JPH01191035A - Method for measuring concentration of dissolved oxygen in liquid - Google Patents

Method for measuring concentration of dissolved oxygen in liquid

Info

Publication number
JPH01191035A
JPH01191035A JP63016303A JP1630388A JPH01191035A JP H01191035 A JPH01191035 A JP H01191035A JP 63016303 A JP63016303 A JP 63016303A JP 1630388 A JP1630388 A JP 1630388A JP H01191035 A JPH01191035 A JP H01191035A
Authority
JP
Japan
Prior art keywords
oxygen
sample liquid
carrier gas
gas
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63016303A
Other languages
Japanese (ja)
Inventor
Satoshi Kunimura
國村 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63016303A priority Critical patent/JPH01191035A/en
Publication of JPH01191035A publication Critical patent/JPH01191035A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the concn. of the dissolved oxygen in a sample liquid with high accuracy by bubbling a carrier gas in the sample liquid to capture the dissolved oxygen in the sample liquid on the carrier gas and detecting the concn. of the oxygen in the carrier gas by using a sensor for measuring the concn. of the oxygen in the gas. CONSTITUTION:A calibration curve is formed under the specified conditions of a sample liquid temp., gaseous pressure, etc., by confirming that a correlative relation holds between the concn. of the dissolved oxygen in the sample liquid L and the standardized value of the output of a measuring instrument. The carrier gas G is supplied from a gas conduit 2 into the sample liquid L filled in a storage tank 1 and the oxygen in the sample liquid L is removed by bubbling under the same conditions as for the conditions of forming the calibration curve. The gaseous mixture composed of the gas G and the removed oxygen rises in the sample liquid L and is captured by a capturing hood 3; thereafter, the concn. of the oxygen is measured by the sensor 4 for measuring the concn. of the oxygen in the gas. The output of the measured value is detected by a detector 5 using the calibration curve formed from the standardized value. The concn. of the dissolved oxygen in the sample liquid is thus measured with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、液中溶存酸素濃度の測定方法に関し、特に
従来の気中酸素濃度測定センサを使用できるようにした
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for measuring dissolved oxygen concentration in a liquid, and in particular, allows use of a conventional atmospheric oxygen concentration measurement sensor.

[従来技術およびその課題] 従来、酸素濃度測定センサとして多種多様な材料と原理
が利用されたものが用いられており、中でも固体電解質
のイオン導電性を利用した固体電解質ガスセンサの一つ
であるジルコニア酸素センサは、その測定精度が高いこ
とから、気中酸素濃度の測定に広く使用されている。
[Prior art and its issues] Conventionally, oxygen concentration measurement sensors have been used that utilize a wide variety of materials and principles. Among them, zirconia, which is a solid electrolyte gas sensor that utilizes the ionic conductivity of a solid electrolyte, has been used. Oxygen sensors are widely used to measure atmospheric oxygen concentration because of their high measurement accuracy.

このジルコニア酸素センサは、酸化ジルコニウムに酸化
カルシウムまたは酸化イツトリウムを10モル%程度固
溶させた安定化ノルコニアを、2枚の多孔質白金電極間
に挟着してなるらのであり、」二足電極間の電位差を検
出し、この電位差から各電極両側の酸素分圧を測定する
ものである。
This zirconia oxygen sensor is made by sandwiching stabilized norconia, which is a solid solution of about 10 mol% of calcium oxide or yttrium oxide in zirconium oxide, between two porous platinum electrodes. The potential difference between the electrodes is detected, and the oxygen partial pressure on both sides of each electrode is measured from this potential difference.

しかしながら、電極両側の酸素分圧と両電極間の電位差
との間に相関関係が成仏するのは、電極間の安定化ジル
コニアが500〜800℃の温度範囲に限られるので液
中溶存酸素濃度の測定には不適である。
However, the correlation between the oxygen partial pressure on both sides of the electrodes and the potential difference between the two electrodes is limited to the temperature range of 500 to 800°C for the stabilized zirconia between the electrodes. Not suitable for measurement.

これに対し、液中溶存酸素濃度を測定するしのとしては
、クラーク型酸素電極を用いた模式酸素センサが一般に
使用されている。このセンサは、カソード、アノードお
よび電解液とから成り、酸素透過性プラスチック膜をカ
ソードに取り付けたものであり、この膜を透過する酸素
をカソード表面で電気化学的に還元する際に必要とする
電流値を求め、この値から酸素の分圧を測定するもので
あり、酸素の電気化学還元の方法により、定電位電解式
酸素センサ、ガルバニ電池式酸素センサとに区分される
On the other hand, a model oxygen sensor using a Clark type oxygen electrode is generally used to measure the dissolved oxygen concentration in a liquid. This sensor consists of a cathode, an anode, and an electrolyte, with an oxygen-permeable plastic membrane attached to the cathode, and the current required to electrochemically reduce oxygen passing through the membrane at the cathode surface. This sensor calculates a value and measures the partial pressure of oxygen from this value. Depending on the method of electrochemical reduction of oxygen, it is classified into a constant potential electrolysis type oxygen sensor and a galvanic cell type oxygen sensor.

しかしながら、これらクラーク型酸素電極を用いた模式
酸素センサはいずれも酸素の還元反応を利用したもので
あるので、その測定精度がセンサの測定範囲の±2%程
度であり、−回の測定に数十秒を要し、電極寿命も短い
等の課題があった。
However, since all of these model oxygen sensors using Clark-type oxygen electrodes utilize the reduction reaction of oxygen, their measurement accuracy is about ±2% of the sensor's measurement range, and it takes several measurements per measurement. There were problems such as it took 10 seconds and the electrode life was short.

この発明は上記課題を解決するためになされたものであ
り、測定精度の良好な従来の気中酸素濃度測定センサを
使用して容易に液中溶存酸素濃度を高精度で測定するこ
とのできるような方法を提供することを目的としている
This invention was made to solve the above problems, and it is possible to easily measure dissolved oxygen concentration in liquid with high accuracy using a conventional atmospheric oxygen concentration measurement sensor with good measurement accuracy. The purpose is to provide a method.

[課題を解決するための手段] この発明は、キャリアガスを試料液中でバブリングする
ことにより試料液中の溶存酸素をキャリアガスに捕集し
、気中酸素濃度測定センサを用いてキャリアガス中の酸
素濃度を検出することを解決手段とした。
[Means for Solving the Problems] The present invention collects dissolved oxygen in the sample liquid by bubbling the carrier gas in the sample liquid, and captures dissolved oxygen in the carrier gas using an atmospheric oxygen concentration measurement sensor. The solution was to detect the oxygen concentration.

[作用 ] 試料液中でキャリアガスをバブリングすることにより、
試料液中に溶存している酸素の一部または全部を脱気す
ることができる。脱気される酸素量は液中溶存酸素濃度
およびキャリアガスのバブリングの条件、試料液の液温
等に依存するので、一定条件下でのキャリアガスのバブ
リングに上り脱気された酸素量は試料液中の溶存酸素濃
度と相関関係を有する。したがって、脱気された酸素を
キャリアガスと共に捕集した後、キャリアガス中の酸素
濃度を測定し、予め作成しておいた検量線を用いてキャ
リアガス中の酸素濃度から試料液中の溶存酸素濃度を求
めることができる。
[Effect] By bubbling carrier gas in the sample liquid,
Part or all of the oxygen dissolved in the sample solution can be degassed. The amount of oxygen degassed depends on the concentration of dissolved oxygen in the liquid, the bubbling conditions of the carrier gas, the temperature of the sample liquid, etc. Therefore, the amount of oxygen degassed due to bubbling of the carrier gas under certain conditions is It has a correlation with the dissolved oxygen concentration in the liquid. Therefore, after collecting the degassed oxygen together with the carrier gas, the oxygen concentration in the carrier gas is measured, and the dissolved oxygen in the sample solution is calculated from the oxygen concentration in the carrier gas using a calibration curve prepared in advance. Concentration can be determined.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

第1図は本発明の液中溶存酸素濃度の測定方法を実施す
る際に使用される装置の一実施例を示したものである。
FIG. 1 shows an embodiment of an apparatus used to carry out the method of measuring dissolved oxygen concentration in liquid according to the present invention.

第1図中、符号lは貯槽である。In FIG. 1, the symbol l is a storage tank.

この貯槽l内には試料液りが満たされている。貯槽lは
上部が開口した有底筒状の恒温槽であり、その底部には
試料液り内の溶存酸素を脱気するためのキャリアガスG
を導く導気管2が取り付けられている。この導気管2は
キャリアガスGと試料液りとの接触が最大になるように
、一端は貯槽lの底面の中心に達した部分で上方へ湾曲
されている。さらに、貯槽lの上部開口部に向って所望
量のキャリアガスGのバブリング赤容易なように、この
一端は縮径されてノズルとなっている。この導気管2の
他端は貯槽!外部へ導かれ、図示しないキャリアガスG
の発生装置あるいはガスボンベ等に接続され、試料液り
中にバブリングするキャリアガスの供給量を調節できる
ようになっている。
This storage tank 1 is filled with a sample liquid. The storage tank L is a bottomed cylindrical constant temperature bath with an open top, and a carrier gas G is placed at the bottom to degas the dissolved oxygen in the sample liquid.
An air guide pipe 2 is attached to guide the air. One end of this air guide tube 2 is curved upward at a portion reaching the center of the bottom surface of the storage tank 1 so as to maximize contact between the carrier gas G and the sample liquid. Furthermore, one end is reduced in diameter to form a nozzle to facilitate bubbling of a desired amount of carrier gas G toward the upper opening of the storage tank I. The other end of this air guide pipe 2 is a storage tank! A carrier gas G (not shown) is guided to the outside.
It is connected to a gas generator or gas cylinder, etc., so that the supply amount of carrier gas bubbling into the sample liquid can be adjusted.

キャリアガスGには、試料液りおよび酸素と不活性なヘ
リウムガス、窒素ガス等の気体を使用するのが望ましい
As the carrier gas G, it is desirable to use a sample liquid, oxygen, and an inert gas such as helium gas or nitrogen gas.

また、貯槽1の上部には逆ロート型の捕集フード3が支
持されている。この捕集フード3は、試料液り内でバブ
リングされたキャリアガスGと試料液りから脱気された
酸素の混合気体を捕集するためのもので、捕集フード3
の中心線上およびその延長線上でキャリアガスGかバブ
リングされるように設置され、かつ捕集フード3の拡径
された下部開口部は試料液り中に浸漬されており、上部
開口部は気中酸素濃度測定センサ4に接続されている。
Further, an inverted funnel type collection hood 3 is supported at the upper part of the storage tank 1. This collection hood 3 is for collecting a mixed gas of carrier gas G bubbled in the sample liquid and oxygen degassed from the sample liquid.
The collection hood 3 is installed so that the carrier gas G is bubbled on the center line and its extension, and the enlarged lower opening of the collection hood 3 is immersed in the sample liquid, and the upper opening is immersed in the sample liquid. It is connected to the oxygen concentration measurement sensor 4.

この気中酸素濃度測定センサ4は上記捕集フード3によ
って捕集されたキャリアガスGと試料液りから脱気され
た酸素との混合気体中の酸素の濃度を測定するためのら
のであり、測定速度および測定精度が高くかつ故障の少
ないジルコニア酸素センサからなっている。なお、気中
酸素濃度測定センサ4には、本実施例で用いたジルコニ
ア酸1センザのほか、気中酸素濃度測定センサのうち、
測定速度よび測定精度の良好ならのを使用することが可
能である。
This atmospheric oxygen concentration measurement sensor 4 is for measuring the concentration of oxygen in the mixed gas of the carrier gas G collected by the collection hood 3 and the oxygen degassed from the sample liquid. It consists of a zirconia oxygen sensor that has high measurement speed and accuracy, and has few failures. In addition to the zirconia acid 1 sensor used in this example, the atmospheric oxygen concentration measurement sensor 4 includes:
It is possible to use a method with good measurement speed and measurement accuracy.

さらに、この気中酸素濃度測定センサ4は検出器5と接
続されている。この検出器5では上記気中酸素濃度測定
センサ4で測定された混合気体中の酸素濃度の測定値の
出力を規格化した値と、試料液■7中の溶存酸素濃度と
の相関関係を用いた検量線を使用して、試料液り中の溶
存酸素濃度を演算し検出するようになっている。キャリ
アガスG゛と脱気された酸素との混合気体中の酸素濃度
の測定値の出力を規格化した値と、試料液り中の溶存酸
素濃度との間の検量線は、試料液りの液温、大気用、キ
ャリアガスGの種類およびそのの供給量等の各々の条件
により、種々用意する必要がある。
Furthermore, this atmospheric oxygen concentration measuring sensor 4 is connected to a detector 5. This detector 5 uses the correlation between the normalized output of the oxygen concentration in the mixed gas measured by the atmospheric oxygen concentration measurement sensor 4 and the dissolved oxygen concentration in the sample liquid 7. Using the calculated calibration curve, the dissolved oxygen concentration in the sample liquid is calculated and detected. The calibration curve between the normalized output of the measured value of oxygen concentration in a mixed gas of carrier gas G and degassed oxygen and the dissolved oxygen concentration in the sample liquid is It is necessary to prepare various types depending on each condition such as liquid temperature, atmosphere, type of carrier gas G, and its supply amount.

第2図に試料液温20℃、大気圧760mmHg、キャ
リアガスの供給f11.8I2/分とした場合の検量線
の一例を示す。この検量線を作成するには試料液りとし
て純水を用い、キャリアガスGとして窒素と酸素との混
合気体を用い、この混合気体の酸素の混合比を0〜10
0%まで変化させて、この酸素の組成比を変化させたキ
ャリアガスGをそれぞれ試料液り中でバブリングした後
、捕集フード3で捕集された気体中の酸素濃度を気中酸
素濃度測定センサ4で測定することにより行った。
FIG. 2 shows an example of a calibration curve when the sample liquid temperature is 20° C., the atmospheric pressure is 760 mmHg, and the carrier gas is supplied f11.8 I2/min. To create this calibration curve, use pure water as the sample liquid, use a gas mixture of nitrogen and oxygen as the carrier gas G, and adjust the oxygen mixing ratio of this gas mixture from 0 to 10.
After bubbling the carrier gas G with the oxygen composition ratio changed up to 0% in each sample liquid, the oxygen concentration in the gas collected by the collection hood 3 is measured as the atmospheric oxygen concentration. This was done by measuring with sensor 4.

このような装置を用いて、試料液りの溶存酸素濃度を測
定するには、まず試料液り内の溶存酸素濃度と上述の測
定装置の出力を規格化した値との間に相関関係が成り立
つことを確認し、試料液温、気圧等を一定条件下で検量
線を作成する。この検量線と同一条件下で、貯槽l内に
満たされた試料液■7中に導気管2よりキャリアガスG
を供給しバブリングにより試料液り中の酸素を脱気する
。このキャリアガスGと脱気された酸素との混合気体は
試料液■7中を上昇し、捕集フード3で捕集された後、
気中酸素濃度測定センサ4で酸素濃度が測定され、この
測定値の出力を規格化した値より、先に作成した検量線
を用いて検出器5で、試料液り中の溶存酸素濃度を演算
、検出する。
To measure the dissolved oxygen concentration in a sample liquid using such a device, first a correlation is established between the dissolved oxygen concentration in the sample liquid and the normalized output of the above-mentioned measuring device. Confirm that this is the case, and create a calibration curve under constant conditions such as sample liquid temperature and atmospheric pressure. Under the same conditions as this calibration curve, the carrier gas G is introduced into the sample liquid 7 filled in the storage tank 1 from the air guide tube 2.
The oxygen in the sample liquid is degassed by bubbling. This gas mixture of carrier gas G and degassed oxygen rises in the sample liquid 7, and after being collected by the collection hood 3,
The oxygen concentration is measured by the atmospheric oxygen concentration measurement sensor 4, and the dissolved oxygen concentration in the sample liquid is calculated by the detector 5 using the previously created calibration curve from the normalized output of this measurement value. ,To detect.

また、本発明の測定方法を用いて純水中の溶存酸素濃度
を測定した場合、気中酸素濃度測定センサ4および検出
器5の出力が安定し正確な測定が可能となるまでに要し
た時間は、約10秒であり、これは、従来の液中酸素濃
度測定用のクラーク型酸素電極を備えた模式酸素センサ
等を用いた場合の20〜30秒に対し高速であり、同一
条件で同一酸素濃度の試料液を複数回測定した測定値の
バラツキら従来型の酸素センサを用いた場合の±5%に
比較して、本発明の方法による測定値のバラツキは、約
±1%で非常に良好であった。
In addition, when measuring the dissolved oxygen concentration in pure water using the measurement method of the present invention, the time required until the output of the atmospheric oxygen concentration measurement sensor 4 and the detector 5 becomes stable and accurate measurement becomes possible. is about 10 seconds, which is faster than 20 to 30 seconds when using a conventional oxygen sensor equipped with a Clark-type oxygen electrode for measuring oxygen concentration in liquid. The variation in the measured values obtained by measuring the oxygen concentration of the sample solution multiple times is about ±5% when using a conventional oxygen sensor, whereas the variation in the measured values by the method of the present invention is approximately ±1%, which is very small. It was in good condition.

[発明の効果] 以上説明したように、本発明の液中溶存酸素濃度の測定
方法は、キャリアガスを試料液中でバブリングすること
により試料液中の溶存酸素をキャリアガスに捕集し、気
中酸素濃度測定センサを用いてキャリアガス中の酸素濃
度を検出するするものであるので、ジルコニア酸素セン
サ等の固体電解質ガスセンサを使用することが可能とな
り、従来液中の溶存酸素濃度測定に用いられているクラ
ーク型酸素電極等に比較して、測定精度、耐久性、測定
速度等が向上し、液中溶存酸素濃度を迅速かつ正確に測
定することが可能となった。また、液中溶存酸素の脱気
および捕集方法も簡便であり、必要時に容易に測定を行
うことが可能である。
[Effects of the Invention] As explained above, the method for measuring dissolved oxygen concentration in a liquid according to the present invention collects dissolved oxygen in the sample liquid by bubbling the carrier gas in the sample liquid, and Since the oxygen concentration in the carrier gas is detected using a medium oxygen concentration measurement sensor, it is possible to use a solid electrolyte gas sensor such as a zirconia oxygen sensor, which is conventionally used to measure dissolved oxygen concentration in liquids. Compared to Clark-type oxygen electrodes, etc., the measurement accuracy, durability, and measurement speed are improved, making it possible to quickly and accurately measure dissolved oxygen concentration in liquid. Furthermore, the method for degassing and collecting oxygen dissolved in the liquid is simple, and measurement can be easily performed when necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液中溶存酸素濃度の測定方法に使用さ
れる装置の一実施例の概略構成図、第2図は第1図に示
された装置を用いて本発明の液中溶存酸素濃度の測定を
行う際に使用する検量線の一例を示したグラフである。 G・・・キャリアガス、 ■、・・試料液、 4・・・気中酸素濃度測定センサ。
FIG. 1 is a schematic diagram of an embodiment of a device used in the method of measuring dissolved oxygen concentration in a liquid according to the present invention, and FIG. It is a graph showing an example of a calibration curve used when measuring oxygen concentration. G...Carrier gas, ■...Sample liquid, 4...Air oxygen concentration measurement sensor.

Claims (1)

【特許請求の範囲】[Claims] キャリアガスを試料液中でバブリングすることにより試
料液中の溶存酸素をキャリアガスに捕集し、気中酸素濃
度測定センサを用いてキャリアガス中の酸素濃度を検出
することを特徴とする液中溶存酸素濃度の測定方法。
In a liquid, the dissolved oxygen in the sample liquid is collected by the carrier gas by bubbling the carrier gas in the sample liquid, and the oxygen concentration in the carrier gas is detected using an air oxygen concentration measurement sensor. How to measure dissolved oxygen concentration.
JP63016303A 1988-01-27 1988-01-27 Method for measuring concentration of dissolved oxygen in liquid Pending JPH01191035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63016303A JPH01191035A (en) 1988-01-27 1988-01-27 Method for measuring concentration of dissolved oxygen in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63016303A JPH01191035A (en) 1988-01-27 1988-01-27 Method for measuring concentration of dissolved oxygen in liquid

Publications (1)

Publication Number Publication Date
JPH01191035A true JPH01191035A (en) 1989-08-01

Family

ID=11912773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016303A Pending JPH01191035A (en) 1988-01-27 1988-01-27 Method for measuring concentration of dissolved oxygen in liquid

Country Status (1)

Country Link
JP (1) JPH01191035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576888A (en) * 1991-09-24 1993-03-30 Ngk Insulators Ltd Gas collecting device of aeration tank
CN113777262A (en) * 2021-09-24 2021-12-10 同济大学 Seawater methane sensor calibration device and method based on constant temperature control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576888A (en) * 1991-09-24 1993-03-30 Ngk Insulators Ltd Gas collecting device of aeration tank
CN113777262A (en) * 2021-09-24 2021-12-10 同济大学 Seawater methane sensor calibration device and method based on constant temperature control

Similar Documents

Publication Publication Date Title
Hersch Trace monitoring in gases using galvanic systems
US3223597A (en) Method and means for oxygen analysis of gases
US10598629B2 (en) Sensor and measurement method for measuring hydrogen content in metal melt
CA1191898A (en) Method for measuring ionic concentration utilizing an ion-sensing electrode
US2939827A (en) Electrochemical determination of components in gas mixtures
US3824168A (en) Gas detecting and quantitative measuring device
EP0432840B1 (en) Solid-state sensor for the determination of the concentration of gases which can react with hydrogen
US6090268A (en) CO gas sensor and CO gas concentration measuring method
JPS6355024B2 (en)
US5334295A (en) Micro fuel-cell oxygen gas sensor
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
RU186174U1 (en) Device for rapid assessment of gas permeability of proton-conducting membrane of a fuel cell
JPH01191035A (en) Method for measuring concentration of dissolved oxygen in liquid
JP3106247B2 (en) Electrolytic cell
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
Periaswami et al. Low-temperature zirconia oxygen gauges based on RuO2 electrode
CN110243914B (en) All-solid-state electrochemical polymer sensor for measuring dissolved oxygen
US3523872A (en) Gas analysis
SU940044A1 (en) Electrochemical method for determination of steam partial pressure in gases and device for performing the same
US3349011A (en) Method and apparatus for monitoring co2
GB1208209A (en) Method and system for determining the oxygen content in liquids
US3377256A (en) Alkali analysis
JP3633077B2 (en) pH sensor and ion water generator
Chen et al. Study on Polarization Parameters of Micro Dissolved Oxygen Sensor
Kreysa et al. A new method for the investigation of fluid-fluid mass transfer—II. Mass transfer in liquid-liquid systems