のニツケル基合金中、チタンTiは主
として炭化物安定化のために添加さており、それ
の含有率は0.5重量%以下とされ、耐応力腐食割
れ性と耐粒間腐食性とを同時に考慮すると合金中
の炭素とチタンの比率Ti/Cは4〜7とされて
いる。また、合金中のNbも炭化物安定化のため
に添加されており、0.3重量%以上添加すると耐
粒間腐食性ならびに耐応力腐食割れ性を損うの
で、その含有率は0.3重量%以下に規制する必要
があるとされている。 そしてこのニツケル基合金では、合金中の炭素
含有率にするチタンならびにニオブの含有率の比
率(Ti+0.5Nb)/Cが6〜9の範囲とされてい
る。 このニツケル基合金は、例えば原子力発電用軽
水炉などの高温高圧水中の使用条件下においては
効果を有するが、合金中の炭素に対するチタンと
ニオブの共存量が不適当で、特に粒界型応力腐食
割れ性については粒界侵食速度が速く、その点性
能としては不十分である。 〔目的〕 本発明の目的は、前述した従来技術の欠点を解
消して、腐食性のうちでも特に粒界型応力腐食割
れ性に優れたインコネル系合金を提供することに
ある。 〔構成〕 前述の目的を達成するため、本発明は、インコ
ネル合金中の炭素の含有率(C)に対するチタンの含
有率(Ti)の重量比率Ti/Cの値が1.4以下で、
かつ炭素の含有率(C)に対するニオブの含有率
(Nb)とチタンの含有率(Ti)との重量比率を
下式で計算して安定化パラメータの値が7〜30
の範囲に規制されていることを特徴とするもので
ある。 =0.13(Nb+2Ti)/C 本発明者らは、インコネル系合金の特に粒界型
応力腐食割れ性について種々研究した結果、結晶
粒界でのクロム炭化物の析出および成長が粒界型
応力腐食割れの原因になつていることを解明し
た。 そしてその対策として、すなわちクロム炭化物
の析出を抑制する方法として種々の実験結果よ
り、合金中における炭素量と、その炭素がクロム
と結合しないで安定化させるためのチタン、ニオ
ブとの添加量の割合を特定の比率にすることによ
つて、粒界型応力腐食割れ性に優れたインコネル
系合金が得られることを見出した。 すなわち、前述のように安定化元素として、ま
た高温下における機械的強度ならびに溶接性を向
上するために、チタンならびにニオブを添加する
訳であるが、炭素に対してチタンの量が多いと炭
素と反応しない残余のチタンが周囲のニツケルと
反応して、Ni3Tiを生成する。この生成によつて
γ′相が形成され易くなり、このγ′相は硫酸―硫酸
第2鉄腐食溶液中に容易に腐食してしまい、かえ
つて耐粒界腐食性が低下する。またγ′相が析出す
ると、延性が低下するとともに、溶接割れや溶接
後の熱処理によつて割れを生じる。 一方、ニオブの方は、炭素と反応しない残余の
ニオブがあつてもニツケルと反応し難いという特
長を有しており、γ′相は析出せず、従つて前述の
ような弊害は生じない。 従つてチタンを添加するにしてもTi/Cの比
率を抑える必要があり、本発明者らの実験によれ
ば腐食割れ性などの点からTi/Cを1.4以下に規
制してある。このように炭素に対するチタンの比
率を低く抑えた条件下で、下式において安定化パ
ラメータが7以上であると、腐食性環境下でも
実質的にほとんど粒界型応力腐食割れが起こらな
いインコネル系合金となる。なお、式中のNb、
TiならびにCは、合金中の含有率(重量%)で
ある。 =0.13(Nb+2Ti)/C 次の表1は、各種組成のインコネル系合金をつ
くり、それと安定化パラメータとの関係を示す
表である。なお、を除く数値の単位は重量%
で、各合金には表で示した成分の他に例えばケイ
素、マンガン、リン、イオウなどを微量含有して
いるが、それらの記載は省略した。なお、表中の
( )内の数値は、Nbの含有率を示している。
[Technical Field] The present invention relates to Inconel-based alloys, and particularly to the composition of Inconel-based alloys that have excellent intergranular stress corrosion cracking properties. [Prior art] Inconel welding materials containing 13 to 20% by weight of chromium and 65 to 75% by weight of nickel are used in welds or weld overlays of various industrial equipment used in corrosive environments. It may be used in a corrosive environment in the welded state. Inconel alloys are said to have corrosion resistance, but the welded metal parts are actually tested using the sulfuric acid-ferric sulfate corrosion test method (Japanese Industrial Standard G0572), which is known as an accelerated test for intergranular corrosion or stress corrosion cracking. According to the evaluation, intergranular corrosion occurs in conventional products, and the corrosion resistance is not necessarily satisfactory. As a nickel-based alloy having excellent stress corrosion cracking resistance, an invention as described in, for example, Japanese Unexamined Patent Publication No. 51-52320 has been proposed. In the nickel-based alloy of this invention, titanium is added mainly to stabilize carbides, and its content is set at 0.5% by weight or less, considering both stress corrosion cracking resistance and intergranular corrosion resistance. The ratio Ti/C of carbon and titanium in the alloy is 4 to 7. In addition, Nb in the alloy is added to stabilize carbides, and if it is added in excess of 0.3% by weight, it will impair intergranular corrosion resistance and stress corrosion cracking resistance, so its content is regulated to 0.3% by weight or less. It is said that it is necessary to In this nickel-based alloy, the ratio of titanium and niobium contents (Ti+0.5Nb)/C, which corresponds to the carbon content in the alloy, is in the range of 6 to 9. Although this nickel-based alloy is effective under the conditions of use in high-temperature, high-pressure water, such as in light water reactors for nuclear power generation, the amount of coexistence of titanium and niobium relative to carbon in the alloy is inappropriate, and it is particularly susceptible to intergranular stress corrosion. Regarding the properties, the grain boundary erosion rate is high, and the performance is insufficient in that respect. [Objective] An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an Inconel alloy that is particularly excellent in intergranular stress corrosion cracking properties among corrosive properties. [Structure] In order to achieve the above-mentioned object, the present invention provides an Inconel alloy in which the weight ratio Ti/C of the titanium content (Ti) to the carbon content (C) is 1.4 or less,
And the weight ratio of niobium content (Nb) and titanium content (Ti) to carbon content (C) is calculated using the following formula, and the value of the stabilization parameter is 7 to 30.
It is characterized by being regulated within the range of . = 0.13 (Nb + 2Ti) / C As a result of various studies on the intergranular stress corrosion cracking properties of Inconel alloys, the present inventors found that the precipitation and growth of chromium carbides at grain boundaries cause intergranular stress corrosion cracking. I found out what was causing it. As a countermeasure to this, in other words, as a method to suppress the precipitation of chromium carbides, we have determined from various experimental results that the amount of carbon in the alloy and the ratio of the amount of titanium and niobium added to stabilize the carbon without combining with chromium. It was discovered that an Inconel alloy with excellent intergranular stress corrosion cracking properties can be obtained by setting a specific ratio of . In other words, as mentioned above, titanium and niobium are added as stabilizing elements and to improve mechanical strength and weldability at high temperatures, but if the amount of titanium is large compared to carbon, The remaining unreacted titanium reacts with surrounding nickel to form Ni 3 Ti. This formation facilitates the formation of a γ' phase, which is easily corroded in the sulfuric acid-ferric sulfate corrosive solution, and the intergranular corrosion resistance is reduced. Further, when the γ' phase precipitates, ductility decreases and cracks occur due to weld cracking or heat treatment after welding. On the other hand, niobium has the feature that even if there is residual niobium that does not react with carbon, it hardly reacts with nickel, and the γ' phase does not precipitate, so the above-mentioned disadvantages do not occur. Therefore, even if titanium is added, it is necessary to suppress the Ti/C ratio, and according to experiments by the present inventors, Ti/C is limited to 1.4 or less from the viewpoint of corrosion cracking resistance. Under these conditions where the ratio of titanium to carbon is kept low, if the stabilization parameter is 7 or more in the formula below, the Inconel alloy will virtually never experience intergranular stress corrosion cracking even in a corrosive environment. becomes. In addition, Nb in the formula,
Ti and C are the contents (% by weight) in the alloy. =0.13(Nb+2Ti)/C The following Table 1 shows the relationship between Inconel alloys of various compositions and stabilization parameters. In addition, the units of numerical values except for are weight%.
In addition to the components shown in the table, each alloy contains trace amounts of silicon, manganese, phosphorus, sulfur, etc., but their descriptions are omitted. Note that the numbers in parentheses in the table indicate the Nb content.

【表】【table】

【表】 この表に示されている各種試料合金を同一条件
で熱処理したのち、前述の硫酸―硫酸第2鉄腐食
試験法に基づいて粒界侵食速度を測定した結果を
第1図に示す。この図において示されているよう
に、各試料合金の粒界侵食速度は、次の表2の通
りである。
[Table] Figure 1 shows the results of measuring the grain boundary erosion rate based on the sulfuric acid-ferric sulfate corrosion test method described above after heat treating the various sample alloys shown in this table under the same conditions. As shown in this figure, the grain boundary erosion rates of each sample alloy are as shown in Table 2 below.

〔効果〕〔effect〕

本発明は前述のように、インコネル系合金中の
炭素量に対して、その炭素を安定化するためのニ
オブ、チタンの量が、Ti/C(重量比率)が1.4以
下で、かつ前記式に基づいて計算した際の安定化
パラメータが7以上の組成のものは、硫酸―硫
酸第2鉄腐食試験などのような極めて厳しい腐食
条件下においても優れた粒界型応力腐食割れ性を
有し、信頼性の高いインコネル系合金を提供する
ことができる。
As described above, the present invention provides that the amount of niobium and titanium for stabilizing the carbon in the Inconel alloy is such that the Ti/C (weight ratio) is 1.4 or less and satisfies the above formula. Products with a stabilization parameter of 7 or more when calculated based on the above have excellent intergranular stress corrosion cracking properties even under extremely severe corrosion conditions such as sulfuric acid-ferric sulfate corrosion tests. A highly reliable Inconel alloy can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は安定化パラメータと粒界侵食速度との
関係を示す特性図。第2図および第3図は従来の
インコネル系合金試料片と本発明に係るインコネ
ル系合金試料片の腐食試験後の顕微鏡写真、第4
図、第5図ならびに第6図は本発明に係るインコ
ネル系合金の使用例を示す要部拡大断面図であ
る。 5,7……溶着金属部、13……すみ肉溶接
部。
FIG. 1 is a characteristic diagram showing the relationship between stabilization parameters and grain boundary erosion rate. Figures 2 and 3 are micrographs of conventional Inconel alloy specimens and Inconel alloy specimens according to the present invention after corrosion tests;
5 and 6 are enlarged sectional views of essential parts showing examples of use of the Inconel alloy according to the present invention. 5, 7... Welded metal part, 13... Fillet weld part.

Claims (1)

【特許請求の範囲】 1 ニツケルを67〜72重量%、クロムを14〜15重
量%、炭素を0.02〜0.04重量%、チタンを0.01〜
0.04重量%含むニツケル基合金で、その合金中の
炭素の含有率(C)に対するチタンの含有率(Ti)
の重量比率Ti/Cの値が1.4以下で、かつ炭素の
含有率(C)に対するニオブの含有率(Ti)との重
量比率を下式で計算して安定化パラメータの値
が7〜30の範囲に規制されていることを特徴とす
る粒界型応力腐食割れ性に優れたインコネル系合
金。 =0.13(Nb+2Ti)/C
[Claims] 1. 67 to 72% by weight of nickel, 14 to 15% by weight of chromium, 0.02 to 0.04% by weight of carbon, and 0.01 to 0.01% of titanium.
Nickel-based alloy containing 0.04% by weight, titanium content (Ti) relative to carbon content (C) in the alloy
The value of the weight ratio Ti/C is 1.4 or less, and the value of the stabilization parameter is 7 to 30 by calculating the weight ratio of the niobium content (Ti) to the carbon content (C) using the following formula. An Inconel alloy with excellent intergranular stress corrosion cracking properties that are regulated within a certain range. =0.13(Nb+2Ti)/C
JP10047280A 1980-07-24 1980-07-24 Inconel melt-sticking metallic part Granted JPS5725300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10047280A JPS5725300A (en) 1980-07-24 1980-07-24 Inconel melt-sticking metallic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10047280A JPS5725300A (en) 1980-07-24 1980-07-24 Inconel melt-sticking metallic part

Publications (2)

Publication Number Publication Date
JPS5725300A JPS5725300A (en) 1982-02-10
JPS6356036B2 true JPS6356036B2 (en) 1988-11-07

Family

ID=14274845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10047280A Granted JPS5725300A (en) 1980-07-24 1980-07-24 Inconel melt-sticking metallic part

Country Status (1)

Country Link
JP (1) JPS5725300A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152320A (en) * 1974-11-01 1976-05-08 Nippon Steel Corp TAIORYOKUFUSHOKUWARESEINISUGURETA NI KIGOKIN

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152320A (en) * 1974-11-01 1976-05-08 Nippon Steel Corp TAIORYOKUFUSHOKUWARESEINISUGURETA NI KIGOKIN

Also Published As

Publication number Publication date
JPS5725300A (en) 1982-02-10

Similar Documents

Publication Publication Date Title
JP5420406B2 (en) Weld alloys and products for use in welding, weldments, and methods of manufacturing weldments
US20080241580A1 (en) Filler Metal Composition and Method for Overlaying Low NOx Power Boiler Tubes
JPH01104738A (en) Nickel base alloy
JPH028840B2 (en)
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
SE445468B (en) CORROSION RESISTANT Nickel Alloy Product
US3510294A (en) Corrosion resistant nickel-base alloy
JP2007105733A (en) Non-consumable electrode type welding wire for welding austenitic stainless steel having excellent low temperature toughness and sea water corrosion resistance
US4201574A (en) Low carbon Ni-Cr austenitic steel having an improved resistance to stress corrosion cracking
JPH055599B2 (en)
JPS6356036B2 (en)
US3459538A (en) Corrosion resistant low-alloy steel
JP7011987B2 (en) Ni-based weld metal and welded structure
JPS644579B2 (en)
JP3466303B2 (en) Nickel base alloy for overlay welding of reactor pressure vessel and reactor pressure vessel using the same
JP3131597B2 (en) Nitrate resistant austenitic stainless steel and weld metal
JPS63212091A (en) High-ni alloy welding wire
JPS629661B2 (en)
JPS5841955B2 (en) Inert gas arc welding wire made of highly corrosion-resistant chromium stainless steel
JPH0336636B2 (en)
JPS6037184B2 (en) Austenitic stainless clad steel with excellent corrosion resistance
JPS5817247B2 (en) High chromium alloy with good corrosion resistance and weldability against mixed acids consisting of nitric acid and hydrofluoric acid
JPS6254593A (en) Welding material for stainless steel having resistance to nitric acid
JPH0445575B2 (en)
JPH02185943A (en) Highly corrosion resistant ti-containing alloy for oil well tube and line pipe excellent in hot workability