JPS6355991A - Wavelemgth stabilizer of semiconductor laser - Google Patents

Wavelemgth stabilizer of semiconductor laser

Info

Publication number
JPS6355991A
JPS6355991A JP61199364A JP19936486A JPS6355991A JP S6355991 A JPS6355991 A JP S6355991A JP 61199364 A JP61199364 A JP 61199364A JP 19936486 A JP19936486 A JP 19936486A JP S6355991 A JPS6355991 A JP S6355991A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
absorption
output
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61199364A
Other languages
Japanese (ja)
Other versions
JPH0523512B2 (en
Inventor
Koji Akiyama
浩二 秋山
Akira Ote
明 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61199364A priority Critical patent/JPS6355991A/en
Priority to GB8627744A priority patent/GB2187592B/en
Priority to US06/937,359 priority patent/US4833681A/en
Priority to US06/942,448 priority patent/US4893353A/en
Priority to US06/943,670 priority patent/US4856899A/en
Priority to DE3643569A priority patent/DE3643569C2/en
Priority to GB8630375A priority patent/GB2185567B/en
Priority to DE3643553A priority patent/DE3643553C2/en
Priority to GB8630374A priority patent/GB2185619B/en
Priority to DE3643629A priority patent/DE3643629C2/en
Publication of JPS6355991A publication Critical patent/JPS6355991A/en
Priority to US07/293,020 priority patent/US4912526A/en
Publication of JPH0523512B2 publication Critical patent/JPH0523512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell

Abstract

PURPOSE:To obtain a compact laser wavelength stabilizer characterized by simple adjustment, by inputting part of the output light of a semiconductor laser into an optical fiber passing a standard material, and utilizing the absorption of the part of the light propagating through the fiber. CONSTITUTION:The output of a temperature controlled laser LD1 is propagated through a fiber FB1 and split in a fiber coupler CP1. One beam is sent to the outside as output light 11. The other beam is inputted into a waveguide type acoustooptic modulator UM2 through a fiber FB3. The modulated light is propagated through FB4 and passes an absorbing cell CL2. The propagating light leaks out of a core (a) of the FB4 in the cell. The electric field at this part mutually reacts with Cs gas at the outer surface, and absorption occurs at a specified wavelength. When the output of the fiber FB4 is detected by PD1, an absorption signal is obtained. The signal is fed back to the laser LD1 through a lock-in amplifier LA1. The oscillating frequency of the laser can be controlled in the vicinity of the center of the absorption. Position alignment is not required, adjustment is simple and the compact configuration can be implemented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザの波長を原子や分子の吸収線に
制御して安定化する半導体レーザ波長安定化装置の構造
の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in the structure of a semiconductor laser wavelength stabilizing device that stabilizes the wavelength of a semiconductor laser by controlling it to the absorption line of atoms or molecules.

(従来の技術) 第4図は本出願人により出願済みの半導体レーザ波長安
定化装置の先行技術(特願昭61−11894号明細書
)を示す構成ブロック図である。
(Prior Art) FIG. 4 is a structural block diagram showing a prior art (Japanese Patent Application No. 11894/1988) of a semiconductor laser wavelength stabilizing device that has been filed by the present applicant.

LDIは半導体レーザ、PE1はこの半導体レーザLD
1を冷却または加熱するベルチェ素子、TSlは前記半
導体レーザの温度を測定する温度センサ、0丁1はこの
温度センサの測定値に基づき前記ベルチェ素子PEIを
駆動して前記半導体レーザLDIの温度を一定に制御す
る温度制御手段、TBIはこれらを格納して温度を安定
させる恒温槽、881は前記半導体レーザLD1の出力
光を2方向に分離するビームスプリッタ、UMIはこの
ビームスプリッタ881の一方の出射光を入射し変調手
段を構成する音響光学変調器、CLlはこの音響光学変
調器UM1の回折光出力を入射し特定の波長の光を吸収
する標準物質(ここではC5)を封入した吸収セル、P
CIはこの吸収セルCL1の透過光を入射するフォトダ
イオード等の光検出器、A1はこの光検出l5PDIの
出力電気信号を入力する増幅器、LAIはこの増幅器A
1の電気出力を入力するロックインアンプ、C70はこ
のロックインアンプLAIの出力を入力し前記半導体レ
ーザLDIの電流をυ1部する制御手段を構成するPI
Dコントローラ、SWlは前記音響光学変調器tJM1
にその一端が接続するスイッチ、SG1はその出力で前
記スイッチSW1が周波数fi(例えば2 k Hz 
)でオンオフする信号発生器、SG2は前記スイッチS
W1の他端に接続する周波数fo  (例えば80Mt
−1z)の第2の信号発生器である。
LDI is a semiconductor laser, PE1 is this semiconductor laser LD
TSL is a temperature sensor that measures the temperature of the semiconductor laser; TSL is a temperature sensor that measures the temperature of the semiconductor laser; and TSL is a temperature sensor that drives the Bertier element PEI based on the measured value of this temperature sensor to keep the temperature of the semiconductor laser LDI constant. 881 is a beam splitter that separates the output light of the semiconductor laser LD1 into two directions, and UMI is the output light of one of the beam splitters 881. The acousto-optic modulator CL1 constitutes a modulation means, and CL1 is an absorption cell P which receives the diffracted light output of the acousto-optic modulator UM1 and encapsulates a standard material (C5 in this case) that absorbs light of a specific wavelength.
CI is a photodetector such as a photodiode that receives the transmitted light of this absorption cell CL1, A1 is an amplifier that inputs the output electric signal of this photodetector l5PDI, and LAI is this amplifier A.
A lock-in amplifier C70 inputs an electric output of 1, and C70 is a PI that inputs the output of this lock-in amplifier LAI and constitutes a control means for controlling υ1 part of the current of the semiconductor laser LDI.
D controller, SWl is the acousto-optic modulator tJM1
A switch, SG1, whose one end is connected to
), SG2 is the switch S
Frequency fo (e.g. 80Mt) connected to the other end of W1
-1z) second signal generator.

上記のような構成の半導体レーザ波長安定化装置の動作
を以下に説明する。半導体レーザLD1は恒温槽TBI
内で温度センサTSIからの検出信号を入力する制御手
段CTIによりベルチェ素子PE1を介して一定温度に
制御されている。半導体レーザLD1の出力光はビーム
スプリッタBS1で2方向に分離され、反射光は外部へ
の出力光となり透過光は音響光学変調器UMIに入射す
る。スイッチSW1がオンの時音響光学変調5UM1は
信号発生器SG2の周波数foの出力で駆動されるので
、周波数ν0の入射光の大部分は回折して周波数(ドツ
プラ)シフトを受け、1次回折光として周波数νo+f
oの光が吸収セルCL1に入射する。スイッチSW1が
オフのときは入射光は全てO次回折光として周波数ν0
で吸収セルCLIに入射する。スイッチSW1は信号発
生器SGIの周波数f1のクロックで駆動されるので、
吸収セルCL1に入射する光は変調周波数f電、変調深
さfDの周波数変調を受けることになる。吸収セルCL
Iに音響光学変調器UM1で変調された光が入射すると
、第5図の動作説明図に示すようにCs原子の吸収信号
の箇所でのみ透過光量が変調を受けて出力に信号が現れ
る。この信号を光検出器PD1で電気信号に変換し増幅
器A1を介してロックインアンプLAIにおいて周波数
f、で同期整流すれば、第6図の周波数特性曲線図に示
すような1数機分波形が1qられる。PIDコントロー
ラCT2により半導体レーザLDIの電流を制御して、
ロックインアンプLA1の出力を前記1数機分波形の中
心にロック(制御)すれば半導体レーザの出力光はνs
fo/2の安定な周波数となる。
The operation of the semiconductor laser wavelength stabilizing device configured as described above will be explained below. Semiconductor laser LD1 is in constant temperature bath TBI
The temperature is controlled to a constant temperature via the Bertier element PE1 by a control means CTI which inputs a detection signal from a temperature sensor TSI. The output light of the semiconductor laser LD1 is separated into two directions by the beam splitter BS1, the reflected light becomes output light to the outside, and the transmitted light enters the acousto-optic modulator UMI. When the switch SW1 is on, the acousto-optic modulator 5UM1 is driven by the output of the frequency fo from the signal generator SG2, so most of the incident light with the frequency ν0 is diffracted and undergoes a frequency (Doppler) shift, and becomes the first-order diffracted light. Frequency νo+f
o light enters the absorption cell CL1. When switch SW1 is off, all incident light is O-order diffracted light with frequency ν0.
and enters the absorption cell CLI. Since the switch SW1 is driven by the clock of the frequency f1 of the signal generator SGI,
The light incident on the absorption cell CL1 is subjected to frequency modulation with a modulation frequency f and a modulation depth fD. Absorption cell CL
When light modulated by the acousto-optic modulator UM1 is incident on I, the amount of transmitted light is modulated only at the location of the absorption signal of the Cs atoms, and a signal appears at the output, as shown in the operational diagram of FIG. If this signal is converted into an electrical signal by the photodetector PD1 and synchronously rectified at a frequency f by the lock-in amplifier LAI via the amplifier A1, the waveform for several machines as shown in the frequency characteristic curve diagram in Fig. 6 will be obtained. 1q is received. The current of the semiconductor laser LDI is controlled by the PID controller CT2,
If the output of the lock-in amplifier LA1 is locked (controlled) to the center of the waveform for the several devices mentioned above, the output light of the semiconductor laser will be νs
This results in a stable frequency of fo/2.

このような構成の半導体レーザ波長安定化装置によれば
、レーザの発振周波数が変調されていないので、瞬時的
にも非常に安定な光源となる。
According to the semiconductor laser wavelength stabilizing device having such a configuration, since the oscillation frequency of the laser is not modulated, it becomes an extremely stable light source even momentarily.

また音響光学変調器UM1の回折効率が変化しても、変
調に寄与しない光の成分(O次回折光)が増えて信号強
度が下がるのみで、中心波長には影響しない。
Furthermore, even if the diffraction efficiency of the acousto-optic modulator UM1 changes, the light component that does not contribute to modulation (O-th order diffracted light) increases and the signal intensity decreases, but the center wavelength is not affected.

(発明が解決しようとする問題点) しかしながら、上記のような構成の半導体レーザ波長安
定化装置では、ビームスプリッタやレンズ等を使用し空
間伝搬で光の回路を構成しているので、光学系の位置合
せが必要となり、また吸収セルの入射端や出射端での戻
り光や反射光との干渉等が問題であった。
(Problems to be Solved by the Invention) However, in the semiconductor laser wavelength stabilizing device configured as described above, the optical circuit is constructed by spatial propagation using beam splitters, lenses, etc. Alignment is required, and there are problems such as interference with returned light or reflected light at the input end or output end of the absorption cell.

本発明はこのような問題点を解決するためになされたも
ので、調整が簡単で小型の半導体レーザ波長安定化装置
を実現することを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to realize a small-sized semiconductor laser wavelength stabilizing device that is easy to adjust.

(問題点を解決するだめの手段) 本発明は標準物質の吸収スペクトル線に半導体レーザの
波長を制御して波長を安定化する半導体レーザ波長安定
化装置に係るもので、その特徴とするところは標準物質
中を通る光ファイバに半導体レーザの出力光の一部を入
射し、前記光ファイバ中を伝搬する光のエバネッセント
波部分での吸収を利用する点にある。
(Means for Solving the Problems) The present invention relates to a semiconductor laser wavelength stabilization device that stabilizes the wavelength by controlling the wavelength of a semiconductor laser according to the absorption spectrum line of a standard substance. A part of the output light from a semiconductor laser is incident on an optical fiber passing through a standard material, and absorption in the evanescent wave portion of the light propagating through the optical fiber is utilized.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第1図は本発明の一実施例を示す構成ブロック図である
。第4図と同じ部分は同一の記号を付して説明を省略す
る。FBIは半導体レーザLD1の出力光を入射するシ
ングルモードの光ファイバ、CPIはこの光ファイバF
B1の出力光を入力するファイバカブラ、Fe2はこの
ファイバカブラCP1の一方の出力光を入射するシング
ルモードの光ファイバ、Fe3は前記ファイバカブラC
P1の他の出力光を入射するシングルモードの光ファイ
バ、0M2はこの光ファイバFB3の出力光を入力する
導波路型の音響光学変調器、Fe2はこの音響光学変調
器LIM2の出力光を入射して光検出器PD1に出射す
るシングルモードの光ファイバ、C10は特定の波長の
光を吸収する標準物質(ここではCs)を封入しその中
を前記光ファイバFB4が通る吸収セル、aは前記光フ
ァイバFB4のクラッド部を取り除いてコア部のみとし
た部分である。
FIG. 1 is a block diagram showing an embodiment of the present invention. The same parts as in FIG. 4 are given the same symbols and explanations are omitted. FBI is a single mode optical fiber into which the output light of semiconductor laser LD1 is input, and CPI is this optical fiber F.
A fiber coupler into which the output light of B1 is input, Fe2 is a single mode optical fiber into which one output light of this fiber coupler CP1 is input, and Fe3 is the fiber coupler C.
A single mode optical fiber into which the other output light of P1 is input, 0M2 is a waveguide type acousto-optic modulator into which the output light of this optical fiber FB3 is input, and Fe2 is into which the output light of this acousto-optic modulator LIM2 is input. C10 is a single-mode optical fiber that outputs light to the photodetector PD1, C10 is an absorption cell filled with a standard material (Cs in this case) that absorbs light of a specific wavelength, and the optical fiber FB4 passes through the absorption cell; This is a portion of the fiber FB4 with the cladding portion removed to leave only the core portion.

上記のような構成の半導体レーザ波長安定化装置の動作
を以下に説明する。温度制御された半導体レーザLD1
の出力光は光ファイバFBIを介して伝搬しファイバカ
ブラCP1で2方向に分岐し、一方の出力は外部への出
力光となり他方の出力は光ファイバFB3を介して導波
路型音響光学変調器LIM2に入射する。従来例と同様
にして音響光学変調器LIM2で変調された光は、光フ
ァイバFB4を伝搬して吸収セルCL2内を通過する。
The operation of the semiconductor laser wavelength stabilizing device configured as described above will be explained below. Temperature-controlled semiconductor laser LD1
The output light propagates through the optical fiber FBI and is split into two directions by the fiber coupler CP1, one output becomes the output light to the outside, and the other output is transmitted through the optical fiber FB3 to the waveguide type acousto-optic modulator LIM2. incident on . Light modulated by the acousto-optic modulator LIM2 in the same manner as in the conventional example propagates through the optical fiber FB4 and passes through the absorption cell CL2.

吸収セルCL2内では光ファイバFB4のコア部aの外
側に伝搬光がしみ出した部分すなわちエバネッセント波
を生じ、この部分の電界が周囲のCSガスと相互作用し
て、特定の波長において吸収が生じる。したがって光フ
ァイバFB4の出力を光検出器PD1で検出すれば、吸
収信号が得られ、従来例の場合と同様にしてロックイン
アンプLA1等を介して半導体レーザLD1に帰還すれ
ば、吸収の中心付近に半導体レーザの発振周波数を制御
できる。
In the absorption cell CL2, a portion where the propagating light leaks out of the core portion a of the optical fiber FB4, that is, an evanescent wave is generated, and the electric field in this portion interacts with the surrounding CS gas, causing absorption at a specific wavelength. . Therefore, if the output of the optical fiber FB4 is detected by the photodetector PD1, an absorption signal can be obtained, and if it is fed back to the semiconductor laser LD1 via the lock-in amplifier LA1 etc. as in the conventional case, the absorption signal will be near the center of absorption. The oscillation frequency of the semiconductor laser can be controlled.

このような構成の半導体レーザ波長安定化装置によれば
、第4図の従来例と同様の長所を有する外に、光学系が
すべて光ファイバで構成できるので、位置合せが不要で
調整が簡単となり、かつ小型化できる。
According to the semiconductor laser wavelength stabilizing device having such a configuration, in addition to having the same advantages as the conventional example shown in Fig. 4, the optical system can be constructed entirely of optical fibers, so alignment is unnecessary and adjustment is easy. , and can be made smaller.

なお上記の実施例で吸収セルCL2内を通る光ファイバ
FB4としてシングルモードファイバを用いているが、
これに限らず、マルチモードファイバでもよい。
In the above embodiment, a single mode fiber is used as the optical fiber FB4 passing through the absorption cell CL2.
The fiber is not limited to this, and may be a multimode fiber.

また変調手段として用いている音響光学変調器UM2は
周波数変調がかかればどのような変調器でもよく、例え
ば電気光学素子を用いた位相変調器を用いてもよい。こ
れには例えば縦型変調器。
Further, the acousto-optic modulator UM2 used as the modulation means may be any modulator as long as it can perform frequency modulation, for example, a phase modulator using an electro-optic element may be used. For example, a vertical modulator.

横型変調器、進行波形変調器などがある(AmnOn 
 Yar+’r:光エレクトロニクスのl1il(丸首
)、p247〜1)253)。また音響光学変調器で外
部変調せずに半導体レーザの注入電流を変調してもよい
There are horizontal modulators, traveling wave modulators, etc. (AmnOn
Yar+'r: Optoelectronics l1il (round neck), p247-1) 253). Alternatively, the injection current of the semiconductor laser may be modulated using an acousto-optic modulator without external modulation.

また上記の実施例ではロックインアンプLA1の参照周
波数として変調周波数fTILを用いたがその整数倍の
周波数としてもよい。
Further, in the above embodiment, the modulation frequency fTIL is used as the reference frequency of the lock-in amplifier LA1, but a frequency that is an integral multiple of the modulation frequency fTIL may be used.

また吸収セルCL2の標準物質としては、Csのほかに
例えばRb、NH3、H20などを用いてもよい。
In addition to Cs, for example, Rb, NH3, H20, etc. may be used as the standard substance for the absorption cell CL2.

また上記の実施例では制御手段の出力で半導体レーザの
電流を制御しているが、これに限らず半導体レーザの温
度をちり罪してもよい。
Further, in the above embodiment, the current of the semiconductor laser is controlled by the output of the control means, but the present invention is not limited to this, and the temperature of the semiconductor laser may be controlled.

またスイッチSW1の代りに乗算器を用いて音響光学変
調器の励振周波数を変調してもよい。
Further, the excitation frequency of the acousto-optic modulator may be modulated using a multiplier instead of the switch SW1.

第3図は本発明の第2の実施例で飽和吸収法(参考;堀
、角田、北野、藪崎、小川:飽和吸収分光を用いた半導
体レーザの周波数安定化、信学技報0QE82−116
)を用いた半導体レーザ波長安定化装置を示す要部構成
ブロック図である。
Figure 3 shows the second embodiment of the present invention using the saturation absorption method (Reference: Hori, Tsunoda, Kitano, Yabusaki, Ogawa: Frequency stabilization of semiconductor lasers using saturation absorption spectroscopy, IEICE Technical Report 0QE82-116)
) is a block diagram illustrating a main part configuration of a semiconductor laser wavelength stabilizing device using a semiconductor laser wavelength stabilizing device.

第3図は第1図の1の部分を変形したもので、Fe5は
音響光学変調器IJM2の出力光を伝搬するシングルモ
ードの光ファイバ、CF2はこの光ファイバFB5がそ
の一端に接続するファイバカブラ、Fe6はこのファイ
バカブラCP2の他端に接続する単一モードの光ファイ
バ、bは吸収セルOL2内で前記光ファイバFB6のク
ラッド部を取り除いてコア部のみとした部分、2は前記
FB6のハーフミラ−・コーティングされた端面、PD
2はこの端面2の透過光を検出する第1の光検出器、P
D3は光ファイバFB6の端面2からの反射光をファイ
バカブラCP2を介して検出する第2の光検出器、A2
は光検出器PD2.PD3の電気出力を入力しロックイ
ンアンプLAIに出力する差動増幅器である。
Figure 3 is a modification of part 1 in Figure 1, where Fe5 is a single mode optical fiber that propagates the output light of the acousto-optic modulator IJM2, and CF2 is a fiber coupler to which this optical fiber FB5 is connected at one end. , Fe6 is a single mode optical fiber connected to the other end of this fiber coupler CP2, b is a portion of the optical fiber FB6 in which the cladding portion is removed to leave only the core portion within the absorption cell OL2, and 2 is a half mirror of the FB6. -・Coated end face, PD
2 is a first photodetector P that detects the transmitted light of this end surface 2;
D3 is a second photodetector A2 that detects the reflected light from the end face 2 of the optical fiber FB6 via the fiber coupler CP2.
is photodetector PD2. This is a differential amplifier that inputs the electrical output of PD3 and outputs it to lock-in amplifier LAI.

音響光学変調器UM2の出力光は光ファイバ「B5を介
してファイバカブラCP2に入射し、光ファイバF86
を伝搬してコア部分すの外側に生じたエバネッセント波
がポンプ光として付近の標準物質(例えばCs)の光吸
収を飽和させる。光ファイバFB6を伝搬した光の大部
分(例えば90%)は端面2を介して光検出器PD2に
入射するが、一部(例えば10%〉が端面2で反射して
光ファイバFB6を逆向きに伝搬し、そのエバネッセン
ト波が前記ポンプ光と重畳するプローブ光として吸収を
行う。このプローブ光はファイバカブラCP2により光
ファイバFB7に導かれ、光検出器PD3に入射する。
The output light of the acousto-optic modulator UM2 enters the fiber coupler CP2 via the optical fiber B5, and then enters the fiber coupler CP2 through the optical fiber F86.
The evanescent wave propagated outside the core portion serves as pump light and saturates the light absorption of a nearby standard material (for example, Cs). Most of the light (e.g. 90%) propagated through the optical fiber FB6 enters the photodetector PD2 via the end face 2, but a portion (e.g. 10%) is reflected from the end face 2 and travels through the optical fiber FB6 in the opposite direction. The evanescent wave is absorbed as a probe light superimposed on the pump light.This probe light is guided to an optical fiber FB7 by a fiber coupler CP2 and enters a photodetector PD3.

光検出器PD2.PD3の出力は差動増幅器A2におい
て引埠されてドツプラ広がりによる吸収信号が消去され
、鋭い吸収スペクトルを有する飽和吸収信号としてロッ
クインアンプに出力される。第1図と同様な帰還ループ
により、半導体レーザLD1の発振周波数を飽和吸収ス
ペクトルのピークに第1図装置の場合より高安定度で制
御することができる。
Photodetector PD2. The output of PD3 is filtered by differential amplifier A2 to eliminate the absorption signal due to Doppler spread, and is output to the lock-in amplifier as a saturated absorption signal having a sharp absorption spectrum. By using a feedback loop similar to that shown in FIG. 1, the oscillation frequency of the semiconductor laser LD1 can be controlled to the peak of the saturated absorption spectrum with higher stability than in the device shown in FIG.

なお上記の実施例で端面2にハーフミラ−・コーティン
グをしているが、これに限らず、例えば光ファイバFB
6の中間にハーフミラ−を挿入してもよい。  。
In the above embodiment, the end face 2 is coated with a half-mirror coating, but the coating is not limited to this.
A half mirror may be inserted in the middle of 6. .

(発明の効果) 以上述べたように本発明によれば、光学系の位置合せが
不要で調整が簡単かつ小型の半導体レーザ波長安定化装
置を簡単な構成で実現することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a compact semiconductor laser wavelength stabilizing device that does not require alignment of an optical system, is easy to adjust, and has a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体レーザ波長安定化装置の一
実施例を示す構成ブロック図、第2図は第1図装置の動
作を説明するための説明図、第3図は本発明に係る半導
体レーザ波長安定化装置の他の実施例を示す構成ブロッ
ク図、第4図は従来の半導体レーザ波長安定化装置を示
す構成ブロック図、第5図は第4図装置の動作を説明す
るための動作説明図、第6図は第4図装置の動作を説明
するための特性曲線図である。 LDl・・・半導体レーザ、FB4.FB6・・・光フ
ァイバ、UM2・・・変調手段、C10・・・吸収セル
、PDl、PD2.PD3・・・光検出器、LAl・・
・ロックインアンプ、Cr2・・・制御手段、a、b・
・・光ファイバコア。 尾2図 篤3図
FIG. 1 is a configuration block diagram showing an embodiment of the semiconductor laser wavelength stabilizing device according to the present invention, FIG. 2 is an explanatory diagram for explaining the operation of the device shown in FIG. FIG. 4 is a configuration block diagram showing another embodiment of the semiconductor laser wavelength stabilization device, FIG. 4 is a configuration block diagram showing a conventional semiconductor laser wavelength stabilization device, and FIG. 5 is a diagram for explaining the operation of the device shown in FIG. FIG. 6 is a characteristic curve diagram for explaining the operation of the device shown in FIG. 4. LDl... semiconductor laser, FB4. FB6...Optical fiber, UM2...Modulation means, C10...Absorption cell, PDl, PD2. PD3...Photodetector, LAl...
・Lock-in amplifier, Cr2...control means, a, b・
...Optical fiber core. Tail 2 figure Atsushi 3 figure

Claims (3)

【特許請求の範囲】[Claims] (1)標準物質の吸収スペクトル線に半導体レーザの波
長を制御して波長を安定化する半導体レーザ波長安定化
装置において、標準物質中を通る光ファイバに半導体レ
ーザの出力光の一部を入射し、前記光ファイバ中を伝搬
する光のエバネッセント波部分での吸収を利用すること
を特徴とする半導体レーザ波長安定化装置。
(1) In a semiconductor laser wavelength stabilization device that stabilizes the wavelength by controlling the wavelength of a semiconductor laser according to the absorption spectrum line of a standard material, a part of the output light of the semiconductor laser is input into an optical fiber that passes through the standard material. . A semiconductor laser wavelength stabilization device, characterized in that it utilizes absorption in an evanescent wave portion of light propagating in the optical fiber.
(2)半導体レーザの出力光の一部を入射して周波数変
調する音響光学変調器と、特定の波長で吸収を起こす標
準物質を封入しこの標準物質内を通過するように設けら
れた光ファイバコアに前記音響光学変調器の出力光を入
射する吸収セルと、この吸収セルの透過光を電気信号に
変換する光検出器と、この光検出器の出力電気信号に関
連する電気信号を入力して前記変調手段の変調周波数ま
たはその整数倍の周波数で同期整流するロックインアン
プと、このロックインアンプの出力が一定値となるよう
に前記半導体レーザの電流または温度を制御する制御手
段とを備えた特許請求の範囲第1項記載の半導体レーザ
波長安定化装置。
(2) An acousto-optic modulator that modulates the frequency by inputting a part of the output light of a semiconductor laser, and an optical fiber that is encapsulated with a standard material that causes absorption at a specific wavelength and is installed to pass through the standard material. An absorption cell into which the output light of the acousto-optic modulator is input, a photodetector which converts the transmitted light of the absorption cell into an electrical signal, and an electrical signal related to the output electrical signal of the photodetector is input. a lock-in amplifier that performs synchronous rectification at the modulation frequency of the modulation means or a frequency that is an integral multiple thereof; and a control means that controls the current or temperature of the semiconductor laser so that the output of the lock-in amplifier becomes a constant value. A semiconductor laser wavelength stabilizing device according to claim 1.
(3)標準物質としてR_bまたはC_sを用いた特許
請求の範囲第1項記載の半導体レーザ波長安定化装置。
(3) The semiconductor laser wavelength stabilizing device according to claim 1, which uses R_b or C_s as a standard substance.
JP61199364A 1985-12-20 1986-08-26 Wavelemgth stabilizer of semiconductor laser Granted JPS6355991A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP61199364A JPS6355991A (en) 1986-08-26 1986-08-26 Wavelemgth stabilizer of semiconductor laser
GB8627744A GB2187592B (en) 1985-12-26 1986-11-20 Semiconductor laser wavelength stabilizer
US06/937,359 US4833681A (en) 1985-12-26 1986-12-03 Semiconductor laser wavelength stabilizer
US06/942,448 US4893353A (en) 1985-12-20 1986-12-16 Optical frequency synthesizer/sweeper
US06/943,670 US4856899A (en) 1985-12-20 1986-12-18 Optical frequency analyzer using a local oscillator heterodyne detection of incident light
DE3643569A DE3643569C2 (en) 1985-12-20 1986-12-19 Optical frequency analyzer
GB8630375A GB2185567B (en) 1985-12-20 1986-12-19 Optical frequency analyzer
DE3643553A DE3643553C2 (en) 1985-12-20 1986-12-19 Device for generating and wobbling optical frequencies
GB8630374A GB2185619B (en) 1985-12-20 1986-12-19 Optical frequency synthesizer/sweeper
DE3643629A DE3643629C2 (en) 1985-12-26 1986-12-19 Device for stabilizing the wavelength of a semiconductor laser
US07/293,020 US4912526A (en) 1985-12-20 1989-01-03 Optical frequency synthesizer/sweeper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199364A JPS6355991A (en) 1986-08-26 1986-08-26 Wavelemgth stabilizer of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6355991A true JPS6355991A (en) 1988-03-10
JPH0523512B2 JPH0523512B2 (en) 1993-04-02

Family

ID=16406529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199364A Granted JPS6355991A (en) 1985-12-20 1986-08-26 Wavelemgth stabilizer of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6355991A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299280A (en) * 1989-05-15 1990-12-11 Nippon Telegr & Teleph Corp <Ntt> Oscillation wavelength stabilized semiconductor laser device
FR2674079A1 (en) * 1991-03-15 1992-09-18 France Telecom Improvement to coherent optical telecommunications
US5333089A (en) * 1992-03-19 1994-07-26 Alcatel N.V. Optical communications system employing fiber-optic amplifiers and control of the transmitter wavelength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299280A (en) * 1989-05-15 1990-12-11 Nippon Telegr & Teleph Corp <Ntt> Oscillation wavelength stabilized semiconductor laser device
FR2674079A1 (en) * 1991-03-15 1992-09-18 France Telecom Improvement to coherent optical telecommunications
US5333089A (en) * 1992-03-19 1994-07-26 Alcatel N.V. Optical communications system employing fiber-optic amplifiers and control of the transmitter wavelength

Also Published As

Publication number Publication date
JPH0523512B2 (en) 1993-04-02

Similar Documents

Publication Publication Date Title
US4893353A (en) Optical frequency synthesizer/sweeper
US4833681A (en) Semiconductor laser wavelength stabilizer
JPH04192729A (en) Optical transmitter
CN102007652A (en) Optical locking based on optical resonators with high quality factors
Ying et al. A closed-loop RFOG based on digital serrodyne and sine modulations with two LiNbO3 phase modulators
JPS6355991A (en) Wavelemgth stabilizer of semiconductor laser
JPH0526804A (en) Multiple ga detecting device
JPH0459796B2 (en)
JP2501484B2 (en) Wavelength stabilization laser device
JPH02165117A (en) Operation stabilizing method for waveguide type optical modulator
JPH0453014Y2 (en)
JPS62252984A (en) Wavelength stabilizing apparatus for semiconductor laser
JP2015225127A (en) Wavelength conversion device
JPS61205848A (en) Crib coupling cavity laser driving system for measuring small signal
JPS6152634A (en) Semiconductor laser optical modulating and demodulating system
JPS637687A (en) Semiconductor laser wavelength stabilizer
JPH03241882A (en) Laser oscillation wavelength stabilizing device
JPS63137494A (en) Frequency stabilizer for semiconductor laser
JP3843323B2 (en) Broadband, high-speed optical dispersion measurement system
JPS62162382A (en) Highly-stabilized semiconductor laser light source
JPH04155878A (en) Frequency stabilizing device for semiconductor laser
JPH06235641A (en) Optical fiber gyroscope
JPH04133484A (en) Wavelength stabilized laser device
JPS63223615A (en) External modulator
JP2002258227A (en) Light modulating apparatus