JP2002071622A - Electrochemical gas sensor - Google Patents

Electrochemical gas sensor

Info

Publication number
JP2002071622A
JP2002071622A JP2000264789A JP2000264789A JP2002071622A JP 2002071622 A JP2002071622 A JP 2002071622A JP 2000264789 A JP2000264789 A JP 2000264789A JP 2000264789 A JP2000264789 A JP 2000264789A JP 2002071622 A JP2002071622 A JP 2002071622A
Authority
JP
Japan
Prior art keywords
gas
sensor
sampling
membrane
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000264789A
Other languages
Japanese (ja)
Inventor
Shoichi Uchikoshi
祥一 打越
Takashi Ogawa
高史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2000264789A priority Critical patent/JP2002071622A/en
Publication of JP2002071622A publication Critical patent/JP2002071622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep a sensor output constant irrespective of pulsations of a sampling pump. SOLUTION: This electrochemical gas sensor takes a tested gas into an electrolyte 1 via a gas-permeable diaphragm 5 and outputs an electrical signal corresponding to the concentration of the tested gas. A buffer chamber 13 is demarcated/formed by a porous film 12 on the gas inflow side of the diaphragm 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術の分野】本発明は、通気性隔膜を介
してガスを取り込む電気化学式ガスセンサー、より詳細
にはのガス取入口の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical gas sensor for taking a gas through a gas permeable diaphragm, and more particularly to the structure of a gas inlet.

【0002】[0002]

【従来の技術】定電位電解式ガスセンサーやガルバニ電
池式ガスセンサーは、気体が透過可能な隔膜を介して被
検ガスと電解液とを電極面で接触させる必要上、遠隔点
のガス濃度を測定する場合には、図4に示したようにセ
ンサーAのガス取入口Bにガス流入口Cとガス排出口D
とが形成されたキャップEを取付け、サンプリングポン
プFによりガスをサンプリング流路Gを介して強制的に
取り込むことが行われている。なお、図中符号Hは、バ
ッファタンクを示す。
2. Description of the Related Art A constant-potential electrolytic gas sensor or a galvanic cell gas sensor requires that a test gas and an electrolytic solution be brought into contact with an electrode surface through a gas-permeable diaphragm, and that the gas concentration at a remote point is reduced. When measuring, as shown in FIG. 4, a gas inlet C and a gas outlet D are connected to the gas inlet B of the sensor A.
A cap E formed with a hole is attached, and gas is forcibly taken in by a sampling pump F through a sampling flow path G. In addition, the code | symbol H in a figure shows a buffer tank.

【0003】このようなサンプリングポンプFは、長い
サンプリング流路Gを介してサンプリングガスを取り込
むことも考慮して、構造が簡単で信頼性が高く、かつ吸
引圧、吐出圧が大きなダイヤフラムポンプが使用されて
いるが、サンプリング流路の長さが大幅に変わったり、
またポンプの送気能力が経年変化すると、センサーAに
供給できる流量が変動し、これに伴って検出出力、つま
り検出感度も変動するという問題がある。このような問
題を解消するため、ポンプの駆動速度を制御したり、流
量制御弁を設けてセンサーAへのサンプリングガスの供
給量を調整することもすることも考えられるが、サンプ
リング手段が複雑化するという新たな問題を招く。
Such a sampling pump F uses a diaphragm pump having a simple structure, high reliability, and a large suction pressure and discharge pressure in consideration of taking in a sampling gas through a long sampling flow path G. However, the length of the sampling channel has changed significantly,
Further, if the air supply capacity of the pump changes over time, the flow rate that can be supplied to the sensor A fluctuates, and the detection output, that is, the detection sensitivity also fluctuates. In order to solve such a problem, it is conceivable to control the driving speed of the pump or adjust the supply amount of the sampling gas to the sensor A by providing a flow control valve, but the sampling means becomes complicated. Invites a new problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
問題に鑑みてなされたものであって、その目的とすると
ころは、ガスサンプリング手段の構造の複雑化を招くこ
となく、サンプリング流路の流体抵抗の変動や、またポ
ンプの送気能力の変動に関わりなく、検出感度を一定に
維持することができる電気化学式ガスセンサーを提供す
ることである。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and an object of the present invention is to provide a sampling flow path without complicating the structure of gas sampling means. It is an object of the present invention to provide an electrochemical gas sensor capable of maintaining the detection sensitivity constant regardless of the fluctuation of the fluid resistance and the fluctuation of the air supply capacity of the pump.

【0005】[0005]

【課題を解決するための手段】このような課題を達成す
るために本発明においては、通気性隔膜を介して被検ガ
スを電解液に取り込み、前記被検ガスの濃度に対応した
電気信号を出力する電気化学式ガスセンサーにおいて、
前記隔膜のガス流入側に多孔性膜によりバッファ室が区
画形成されている。
In order to achieve the above object, according to the present invention, a test gas is introduced into an electrolyte through a gas permeable diaphragm, and an electric signal corresponding to the concentration of the test gas is generated. In the output electrochemical gas sensor,
A buffer chamber is defined by a porous membrane on the gas inflow side of the diaphragm.

【0006】[0006]

【作用】被検ガスが流れ込むと、膜の流体抵抗とバッフ
ァ室との容積とにより流速を減じられてほぼ拡散により
センサーに流れ込むからサンプリングガスの流量の変動
に関わり無く検出感度が一定となる。
When the gas to be detected flows, the flow velocity is reduced by the fluid resistance of the membrane and the volume of the buffer chamber, and the gas flows into the sensor substantially by diffusion, so that the detection sensitivity becomes constant regardless of the fluctuation of the flow rate of the sampling gas.

【0007】[0007]

【発明の実施の態様】そこで、以下に本発明の詳細を図
示したこの実施例に基づいて説明する。図1は、本発明
の電気化学式ガスセンサーの一実施例を示すものであっ
て、この実施例では定電位電解式ガスセンサーとして構
成されており、電解液1を収容したセル2に窓3、4、
を設け、被検ガス取入口となる窓3には、通気性隔膜5
に作用極として機能する物質、例えば白金黒層6を形成
した作用極7が、また窓4を通気性隔膜8に対極として
機能する物質、例えば銀層9を形成した対極10により
封止し、さらにこれら作用極7及び対極10から離間し
た位置に銀線からなる参照極11を配置して構成されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on this embodiment. FIG. 1 shows an embodiment of an electrochemical gas sensor according to the present invention, which is configured as a potentiostatic electrolytic gas sensor, in which a cell 2 containing an electrolytic solution 1 has a window 3, 4,
The window 3 serving as a gas inlet for the test is provided with a gas permeable diaphragm 5.
The window 4 is sealed with a material functioning as a working electrode, for example, a working electrode 7 formed with a platinum black layer 6, and the window 4 is sealed with a material functioning as a counter electrode on the permeable diaphragm 8, such as a counter electrode 10 formed with a silver layer 9, Further, a reference electrode 11 made of a silver wire is arranged at a position separated from the working electrode 7 and the counter electrode 10.

【0008】被検ガス取入口となる窓3には、ここを封
止している通気性隔膜5と一定幅Lの空間を区画するよ
うに被検ガスの透過が可能な多孔性膜12、この実施例
では孔径0.2μm、多孔度72、厚さ130μmの四
フッ化エチレン重合体(PTFE)の膜(アドバンテッ
ク社製の品名J020A)(膜A)を張設してバッファ
室13が形成されている。なお、図中符号15は、保護
枠を、また符号16は固定枠をそれぞれ示す。
A window 3 serving as a gas to be detected is provided with a porous membrane 12 through which a gas to be detected can permeate so as to define a space having a constant width L and a gas permeable diaphragm 5 sealing the window. In this embodiment, a buffer chamber 13 is formed by stretching a membrane (PTFE A, manufactured by Advantech Co., Ltd., J020A) (membrane A) having a pore diameter of 0.2 μm, a porosity of 72, and a thickness of 130 μm. Have been. In the figure, reference numeral 15 denotes a protection frame, and reference numeral 16 denotes a fixed frame.

【0009】この実施例において、図4に示したような
キャップEに装着するとともに、ガス排出口Dにダイヤ
フラムポンプで構成されたサンプリングポンプFを接続
して被検ガスを取り込むと、キャップEにはポンプFや
サンプリング流路の流体抵抗に応じた流量の被検ガスが
流れ込む。
In this embodiment, when a sample gas is attached to the cap E as shown in FIG. The test gas flows at a flow rate corresponding to the fluid resistance of the pump F and the sampling flow path.

【0010】流れ込んだ被検ガスは、膜12に形成され
ている微小、かつ多数の細孔によりその流速を低減され
てバッファ室13に流れ込み、ガス流としての勢いを阻
害された状態で拡散により通気性隔膜5に流れ込む。こ
れにより、センサー出力つまり作用極7と対極10とを
流れる電解電流は、サンプリングポンプFの能力やサン
プリング流路の流体抵抗の変動に起因するサンプリング
流量の変化に左右されることなく、ガス濃度に対応した
値となる。
The flow of the test gas which has flowed into the buffer chamber 13 is reduced by the small and numerous pores formed in the film 12 and flows into the buffer chamber 13, and is diffused by the gas in a state where the gas flow is impeded. It flows into the gas permeable diaphragm 5. As a result, the sensor output, that is, the electrolytic current flowing through the working electrode 7 and the counter electrode 10 depends on the gas concentration without being affected by the change of the sampling flow rate caused by the fluctuation of the capacity of the sampling pump F or the fluid resistance of the sampling flow path. It will be the corresponding value.

【0011】図2は、被検ガスの流入量をパラメータ
(なお、図中符号Aは100ml/min、符号Bは500ml
/min、及び符号Cは1000ml/minを示す)としたとき
の、バッファ室13の幅Lとセンサー出力との関係を示
すものであって、幅Lが1.0mm以上、つまり実用上、
作用極7を構成する通気性隔膜5に密着しない程度の距
離をおいて多孔性膜を配置するれば、10倍程度の流量
変化に対しても検出出力を一定に維持することができ
る。
FIG. 2 shows the flow rate of the gas to be detected as a parameter (note that A is 100 ml / min, B is 500 ml).
/ min, and the symbol C indicates 1000 ml / min), and shows the relationship between the width L of the buffer chamber 13 and the sensor output when the width L is 1.0 mm or more, that is, in practice,
If the porous membrane is arranged at a distance such that it does not adhere to the gas permeable diaphragm 5 constituting the working electrode 7, the detection output can be kept constant even with a flow rate change of about 10 times.

【0012】比較のためにろ紙(膜B)、異なる仕様
(孔径0.1μm、多孔度76、厚さ90μm)の四フ
ッ化エチレン重合体の膜(膜C)、及び作用極を構成す
る通気性隔膜5と同一の膜(膜D)を用いて比較実験し
たところ、膜Bはサンプリング流量の変動をまともに受
け、また膜Cは、流量変動を若干緩和できるものの、検
出精度を保証することは不可能であり、さらに膜Dは、
流量変動を皆無とすることができるものの、ガス透過量
が極めて少なくなるため、検出出力が極端に低下し、ガ
スセンサーとして使用することが不可能となる。すなわ
ち、膜A〜Dによる検出特性をまとめると、表1のよう
になる。
For comparison, filter paper (membrane B), ethylene tetrafluoride polymer membrane (membrane C) of different specifications (pore size 0.1 μm, porosity 76, thickness 90 μm), and ventilation forming the working electrode When a comparative experiment was performed using the same membrane (membrane D) as the permeable membrane 5, the membrane B received the fluctuation of the sampling flow rate, and the membrane C could slightly reduce the fluctuation of the flow rate, but the detection accuracy was guaranteed. Is impossible, and the membrane D is
Although there is no fluctuation in the flow rate, the amount of gas permeation is extremely small, so that the detection output is extremely reduced, making it impossible to use the gas sensor. That is, the detection characteristics of the films A to D are summarized in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】なお、上述の実施例においてはセンサーの
ガス取入口に多孔性膜を取付けているが、図3に示した
ようにガスセンサーの被検ガス取入口である窓3とキャ
ップEとの間に位置するように、キャップEに多孔性膜
12を張設しても同様の作用を奏する。
In the above-described embodiment, the porous membrane is attached to the gas inlet of the sensor. However, as shown in FIG. The same effect can be obtained even if the porous film 12 is stretched over the cap E so as to be located therebetween.

【0015】また、上述の実施例においては、定電位電
解式センサーに例を採って説明したが、隔膜を介して電
解液に被検ガスを取り込む他の形式のガスセンサーに適
用しても同様の作用を奏することは明らかである。
Further, in the above-described embodiment, an example has been described in which a constant potential electrolytic sensor is used. However, the same applies to a gas sensor of another type in which a test gas is introduced into an electrolyte through a diaphragm. It is clear that the action of

【0016】さらに、上述の実施例においては、被検ガ
スをキャップに吸引しているが、ポンプにより吸引した
被検ガスを流し込むようにしても同様の作用を奏するこ
とを確認した。
Further, in the above-described embodiment, the test gas is sucked into the cap, but it has been confirmed that the same effect can be obtained even if the test gas sucked by the pump is supplied.

【0017】[0017]

【発明の効果】以上説明したように本発明においては、
通気性隔膜を介して被検ガスを電解液に取り込み、被検
ガスの濃度に対応した電気信号を出力する電気化学式ガ
スセンサーにおいて、通気性隔膜のガス流入側に多孔性
膜によりバッファ室が区画形成されているので、膜の流
体抵抗とバッファ室との容積とにより流速を大幅に減じ
られ、バッファ室のガスが拡散によりセンサーに流れ込
むから、サンプリングポンプやサンプリング流路による
流量の変動を無くして規定の感度でガスを検出すること
ができる。
As described above, in the present invention,
In an electrochemical gas sensor that takes a test gas into an electrolytic solution through a gas permeable diaphragm and outputs an electric signal corresponding to the concentration of the test gas, a buffer chamber is defined by a porous film on the gas inflow side of the gas permeable diaphragm. Since it is formed, the flow velocity is greatly reduced by the fluid resistance of the membrane and the volume of the buffer chamber, and the gas in the buffer chamber flows into the sensor by diffusion, eliminating fluctuations in the flow rate due to the sampling pump and sampling flow path. Gas can be detected with a specified sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学式ガスセンサーの一実施例を
示す断面図である。
FIG. 1 is a sectional view showing one embodiment of an electrochemical gas sensor of the present invention.

【図2】同上ガスセンサーの出力特性を示す線図であ
る。
FIG. 2 is a diagram showing output characteristics of the gas sensor.

【図3】本発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】従来の電気化学式ガスセンサーを用いたガス測
定装置の一例を示す図である。
FIG. 4 is a diagram showing an example of a gas measuring device using a conventional electrochemical gas sensor.

【符号の説明】[Explanation of symbols]

1 電解液 2 セル 3、4 窓 5、8 通気性隔膜 7 作用極 10 対極 12 多孔性膜 13 バッファ室 DESCRIPTION OF SYMBOLS 1 Electrolyte solution 2 Cell 3, 4 Window 5, 8 Air-permeable diaphragm 7 Working electrode 10 Counter electrode 12 Porous membrane 13 Buffer chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通気性隔膜を介して被検ガスを電解液に
取り込み、前記被検ガスの濃度に対応した電気信号を出
力する電気化学式ガスセンサーにおいて、 前記隔膜のガス流入側に多孔性膜によりバッファ室が区
画形成されている電気化学式ガスセンサー。
1. An electrochemical gas sensor for taking a test gas into an electrolyte through a gas permeable diaphragm and outputting an electric signal corresponding to the concentration of the test gas, wherein a porous film is provided on a gas inflow side of the diaphragm. An electrochemical gas sensor in which a buffer chamber is defined by the
JP2000264789A 2000-09-01 2000-09-01 Electrochemical gas sensor Pending JP2002071622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264789A JP2002071622A (en) 2000-09-01 2000-09-01 Electrochemical gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264789A JP2002071622A (en) 2000-09-01 2000-09-01 Electrochemical gas sensor

Publications (1)

Publication Number Publication Date
JP2002071622A true JP2002071622A (en) 2002-03-12

Family

ID=18752155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264789A Pending JP2002071622A (en) 2000-09-01 2000-09-01 Electrochemical gas sensor

Country Status (1)

Country Link
JP (1) JP2002071622A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134248A (en) * 2003-10-30 2005-05-26 Riken Keiki Co Ltd Electrochemical gas sensor
US7055369B2 (en) 2002-11-14 2006-06-06 Aisan Kogyo Kabushiki Kaisha Gas detector having clog-resistant intake filter and protective cap
JP2009276209A (en) * 2008-05-15 2009-11-26 Funai Electric Advanced Applied Technology Research Institute Inc Concentration measuring system and method
JP2010102374A (en) * 2008-10-21 2010-05-06 Riken Keiki Co Ltd Gas alarm system
JP2018048972A (en) * 2016-09-23 2018-03-29 新コスモス電機株式会社 Constant potential electrolytic gas sensor and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7055369B2 (en) 2002-11-14 2006-06-06 Aisan Kogyo Kabushiki Kaisha Gas detector having clog-resistant intake filter and protective cap
JP2005134248A (en) * 2003-10-30 2005-05-26 Riken Keiki Co Ltd Electrochemical gas sensor
JP4507235B2 (en) * 2003-10-30 2010-07-21 理研計器株式会社 Electrochemical gas sensor
JP2009276209A (en) * 2008-05-15 2009-11-26 Funai Electric Advanced Applied Technology Research Institute Inc Concentration measuring system and method
JP2010102374A (en) * 2008-10-21 2010-05-06 Riken Keiki Co Ltd Gas alarm system
JP2018048972A (en) * 2016-09-23 2018-03-29 新コスモス電機株式会社 Constant potential electrolytic gas sensor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US3445369A (en) Electrolytic sensor with improved membrane support
US10930486B2 (en) Device for extracting volatile species from a liquid
JP7141962B2 (en) Constant potential electrolytic gas sensor
JP2002071622A (en) Electrochemical gas sensor
JP6426336B2 (en) Constant potential electrolysis type gas sensor
JP2002048756A (en) Electrochemical gas sensor
JP3881540B2 (en) Constant potential electrolysis gas sensor and gas detector
JP2000511640A (en) Polarographic sensor
JPS63234146A (en) Production of pco2 electrode
JP2954174B1 (en) Constant potential electrolytic gas sensor
JP6576053B2 (en) Constant potential electrolytic gas sensor
JP2017096946A (en) Catalyst conversion type sensor
JP7266170B2 (en) Diaphragm type gas sensor and sensor unit
JPH01239446A (en) Gas sensor
JP7474682B2 (en) Potential electrolysis gas sensor
JP3601689B2 (en) Potentiometric electrolytic ammonia gas sensor
JP6752558B2 (en) Constant potential electrolytic gas sensor
JP6330213B2 (en) Constant potential electrolytic oxygen gas sensor
JPH11230933A (en) Controlled potential electrolytic gas sensor
JP2002310974A (en) Acidic air detector
JP3020695B2 (en) Electrochemical gas measuring device
JPH0738848Y2 (en) Constant potential electrolytic hydrogen sensor
JPH0334690Y2 (en)
CN114544735A (en) Electrochemical gas sensor
JP6473351B2 (en) Constant potential electrolytic gas sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030618