JPS6355663B2 - - Google Patents

Info

Publication number
JPS6355663B2
JPS6355663B2 JP56164616A JP16461681A JPS6355663B2 JP S6355663 B2 JPS6355663 B2 JP S6355663B2 JP 56164616 A JP56164616 A JP 56164616A JP 16461681 A JP16461681 A JP 16461681A JP S6355663 B2 JPS6355663 B2 JP S6355663B2
Authority
JP
Japan
Prior art keywords
liquid
measured
carrier solution
gas
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56164616A
Other languages
Japanese (ja)
Other versions
JPS5866046A (en
Inventor
Hisayuki Ikeda
Tomoko Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP56164616A priority Critical patent/JPS5866046A/en
Publication of JPS5866046A publication Critical patent/JPS5866046A/en
Publication of JPS6355663B2 publication Critical patent/JPS6355663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor

Description

【発明の詳細な説明】 本発明は、フローインジエクシヨンアナリシス
の検出端として使用されるマイクロフローセルに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microflow cell used as a detection end in flow injection analysis.

一般にフローインジエクシヨンアナリシスにお
いては、サンプルインジエクシヨンによつてキヤ
リアラインに注入された被測定液が、キヤリア溶
液によつて反応器に運ばれて所定の反応を受け、
その後再びキヤリア溶液に運ばれてマイクロフロ
ーセルに至つて検出されるような構成となつてい
る。また、上記反応器やマイクロフローセルは、
恒温槽内に収納され所定の温度に保たれる場合が
多い。
In general, in flow injection analysis, a sample liquid is injected into a carrier line by a sample injection, is carried to a reactor by a carrier solution, and undergoes a predetermined reaction.
After that, it is configured so that it is transported again to the carrier solution, reaches the micro flow cell, and is detected. In addition, the above reactor and micro flow cell are
It is often stored in a constant temperature bath and kept at a predetermined temperature.

然しながら、上記従来例においては上記キヤリ
ア溶液中に溶存している気体が上記恒温槽による
昇温に伴つて気泡となつたり上記反応器で気体が
生成したりするような場合、これらの気泡等がマ
イクロフローセルに到達して付着し易いという欠
点があつた。すなわち、これらの気泡等が付着す
ると、マイクロフローセル内の流路が閉塞された
り流れに乱れを生じたりするようになり、究極的
に被測定液の測定感度を低下させたり測定の再現
性を著しく減退させる等の欠点があつた。
However, in the above conventional example, when gas dissolved in the carrier solution becomes bubbles as the temperature rises in the constant temperature bath or gas is generated in the reactor, these bubbles, etc. It had the disadvantage that it easily reached and adhered to the micro flow cell. In other words, when these bubbles adhere, they can block the flow path within the microflow cell and cause turbulence in the flow, ultimately reducing the measurement sensitivity of the liquid being measured and significantly reducing the reproducibility of the measurement. There were drawbacks such as deterioration.

本発明はかかる欠点に鑑みてなされたものであ
り、その目的は、上記欠点が除去され常に高感度
且つ高再現性で被測定液の所望特性等を測定でき
るようなマイクロフローセルを提供することにあ
る。
The present invention has been made in view of these drawbacks, and its purpose is to provide a microflow cell that eliminates the above drawbacks and can always measure desired characteristics of a liquid to be measured with high sensitivity and high reproducibility. be.

以下、本発明について図を用いて詳細に説明す
る。第1図は、本発明実施例の構成断面図であ
り、図中、1は被測定液等を含むキヤリア溶液が
導入される導入口、2は被測定液等を含むキヤリ
ア溶液が導出される導出口、3は該導出入口1,
2および所定の開口部を有する第1の支持体、4
は支持体3内部の所定部分に装着された例えば
Pt陽極等の指示極でなる第1の電極、5は支持
体3内部の所定部分に装着された例えばAg陰極
等の対極でなる第2の電極、6は例えばシリコー
ンゴム膜からなり気体は透過させるが液体は透過
させない性質を有する薄膜、7は多孔質物質でな
る保持体、8は例えばアスピレータ等の減圧装置
に接続される吸引口、9は吸引口8を有するとと
もに保持体7を介して薄膜6が着設され且つ第1
の支持体3に設けられている上記開口部を塞ぐよ
うにして該支持体3に一体的に着設される第2の
支持体である。なお、上記薄膜6は第1の支持体
3内に導入されるキヤリア溶液や該キヤリア溶液
に含まれる被測定液等の性状等若しくはガス透過
率等を考慮して選択され、例示した上記シリコー
ンゴム膜の他ポリテトラフルオロエチレン膜、ポ
リテトラフルオロエチレンプロピレン膜等が選ば
れることが多い。
Hereinafter, the present invention will be explained in detail using the drawings. FIG. 1 is a cross-sectional view of the configuration of an embodiment of the present invention. In the figure, 1 is an inlet into which a carrier solution containing a liquid to be measured is introduced, and 2 is an inlet through which a carrier solution containing a liquid to be measured is led out. Outlet port 3 is the outlet port 1,
2 and a first support having a predetermined opening, 4
is attached to a predetermined part inside the support body 3, for example.
A first electrode made of an indicator electrode such as a Pt anode, 5 a second electrode made of a counter electrode such as an Ag cathode mounted on a predetermined part inside the support 3, and 6 made of a silicone rubber membrane for example, through which gas is permeable. 7 is a holder made of a porous material; 8 is a suction port connected to a pressure reducing device such as an aspirator; A thin film 6 is applied and the first
This is a second support that is integrally attached to the support 3 so as to close the opening provided in the support 3. The thin film 6 is selected in consideration of the properties of the carrier solution introduced into the first support 3, the liquid to be measured contained in the carrier solution, the gas permeability, etc., and is made of the silicone rubber exemplified above. In addition to membranes, polytetrafluoroethylene membranes, polytetrafluoroethylene propylene membranes, etc. are often selected.

上記構成からなる本発明実施例の動作について
以下説明する。第1図において、被測定液等を含
むキヤリア溶液が導入口1から第1の支持体3の
内部に導入されると、該支持体3の内部において
第1および第2の電極4,5によつて上記被測定
液の導電率等所望の特性が検出され、その後該被
測定液等を含むキヤリア溶液は導出口2から外部
へ導出される。また、上記支持体3の内部に導入
された上記キヤリア溶液中に気泡等が含まれてい
ると、該気泡等が上記第1および第2の電極4,
5の表面に付着したり、導出口2(若しくは導入
口1)を閉塞したりする可能性が大きい。このた
め、吸引口8に接続された上記減圧装置を駆動さ
せると、吸入口8内が減圧状態となり上記気泡等
が薄膜6および保持体7を透過して吸引口8内に
至る。従つて、上記減圧装置を連続的に駆動させ
ることにより吸入口8内を常に減圧状態に保ち続
けると、上記支持体3の内部に導入された上記キ
ヤリア溶液中に気泡等が含まれる場合でも、これ
らの気泡等が上記キヤリア溶液と分離され吸入口
8から外部へ放出されるようになる。
The operation of the embodiment of the present invention having the above configuration will be explained below. In FIG. 1, when a carrier solution containing a liquid to be measured, etc. is introduced into a first support 3 from an inlet 1, it is applied to first and second electrodes 4 and 5 inside the support 3. Accordingly, desired characteristics such as electrical conductivity of the liquid to be measured are detected, and then the carrier solution containing the liquid to be measured and the like is led out from the outlet 2. Furthermore, if the carrier solution introduced into the support 3 contains air bubbles, etc., the air bubbles etc.
There is a high possibility that the particles may adhere to the surface of the outlet port 5 or block the outlet port 2 (or the inlet port 1). Therefore, when the pressure reducing device connected to the suction port 8 is driven, the pressure inside the suction port 8 is reduced, and the bubbles and the like pass through the thin film 6 and the holder 7 and reach the inside of the suction port 8. Therefore, if the pressure reduction device is continuously driven to keep the inside of the suction port 8 in a reduced pressure state, even if the carrier solution introduced into the support 3 contains air bubbles, etc. These bubbles and the like are separated from the carrier solution and released from the suction port 8 to the outside.

以上詳しく説明したような本発明の実施例によ
れば、第1の支持体3内に導入される被測定液等
を含むキヤリア溶液中に気泡等が含まれてきて
も、これら気泡等が第1および第2の電極4,5
の表面に付着したり導入出口1,2を塞いだりす
るようなことはなくなるという利点を有する。従
つて、これらの気泡等が原因となつて生じていた
前記従来例の欠点が除去され、常に高感度且つ高
再現性で被測定液の所望特性等を測定できるよう
になるという利点を有する。
According to the embodiment of the present invention as described in detail above, even if air bubbles etc. are contained in the carrier solution containing the liquid to be measured etc. introduced into the first support 3, these air bubbles etc. 1 and second electrodes 4, 5
This has the advantage that it does not adhere to the surface of the glass or block the inlet ports 1 and 2. Therefore, the disadvantages of the conventional example caused by these bubbles and the like are eliminated, and the present invention has the advantage that desired characteristics of the liquid to be measured can always be measured with high sensitivity and high reproducibility.

また、第2図は本発明実施例をグルコース測定
のフローインジエクシヨンアナリシスに使用した
場合の構成説明図であり、図中、11は容器、1
2はキヤリア溶液、13は流入口、14は送液ポ
ンプ、15はサンプルインジエクタ、16は固定
化酵素、17は上述の本発明実施例でなるマイク
ロフローセル、18はマイクロフローセル17の
上記電極4,5からの出力信号を受け所定の演算
を行なつて例えば被測定液濃度等の表示を行なう
演算・表示器、19はキヤリア溶液等の排出口で
ある。また、第1図と同一記号は同一意味をもた
せて使用しここでの説明は省略する。更に、固定
化酵素16は、例えばPTFEゴーアテツクスチユ
ーブ等の気体透過性材料でなるチユーブ16a、
該チユーブ16aの内部に挿入配置された例えば
ナイロンテグス等でなる糸状担体16b、および
該糸状担体16bの外壁面に固定化された例えば
(グルコースオキシダーゼ、以下「GOD」と略
す)の酵素から構成されており、酵素反応に必要
な酵素等の気体がチユーブ16aを透過してチユ
ーブ16a内に供給されるようになつている。
FIG. 2 is an explanatory diagram of the configuration when the embodiment of the present invention is used for flow injection analysis of glucose measurement, and in the figure, 11 is a container;
2 is a carrier solution, 13 is an inlet, 14 is a liquid pump, 15 is a sample injector, 16 is an immobilized enzyme, 17 is a microflow cell according to the embodiment of the present invention described above, and 18 is the electrode 4 of the microflow cell 17. , 5 performs predetermined calculations and displays, for example, the concentration of the liquid to be measured, etc.; 19 is a discharge port for carrier solution, etc.; Further, the same symbols as in FIG. 1 are used with the same meaning, and the explanation here will be omitted. Further, the immobilized enzyme 16 is provided with a tube 16a made of a gas permeable material such as a PTFE goat tube,
It is composed of a filamentous carrier 16b made of, for example, nylon thread inserted into the tube 16a, and an enzyme such as glucose oxidase (hereinafter abbreviated as "GOD") immobilized on the outer wall surface of the filamentous carrier 16b. A gas such as an enzyme necessary for an enzyme reaction is supplied into the tube 16a by passing through the tube 16a.

上記構成からなる本発明実施例使用のフローイ
ンジエクシヨンアナリシスについて、以下動作の
説明を行なう。第2図において、送液ポンプ14
が駆動させられると、容器11内のキヤリア溶液
12は流入口13から送液され、送液ポンプ1
4、サンプルインジエクタ15、固定化酵素1
6、およびマイクロフローセル17を経由して流
れ、排出口19から排出される。また、吸引口8
は例えばアスピレータ等の減圧装置(図示せず)
に接続され該吸引口8内が減圧状態に保たれてい
る。このため、キヤリア溶液12内に気体が溶存
しており該気体が昇温等によつて気泡化している
ような場合であつても、これらの気泡等がキヤリ
ア溶液とともにマイクロフローセル17内に到達
すると、これらの気泡(若しくは気体)だけが前
記薄膜6および保持体7を透過して吸引口8から
外部へ放出される。また、吸引口8内が減圧状態
に保たれているとマイクロフローセル17内ひい
ては固定化酵素16内も減圧状態となり、外部雰
囲気中から酸素ガス等がチユーブ16aを透過し
て固定化酵素16内に供給されるようになる。し
かして、サンプルインジエクタ15によつて例え
ばグルコースを含む所定量の被測定液が採取され
ると、該被測定液はキヤリア溶液に運ばれて固定
化酵素16に至る。該固定化酵素16において、
上記糸状担体16bの外壁表面に固定化された
GOD酵素によつて上記グルコースは該GOD酵素
との間に下式(1)のような酵素反応を生ずる。
The operation of the flow injection analysis using the embodiment of the present invention having the above configuration will be explained below. In FIG. 2, the liquid feeding pump 14
When the carrier solution 12 in the container 11 is driven, the carrier solution 12 in the container 11 is fed from the inlet 13, and the liquid feeding pump 1
4, sample injector 15, immobilized enzyme 1
6, and the micro flow cell 17, and is discharged from the discharge port 19. In addition, the suction port 8
For example, a pressure reducing device such as an aspirator (not shown)
The inside of the suction port 8 is maintained in a reduced pressure state. Therefore, even if gas is dissolved in the carrier solution 12 and the gas becomes bubbles due to temperature rise, etc., if these bubbles etc. reach the inside of the micro flow cell 17 together with the carrier solution, Only these bubbles (or gas) pass through the thin film 6 and the holder 7 and are discharged from the suction port 8 to the outside. Furthermore, if the inside of the suction port 8 is maintained in a reduced pressure state, the inside of the micro flow cell 17 and the immobilized enzyme 16 will also be in a reduced pressure state, and oxygen gas etc. from the external atmosphere will permeate through the tube 16a and enter the immobilized enzyme 16. will be supplied. When a predetermined amount of the liquid to be measured containing, for example, glucose is collected by the sample injector 15, the liquid to be measured is carried to the carrier solution and reaches the immobilized enzyme 16. In the immobilized enzyme 16,
immobilized on the outer wall surface of the filamentous carrier 16b.
The GOD enzyme causes an enzymatic reaction between the glucose and the GOD enzyme as shown in the following formula (1).

C6H12O6+O2GOD ――→→ グルコン酸+H2O2 ……(1) 上式(1)で生成したH2O2は、キヤリア溶液に運
ばれてマイクロフローセル17に至り前記第1お
よび第2の電極4,5によつて下式(2)のような電
解反応を生ずる。
C 6 H 12 O 6 + O 2 GOD --→→ Gluconic acid + H 2 O 2 ...(1) H 2 O 2 generated in the above formula (1) is carried to the carrier solution and reaches the micro flow cell 17, where it is The first and second electrodes 4 and 5 cause an electrolytic reaction as shown in equation (2) below.

第1電極4側 H2O2→2H++O2+2e- 第2電極5側 4H++O2→2H2O−4e- ……(2) 上式(2)の電解反応に応じて第1および第2の電
極4,5間に電解電流が流れ、該電解電流が検出
信号として演算・表示器18に送られ上式(1)(2)を
考慮した所定の演算処理が施こされて被測定液中
のグルコース濃度等として表示される。
First electrode 4 side H 2 O 2 →2H + +O 2 +2e - Second electrode 5 side 4H + +O 2 →2H 2 O−4e - ...(2) According to the electrolytic reaction of the above formula (2), the first An electrolytic current flows between the second electrodes 4 and 5, and the electrolytic current is sent as a detection signal to the calculation/display unit 18, where it is subjected to predetermined calculation processing taking into account the above equations (1) and (2). It is displayed as the glucose concentration in the liquid to be measured.

以上詳しく説明したような本発明実施例使用の
フローインジエクシヨンアナリシスによれば、キ
ヤリア溶液に含まれている気体が昇温等によつて
気泡化したり固定化酵素16に供給された上記酸
素ガス等が過剰にマイクロフローセル17内へ導
入されても、前記薄膜6や保持体7を透過して吸
引口8から外部へ放出されるため、上記気泡等が
第1および第2電極4,5の表面に付着したりす
るようなことがなく、常に被測定液中のグルコー
ス濃度等を正確に測定できるという利点を有す
る。また、固定化酵素16内を減圧状態にして外
部雰囲気中から酵素反応に必要な酸素ガス等を供
給するような構成であるため、酵素反応に必要な
酸素ガス等をキヤリア溶液中の溶存気体だけに頼
る場合に比し、酵素反応がより効率的に行なわれ
酵素反応のリニアリテイが向上(特にグルコース
の高濃度領域で著しく改善される)するという利
点も有する。
According to the flow injection analysis using the embodiments of the present invention as described in detail above, the gas contained in the carrier solution becomes bubbles due to temperature rise or the like, or the oxygen gas supplied to the immobilized enzyme 16 Even if excessive amounts of air bubbles, etc. are introduced into the micro flow cell 17, they pass through the thin film 6 and the holder 7 and are released from the suction port 8. It has the advantage that it does not adhere to the surface and can always accurately measure the glucose concentration in the liquid to be measured. In addition, since the structure is such that the inside of the immobilized enzyme 16 is under reduced pressure and the oxygen gas etc. necessary for the enzyme reaction is supplied from the external atmosphere, the oxygen gas etc. necessary for the enzyme reaction are supplied only to the dissolved gas in the carrier solution. It also has the advantage that the enzyme reaction is carried out more efficiently and the linearity of the enzyme reaction is improved (particularly markedly improved in the high concentration region of glucose), compared to when relying on the method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成断面図、第2図は
本発明実施例使用のフローインジエクシヨンアナ
リシスの構成説明図である。 1,2………導出入口、3,9……支持体、
4,5……電極、6……薄膜、7……保持体、8
……吸引口、11……容器、12……キヤリア溶
液、14……送液ポンプ、15……サンプルイン
ジエクタ、16……固定化酵素、17……マイク
ロフローセル、18……演算表示器。
FIG. 1 is a sectional view of the configuration of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the configuration of flow injection analysis using the embodiment of the present invention. 1, 2...... Outlet/outlet, 3, 9... Support body,
4, 5... Electrode, 6... Thin film, 7... Holder, 8
. . . Suction port, 11 . . . Container, 12 . . . Carrier solution, 14 .

Claims (1)

【特許請求の範囲】 1 フローインジエクシヨンアナリシスの検出端
として使用されるマイクロフローセルにおいて、
被測定液の所望の特性等を検出する第1および第
2の電極と、これら電極が内部に装着されると共
に前記被測定液等を含むキヤリア溶液が導出入さ
れる導入出口および所定の開口部を有する第1の
支持体と、気体透過性で液体不透過性の薄膜と、
多孔性物質でなる保持体と、該保持体を介して前
記薄膜が着設されると共に所定の吸引口を有し且
つ前記開口部を塞ぐようにして前記第1の支持体
と一体的に接続された第2の支持体とを具備する
ことを特徴とするマイクロフローセル。 2 気体透過性のチユーブの中に糸状担体が挿入
され且つ該糸状担体の外壁面に所定の酵素が固定
化されている固定化酵素を有し、前記酵素による
反応を利用して被測定液中のグルコースを測定す
るグルコース測定システムでなるフローインジエ
クシヨンアナリシスにおいて検出端として使用さ
れ、前記固定化酵素に直接接続されていることを
特徴とする特許請求範囲第1項記載のマイクロフ
ローセル。
[Claims] 1. In a micro flow cell used as a detection end of flow injection analysis,
First and second electrodes for detecting desired characteristics of the liquid to be measured, an inlet port and a predetermined opening into which these electrodes are installed and a carrier solution containing the liquid to be measured, etc. is introduced and taken out. a first support having a gas-permeable and liquid-impermeable thin film;
a holder made of a porous material, the thin film is attached through the holder, has a predetermined suction port, and is integrally connected to the first support so as to close the opening; A microflow cell characterized by comprising: 2. A filamentous carrier is inserted into a gas-permeable tube, and has an immobilized enzyme on the outer wall surface of the filamentous carrier, and a predetermined enzyme is immobilized on the outer wall surface of the filamentous carrier. 2. The microflow cell according to claim 1, wherein the microflow cell is used as a detection end in a flow injection analysis comprising a glucose measurement system for measuring glucose, and is directly connected to the immobilized enzyme.
JP56164616A 1981-10-15 1981-10-15 Micro-flow cell Granted JPS5866046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164616A JPS5866046A (en) 1981-10-15 1981-10-15 Micro-flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164616A JPS5866046A (en) 1981-10-15 1981-10-15 Micro-flow cell

Publications (2)

Publication Number Publication Date
JPS5866046A JPS5866046A (en) 1983-04-20
JPS6355663B2 true JPS6355663B2 (en) 1988-11-04

Family

ID=15796572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164616A Granted JPS5866046A (en) 1981-10-15 1981-10-15 Micro-flow cell

Country Status (1)

Country Link
JP (1) JPS5866046A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223546A (en) * 1985-03-28 1986-10-04 Yokogawa Electric Corp Substrate analyzer

Also Published As

Publication number Publication date
JPS5866046A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
US4891104A (en) Enzymatic electrode and electrode module and method of use
US4230537A (en) Discrete biochemical electrode system
US3227643A (en) Oxygen detector
AU2011343776B2 (en) Single use bioreactor for use with detachable dissolved oxygen sensor
JPS6154410B2 (en)
JPS6363858B2 (en)
US5106482A (en) High speed oxygen sensor
CA2250469C (en) A polarographic sensor
JPS6355663B2 (en)
CN115586234A (en) Biosensor and preparation method thereof
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
US5200044A (en) Method for measuring oxygen content
JP3687789B2 (en) Substance concentration measuring device
CN107850562B (en) Electrochemical measuring cell for measuring the content of chlorine compounds in water
CN114778639B (en) Physiological index on-line monitoring instrument based on separation sensing film
US7807041B2 (en) Method for detecting the presence or absence of a gas bubble in an aqueous liquid
JP2002071622A (en) Electrochemical gas sensor
US8205480B2 (en) Measuring device
JPS6332363A (en) Hydrogen peroxide electrode
JPS58189549A (en) Measuring cell of enzyme reaction
JP2002195975A (en) Membrane-type electrode
JPS6317181B2 (en)
SU890217A1 (en) Potentiometric gas pickup
JPH01191035A (en) Method for measuring concentration of dissolved oxygen in liquid
JP3084339U (en) Ionized battery type ozone concentration sensor