JPS6355497B2 - - Google Patents

Info

Publication number
JPS6355497B2
JPS6355497B2 JP59116846A JP11684684A JPS6355497B2 JP S6355497 B2 JPS6355497 B2 JP S6355497B2 JP 59116846 A JP59116846 A JP 59116846A JP 11684684 A JP11684684 A JP 11684684A JP S6355497 B2 JPS6355497 B2 JP S6355497B2
Authority
JP
Japan
Prior art keywords
distillation column
ethanol
heat pump
condensate
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59116846A
Other languages
Japanese (ja)
Other versions
JPS60260529A (en
Inventor
Tetsuo Furukawa
Masahiko Kato
Juzo Hirano
Masuo Kamihogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59116846A priority Critical patent/JPS60260529A/en
Publication of JPS60260529A publication Critical patent/JPS60260529A/en
Publication of JPS6355497B2 publication Critical patent/JPS6355497B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はエタノール水溶液の分離方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for separating an aqueous ethanol solution.

従来例の構成とその問題点 第1図に精製塔における実施例を示す。従来の
エタノール水溶液の分離方法として、蒸留塔1と
第一〜第三の分縮器2,3,4を用いる方法があ
る。これは、エタノール水溶液5を蒸留塔1に導
いて蒸留し、蒸留塔1で発生した大部分がエタノ
ールの蒸気6すなわち水蒸気や不純物を含む塔頂
気体を第一〜第三の分縮器2,3,4に直列に通
すもので、エタノール純度の最も高い第一分縮器
2の凝縮液7は分離して精製塔8へ供給し第二分
縮器3の凝縮液9は蒸留塔1へ、不純物を多く含
む第三分縮器4の凝縮液10は不純物処理塔11
へ、それぞれ導かれる。このように、三段もの分
縮器が用いられるのは水とエタノールの蒸気圧が
近いこと、原液に不純物が含まれていること等の
理由に基づく。
Configuration of conventional example and its problems Figure 1 shows an example of a purification column. As a conventional method for separating an aqueous ethanol solution, there is a method using a distillation column 1 and first to third dephlegmators 2, 3, and 4. In this system, an aqueous ethanol solution 5 is introduced into a distillation column 1 to be distilled, and the vapor 6 generated in the distillation column 1, which is mostly ethanol, i.e., the top gas containing water vapor and impurities, is transferred to the first to third dephlegmators 2, 3 and 4 in series, the condensate 7 of the first fractionator 2 with the highest ethanol purity is separated and supplied to the purification column 8, and the condensate 9 of the second fractionator 3 is sent to the distillation column 1. , the condensate 10 of the third condenser 4 containing many impurities is sent to the impurity treatment tower 11
Each will be guided to As described above, the reason why a three-stage dephlegmator is used is because the vapor pressures of water and ethanol are similar, and the raw solution contains impurities.

なお、第2図に示すように、原液の濃度はX1
=10Wt%〜30Wt%、還流比は、蒸発量の60%〜
85%程度で、精製エタノール当り必要な分離のた
めのエネルギーは700kcal/Kg〜1600kcal/Kgで
ある。
As shown in Figure 2, the concentration of the stock solution is
= 10Wt% ~ 30Wt%, reflux ratio is 60% ~ evaporation amount
At about 85%, the energy required for separation per purified ethanol is 700 kcal/Kg to 1600 kcal/Kg.

一方、第5図に示すように、蒸留塔1と吸収ヒ
ートポンプ12を用いる方法もある。これは、エ
タノール水溶液5を蒸留塔1に導いて蒸留し、蒸
留塔1で発生した蒸気6を吸収ヒートポンプ12
の再生器Rおよび蒸発器Eに熱源として導き、そ
の凝縮液13の一部を精製塔8へ、残りを蒸留塔
1へ還流するものである。すなわち、蒸留塔1の
蒸気6が有する熱エネルギーの吸収ヒートポンプ
12の熱源として利用したものと言える。なお、
第5図中Cは凝縮器Aは吸収器である。
On the other hand, as shown in FIG. 5, there is also a method using a distillation column 1 and an absorption heat pump 12. In this system, an aqueous ethanol solution 5 is introduced into a distillation column 1 to be distilled, and the vapor 6 generated in the distillation column 1 is absorbed by a heat pump 12.
A portion of the condensate 13 is refluxed to the purification column 8 and the remainder to the distillation column 1. In other words, it can be said that the thermal energy contained in the steam 6 of the distillation column 1 is utilized as a heat source for the absorption heat pump 12 . In addition,
In FIG. 5, the condenser A is an absorber.

しかしながら、これら従来の方法によると、蒸
留分離に多大なエネルギーを要し、後者の方法に
あつては、第1、第2分縮機能が無くなるため精
製塔8に導くエタノールの純度が落ち、精製塔8
では必要熱が増えるという欠点があつた。
However, according to these conventional methods, a large amount of energy is required for distillation separation, and in the case of the latter method, the first and second partial condensation functions are lost, so the purity of the ethanol led to the purification column 8 decreases, and the purification tower 8
However, the disadvantage was that the required heat increased.

発明の目的 本発明は上記従来の欠点を解消するエタノール
の分離方法を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a method for separating ethanol that eliminates the above-mentioned conventional drawbacks.

発明の構成 上記目的を達成するため、本発明のエタノール
の分離方法は、不純物を含むエタノールを蒸留塔
に導いて蒸留し、前記蒸留塔で発生した大部分が
エタノールの蒸気を吸収ヒートポンプの蒸発器に
熱源として導き、その凝縮液を留出液として分離
する一方、残りの該蒸気を前記吸収ヒートポンプ
の再生器に熱源として導き、その凝縮液を前記蒸
留塔に還流し、残りの該蒸気を分縮器に導く構成
としたものであり、これにより、エタノールの純
度を落とすことなく、蒸留分離に必要なエネルギ
ーを低減することができるものである。
Composition of the Invention In order to achieve the above object, the ethanol separation method of the present invention involves introducing ethanol containing impurities into a distillation column, distilling it, and absorbing the vapor, which is mostly ethanol, generated in the distillation column into an evaporator of a heat pump. The remaining vapor is introduced as a heat source to the regenerator of the absorption heat pump, the condensate is refluxed to the distillation column, and the remaining vapor is separated. The structure is such that the ethanol is led to a condenser, thereby making it possible to reduce the energy required for distillation separation without reducing the purity of ethanol.

実施例と作用 以下、本発明の一実施例を図面に基づいて説明
するが、その前に先ず一般的説明を行う。
Embodiment and Operation An embodiment of the present invention will be described below with reference to the drawings, but first a general explanation will be given first.

吸収ヒートポンプの蒸発器Eと再生器Rで必要
とする熱量の比は回収器の大きさによつて異な
り、回収器での回収率により第4図に示すよう
に、QR/QEは0.7〜0.98程度となる。
The ratio of the amount of heat required by the evaporator E and the regenerator R of an absorption heat pump varies depending on the size of the recovery device, and as shown in Figure 4, Q R /Q E is 0.7 depending on the recovery rate in the recovery device. ~0.98.

したがつて、第3図に示すようにQ2:Q1+QB
か0.7〜1/0.7となる範囲は還流比が77%以下のと
ころでほとんど可能となる。また、この範囲内で
蒸留塔から排出される排熱のうち利用可能と思わ
れる75℃以上の熱量は、加熱蒸気の熱量に比して
第3図のようになつている。すなわち、 廃熱の総和(Q1+Q2+QB)は加熱に必要な
量よりも多い(原液が約99℃で供給されるた
め)。
Therefore, as shown in Figure 3, Q 2 :Q 1 +Q B
The range of 0.7 to 1/0.7 is almost possible when the reflux ratio is 77% or less. Furthermore, within this range, the amount of heat above 75°C that is considered usable among the waste heat discharged from the distillation column is compared to the amount of heat of the heated steam, as shown in Figure 3. That is, the total amount of waste heat (Q 1 +Q 2 +Q B ) is greater than the amount required for heating (because the stock solution is supplied at approximately 99°C).

Q1+QB=Q2となるところの還流比が60%〜
70%の範囲にある。
The reflux ratio where Q 1 + Q B = Q 2 is 60% ~
In the 70% range.

温度的には加熱する塔底温度が約107℃、塔
頂ガス(蒸気)の凝縮温度が77℃〜78℃であ
る。
In terms of temperature, the bottom temperature of the heated column is approximately 107°C, and the condensation temperature of the tower top gas (steam) is 77°C to 78°C.

そこで、このような特性を考慮して、本発明は
蒸留塔と吸収ヒートポンプを分縮機能を失わせる
ことなく組合わせて用いるようにした。
Therefore, in consideration of such characteristics, the present invention uses a distillation column and an absorption heat pump in combination without losing the partial condensation function.

第6図において、1は蒸留塔12は吸収ヒート
ポンプ、Rはその再生器、Cは凝縮器、Aは吸収
器、Eは蒸発器で、この蒸発器Eは第一分縮器と
して、前記再生器Rは第二分縮器として用いられ
る。4は第三分縮器、8は精製塔、18は流量調
節器を示す。なお、蒸発器Eは2分割され、一方
の部屋は前述のように第1分縮器として用いら
れ、他方の部屋は塔底液14を熱源とする熱交換
室として用いられる。
In FIG. 6, 1 is a distillation column 12 which is an absorption heat pump, R is its regenerator, C is a condenser, A is an absorber, and E is an evaporator. Container R is used as a second condenser. 4 is a third dephlegmator, 8 is a purification column, and 18 is a flow rate regulator. The evaporator E is divided into two parts, one of which is used as a first dephlegmator as described above, and the other part is used as a heat exchange room using the bottom liquid 14 as a heat source.

このような構成で先ず、エタノール水溶液5を
蒸留塔1に導き蒸留する。次に、蒸留塔1で発生
した蒸気6を吸収ヒートポンプ12の蒸発器Eに
熱源として導き、その凝縮液16を精製塔8へ導
く一方、残りの蒸気15を再生器Rに熱源として
導く、このとき、蒸発器Eの他方の部屋には塔底
液14を導き熱回収を行う。次に、再生器Rの凝
縮液17は蒸留塔1に還流し、残りの蒸気15は
第三分縮器4に導いて冷却水に完全に凝縮させ
る。なお、還流比が60%〜77%の範囲で各機器の
熱量およびヒートポンプの回収器(図示せず)の
熱量大きさを決定する。また、第3図において
Q2<Q1+QBの範囲では、再生器Rと蒸発器Eで
互いに交換したフローとする。
With such a configuration, first, the ethanol aqueous solution 5 is introduced into the distillation column 1 and distilled. Next, the steam 6 generated in the distillation column 1 is guided to the evaporator E of the absorption heat pump 12 as a heat source, the condensate 16 thereof is guided to the purification column 8, and the remaining vapor 15 is guided to the regenerator R as a heat source. At this time, the bottom liquid 14 is introduced into the other chamber of the evaporator E for heat recovery. Next, the condensate 17 from the regenerator R is returned to the distillation column 1, and the remaining vapor 15 is led to the third demultiplexer 4 and completely condensed into cooling water. Note that the heat amount of each device and the heat amount size of the heat pump recovery device (not shown) are determined within the range of the reflux ratio from 60% to 77%. Also, in Figure 3
In the range Q 2 <Q 1 +Q B , the regenerator R and evaporator E exchange flows.

第7図は還流比が小さくて良い原液の場合に用
いる流れを示し、この場合は蒸留塔1の底液14
を蒸発器Eに通さない。なお吸収器Aに直接底液
を受熱流体として循環させてもよい。またこれら
実施例において、吸収ヒートポンプ12より発生
する低圧蒸気を該蒸溜塔1又は他の蒸留塔へ直接
戻すように構成してもよい。
Figure 7 shows the flow used in the case of a good stock solution with a small reflux ratio; in this case, the bottom liquid 14 of the distillation column 1
Do not pass through evaporator E. Note that the bottom liquid may be directly circulated in the absorber A as a heat-receiving fluid. Further, in these embodiments, the low-pressure steam generated by the absorption heat pump 12 may be directly returned to the distillation column 1 or another distillation column.

このような方法によると、第一〜第三の分縮器
を用いる第1図の方法より、蒸気消費量が40%〜
70%減少できる。
According to this method, the steam consumption is reduced by 40% compared to the method shown in Fig. 1 using the first to third dephlegmators.
It can be reduced by 70%.

発明の効果 以上本発明によれば分縮機能を有するためエタ
ノールの純度を落とすことなく、蒸留分離に必要
なエネルギーを低減することができる。
Effects of the Invention As described above, according to the present invention, since it has a partial condensation function, the energy required for distillation separation can be reduced without reducing the purity of ethanol.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分縮器を用いた従来方法によるフロー
図、第2図はエタノール蒸留塔の蒸気加熱量をあ
らわす図、第3図はエタノール蒸留塔排熱量割合
をあらわす図、第4図は回収器の効率と加熱量割
合の関係をあらわす図、第5図は吸収ヒートポン
プを用いた従来方法によるフロー図、第6図およ
び第7図はそれぞれ吸収ヒートポンプを用いた本
発明方法によるフロー図である。 1…蒸留塔、4…第三分縮器、5…エタノール
水溶液、8…精製塔、12…吸収ヒートポンプ、
16,17…凝縮液。
Figure 1 is a flow diagram of the conventional method using a dephlegmator, Figure 2 is a diagram showing the amount of steam heating in the ethanol distillation column, Figure 3 is a diagram showing the ratio of the amount of heat released from the ethanol distillation column, and Figure 4 is a diagram showing the amount of heat recovered from the ethanol distillation column. Figure 5 is a flow diagram of the conventional method using an absorption heat pump, and Figures 6 and 7 are flow diagrams of the method of the present invention using an absorption heat pump, respectively. . 1... Distillation column, 4... Third condenser, 5... Ethanol aqueous solution, 8... Purification column, 12... Absorption heat pump,
16, 17... Condensate.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物を含むエタノールを蒸留塔に導いて蒸
留し、前記蒸留塔で発生した大部分がエタノール
の蒸気を吸収ヒートポンプの蒸発器に熱源として
導き、その凝縮液を留出液として分留する一方、
残りの該蒸気を前記吸収ヒートポンプの再生器に
熱源として導き、その凝縮液を前記蒸留塔に還流
し、残りの該蒸気を分縮器に導くことを特徴とす
るエタノールの分離方法。
1. Ethanol containing impurities is led to a distillation column to be distilled, the vapor of mostly ethanol generated in the distillation column is led to an evaporator of an absorption heat pump as a heat source, and the condensate is fractionated as a distillate, while
A method for separating ethanol, which comprises guiding the remaining vapor to the regenerator of the absorption heat pump as a heat source, refluxing the condensate thereof to the distillation column, and guiding the remaining vapor to a partial condenser.
JP59116846A 1984-06-06 1984-06-06 Method of separation of ethanol Granted JPS60260529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116846A JPS60260529A (en) 1984-06-06 1984-06-06 Method of separation of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116846A JPS60260529A (en) 1984-06-06 1984-06-06 Method of separation of ethanol

Publications (2)

Publication Number Publication Date
JPS60260529A JPS60260529A (en) 1985-12-23
JPS6355497B2 true JPS6355497B2 (en) 1988-11-02

Family

ID=14697074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116846A Granted JPS60260529A (en) 1984-06-06 1984-06-06 Method of separation of ethanol

Country Status (1)

Country Link
JP (1) JPS60260529A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066519A (en) * 2007-09-13 2009-04-02 Kiriyama Seisakusho:Kk Separator employing distillation and membrane separation in combination
CN108144320A (en) * 2017-12-23 2018-06-12 天津市鹏翔科技有限公司 Special extract rectification self-balancing split-phase is without blowback method of flow control
CN114470830A (en) * 2021-12-07 2022-05-13 安徽世华化工有限公司 Ethanol recovery and purification device

Also Published As

Publication number Publication date
JPS60260529A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
RU2396242C2 (en) Method of methanol recuperation
US6417411B2 (en) Method for production of ethylene glycol
US20220288504A1 (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump
US4334965A (en) Process for recovery of olefinic nitriles
US3186795A (en) Method of recovering ammonia
WO2003035222A1 (en) Water-soluble organic material condensation apparatus
US4645569A (en) Process for producing anhydrous ethanol
US4362601A (en) Method for distilling ethyl alcohol by adding salt or salts
JP6571228B2 (en) MVR type aqueous ammonia distillation equipment
US3694322A (en) Method for separating acrylonitrile and acetonitrile by extractive distillation with coolant vapor generation
JPS6355497B2 (en)
KR890009905A (en) Method for Separation of Ethylene Oxide from Aldehyde Impurities
US4983260A (en) Process for concentrating aqueous ethylene oxide solutions
JP2019122953A (en) Distillation apparatus of ammonia aqueous solution
JPS62103072A (en) Method of purifying ethylene oxide
EP1636178B1 (en) Method for making caprolactam
JPS6337622B2 (en)
US2974750A (en) Distillation and absorption process
EP1636179B1 (en) Method for making caprolactam from impure 6-amino-capronitrile containing tetrahydroazepine
JPS6141497B2 (en)
CN217472758U (en) Recovery unit of allyl chloride tail gas
JPS6133017B2 (en)
EP3604278B1 (en) Process for the purification of acrolein
JPH05237302A (en) Distillation plant
JPS61158774A (en) Device for purifying ethanol