JP2009066519A - Separator employing distillation and membrane separation in combination - Google Patents

Separator employing distillation and membrane separation in combination Download PDF

Info

Publication number
JP2009066519A
JP2009066519A JP2007237516A JP2007237516A JP2009066519A JP 2009066519 A JP2009066519 A JP 2009066519A JP 2007237516 A JP2007237516 A JP 2007237516A JP 2007237516 A JP2007237516 A JP 2007237516A JP 2009066519 A JP2009066519 A JP 2009066519A
Authority
JP
Japan
Prior art keywords
separation
membrane
distillation
vapor
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007237516A
Other languages
Japanese (ja)
Inventor
Tokio Kiriyama
時男 桐山
Keisuke Itakura
啓祐 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIRIYAMA SEISAKUSHO KK
Original Assignee
KIRIYAMA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIRIYAMA SEISAKUSHO KK filed Critical KIRIYAMA SEISAKUSHO KK
Priority to JP2007237516A priority Critical patent/JP2009066519A/en
Publication of JP2009066519A publication Critical patent/JP2009066519A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a liquid mixture which saves consumption energy, has improved separation efficiency and separation capability, and makes facilities compact. <P>SOLUTION: The separator comprises a distillation means 100 for separating a liquid mixture and membrane separation means for separating a mixed vapor discharged out of the tower summit part of the distillation means by a membrane separation method. The distillation means is provided with a distillation tower 1 filled with a filler 10 and a partial condenser 2 and the membrane separation means is provided with separation membrane modules 3a... 3d each having a vapor separation treatment chamber 31 and a separation membrane 32 installed in the treatment chamber, and a heating means 4 for heating the treatment chamber. The mixed vapor discharged through the partial condenser is supplied to the membrane modules and heated in the treatment chamber and separated by membrane separation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数成分の液体混合物の分離装置に関する。さらに詳しくは、蒸留法により分離する蒸留手段と膜分離法により分離する膜分離手段を組み合わせた分離装置に関する。   The present invention relates to a separation device for a multi-component liquid mixture. More specifically, the present invention relates to a separation apparatus that combines a distillation means for separation by a distillation method and a membrane separation means for separation by a membrane separation method.

液体混合物の成分を分離する代表的な一つの分離法として蒸留法がある。蒸留法は蒸留塔を用いて実施するものであるが、通常の蒸発法(蒸留操作)により共沸混合物や沸点が近接して比揮発度が小さい液体混合物を成分分離する場合、次のような問題を有している。   One typical separation method for separating the components of a liquid mixture is a distillation method. The distillation method is carried out using a distillation column. When components are separated by a normal evaporation method (distillation operation) or an azeotropic mixture or a liquid mixture having a low relative volatility with close boiling points, the following is performed. Have a problem.

共沸混合物の蒸留においては分離濃度に限界がある。例えば、エタノールと水系混合液は、エタノール濃度89モル%(95.6重量%)に共沸点があるため、通常の蒸留法では95.6重量%を超えてエタノールの濃縮ができない。そのため、共沸混合物を蒸留する際には、例えば、混合物に他の成分をエントレーナとして添加して別の共沸混合物をつくり、エントレーナとともに蒸留する共沸蒸留法が採用されている。しかし、この方法は共沸蒸留塔及びエントレーナの再生塔等の増設が必要となり、設備が大型化すると共に消費エネルギーが大になる。
また、沸点が近接して比揮発度が小さい液体混合物を蒸留法により分離する際には、蒸留塔の理論段数を非常に多くする必要があるので、蒸留塔の高さが高くなり、設備が大型化し、消費エネルギーも大になる。
In distilling azeotropes, the separation concentration is limited. For example, ethanol and an aqueous mixed solution have an azeotropic boiling point at an ethanol concentration of 89 mol% (95.6 wt%), so that ethanol cannot be concentrated by more than 95.6 wt% by a normal distillation method. Therefore, when distilling an azeotropic mixture, for example, an azeotropic distillation method is employed in which another component is added to the mixture as an entrainer to form another azeotropic mixture, and distillation is performed together with the entrainer. However, this method requires the addition of an azeotropic distillation tower, an entrainer regeneration tower, etc., which increases the size of the equipment and increases the energy consumption.
In addition, when separating a liquid mixture having a close boiling point and a low relative volatility by the distillation method, it is necessary to increase the number of theoretical columns of the distillation column, so that the height of the distillation column is increased and the equipment is installed. Increased size and energy consumption.

液体混合物の他の成分分離法として膜分離法がある。膜分離法は分離膜を用いて液体混合物の成分を分離するもので、例えばパーベーパレーション法(PV法)やベーパーパーミエーション法(VP法)などがある。PV法は、液体混合物を分離膜の片側(供給側=1次側)に接触させて、反対側(透過側=2次側)を減圧することにより、特定の液体(透過物質)を気化させて分離する膜分離法(浸透気化法)である。一方、VP法は、液体混合物を気化(蒸気化)して蒸気状態で供給して分離膜に接触させて、透過側(2次側)を減圧して特定の蒸気を透過(分離)する膜分離法(蒸気透過法)である。このような膜分離方法は、従来、簡単な方法では分離できなかった液体混合物、即ち、上述した共沸混合物や沸点が接近して比揮発度が小さい液体混合物を分離ないし濃縮する新しい方法として注目されている。なお、前記PV法においても、通常の場合、液体混合物を加熱し、この加熱した液体を分離膜に接触させて分離する方法を一般に採用する。   There is a membrane separation method as another component separation method of the liquid mixture. The membrane separation method uses a separation membrane to separate components of a liquid mixture, and examples thereof include a pervaporation method (PV method) and a vapor permeation method (VP method). In the PV method, a specific liquid (permeate) is vaporized by bringing the liquid mixture into contact with one side of the separation membrane (supply side = primary side) and depressurizing the opposite side (permeation side = secondary side). This is a membrane separation method (pervaporation method). On the other hand, in the VP method, a liquid mixture is vaporized (vaporized), supplied in a vapor state and brought into contact with a separation membrane, and the permeation side (secondary side) is depressurized to permeate (separate) specific vapor. This is a separation method (vapor transmission method). Such a membrane separation method has attracted attention as a new method for separating or concentrating a liquid mixture that could not be separated by a simple method, that is, an azeotropic mixture described above or a liquid mixture having a low boiling point and a low relative volatility. Has been. In the PV method, generally, a method of heating a liquid mixture and bringing the heated liquid into contact with a separation membrane is generally employed.

前記膜分離法により液体混合物を成分分離する場合、被分離物(液体又は気体)を可及的濃縮し、これを膜分離装置へ供給した方が、分離効率性を向上することができる。そこで、蒸留法と膜分離法を併用して分離する方法が試みられている。この併用法の一例として、液体混合物を蒸留塔で蒸留し、留出する混合蒸気を凝縮器で液化して回収した後、この回収した混合液を加熱して気化(蒸気化)し、この蒸気を膜分離装置へ供給して分離する方法が採用されている。この方法によれば、共沸混合物や沸点が近い液体混合物を高濃度に濃縮ないし分離することが可能になる。   When the liquid mixture is separated into components by the membrane separation method, the separation efficiency can be improved by concentrating as much as possible the separation object (liquid or gas) and supplying it to the membrane separation apparatus. Then, the method of separating using the distillation method and the membrane separation method together is tried. As an example of this combined method, the liquid mixture is distilled in a distillation tower, and the mixed vapor to be distilled is liquefied and recovered by a condenser, and then the recovered mixed liquid is heated and vaporized (vaporized). Is used to supply the membrane to a membrane separator for separation. According to this method, it is possible to concentrate or separate an azeotropic mixture or a liquid mixture having a boiling point close to a high concentration.

しかし、上記併用法は、蒸留塔から留出する混合蒸気を液化して回収した後、この液体を再度加熱蒸気化して膜分離装置へ供給するものであるため、消費エネルギーが大になる問題を有している。   However, the above combined method liquefies and recovers the mixed vapor distilled from the distillation column, and then heats the liquid again to supply it to the membrane separation apparatus. Have.

蒸留法と膜分離法を併用する他の分離方法として、共沸蒸留法と膜分離法を組み合わせ、共沸蒸留塔頂部からエントレーナを、また、共沸蒸留塔底部からエチル第三ブチルエーテルを集め、共沸蒸留塔の中段側面からエタノールに富んだ混合液を抜き取って膜分離装置に送り、膜分離法によりエタノールを分離する方法が提案されている(特許文献1参照)。しかし、特許文献1は共沸蒸留法を採用しているため、設備が大型化する等、上述した問題を有している。
特開平7−278035号公報
As another separation method using both the distillation method and the membrane separation method, the azeotropic distillation method and the membrane separation method are combined, the entrainer is collected from the top of the azeotropic distillation column, and the ethyl tert-butyl ether is collected from the bottom of the azeotropic distillation column, A method has been proposed in which a mixed liquid rich in ethanol is extracted from the middle side surface of an azeotropic distillation column and sent to a membrane separation apparatus, and ethanol is separated by a membrane separation method (see Patent Document 1). However, since Patent Document 1 employs an azeotropic distillation method, it has the above-described problems such as an increase in equipment size.
JP 7-278035 A

本発明は上記のような実情に鑑み、消費エネルギーを削減できると共に分離効率性及び分離性能を向上し、かつ、設備をコンパクトにできる液体混合物の分離装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a liquid mixture separation device that can reduce energy consumption, improve separation efficiency and separation performance, and can make equipment compact.

上記目的を達成するため、本発明は液体混合物を分離する蒸留手段と、前記蒸留手段の塔頂部から留出する混合蒸気を膜分離法により分離する膜分離手段とからなる分離装置であって、前記蒸留手段は、充填物を充填した蒸留塔と、前記蒸留塔の塔頂に設けた分縮器とを備え、前記膜分離手段は、蒸気分離処理室及び前記処理室内に設けた分離膜を有する分離膜モジュールと、前記処理室内を加熱する加熱手段とを備え、前記分縮器を通過して留出する混合蒸気を前記膜モジュールへ供給して前記処理室内で加熱し、膜分離するように構成したことを特徴とするものである(第1の発明)。なお、本発明において、「分縮器」は、一種のパーシャルコンデンサ(Partial
Condenser)のような作用(機能)を有する冷熱用の熱交換器を意味する用語として用いられている。
In order to achieve the above object, the present invention is a separation apparatus comprising a distillation means for separating a liquid mixture, and a membrane separation means for separating a mixed vapor distilled from the top of the distillation means by a membrane separation method, The distillation means includes a distillation column filled with a packing, and a partial condenser provided at the top of the distillation tower. The membrane separation means includes a vapor separation treatment chamber and a separation membrane provided in the treatment chamber. A separation membrane module having heating means for heating the inside of the processing chamber, and supplying the mixed vapor distilled through the partial condenser to the membrane module to heat the inside of the processing chamber for membrane separation. (1st invention). In the present invention, the “demultiplexer” is a kind of partial capacitor (Partial capacitor).
It is used as a term that means a heat exchanger for cooling that has an action (function) such as Condenser.

本発明のように構成すると、蒸留手段において、液体混合物の混合蒸気は充填物と接触しながら蒸留塔内を上昇する。この上昇過程において充填物との接触で熱交換され、沸点の高い成分は液化して充填物に付着し、沸点の低い成分は液化しないで、そのまま上昇し、分縮器へ導入される。このように、混合蒸気は蒸留塔内を上昇中、充填物と接触して熱交換され、高沸点の成分は塔内の途中で液化して流下して塔底部へ環流し、これにより、混合蒸気は蒸留塔内で成分分離処理(一次処理)される。   If comprised like this invention, in the distillation means, the mixed vapor | steam of a liquid mixture will raise the inside of a distillation column, contacting with a packing. In this ascending process, heat is exchanged by contact with the packing, and the component having a high boiling point is liquefied and adheres to the packing, and the component having a low boiling point is not liquefied but rises as it is and is introduced into the partial condenser. In this way, the mixed steam is heated in contact with the packing while rising in the distillation column, and the high boiling point component is liquefied and flows down in the middle of the column and circulates to the bottom of the column, thereby mixing. Steam is subjected to component separation treatment (primary treatment) in the distillation column.

一方、蒸留塔内で液化しないで分縮器へ導入された蒸気(一次処理された混合蒸気)は、分縮器を通過中に冷熱で熱交換され、前記蒸気中における高沸点の成分は液化して蒸留塔内へ環流し、低沸点の成分は液化しないで気体(蒸気)状態を維持して分縮器を通過して器外へ留出し、膜分離手段へ供給される。このように、蒸留塔内で分離処理(一次処理)された混合蒸気は分縮器で再び細密に成分分離処理(二次処理)されるので、液体混合物は高濃度に濃縮された留出蒸気となる。   On the other hand, the steam (primary treated mixed steam) introduced into the condenser without being liquefied in the distillation tower is heat-exchanged with cold heat while passing through the condenser, and the high-boiling components in the steam are liquefied. Then, it is refluxed into the distillation column, and the low boiling point component is not liquefied but maintained in a gas (vapor) state, passes through a partial condenser, is distilled out of the vessel, and is supplied to the membrane separation means. Thus, since the mixed vapor separated in the distillation tower (primary treatment) is finely separated again in the partial condenser (secondary treatment), the liquid mixture is a distillate vapor concentrated to a high concentration. It becomes.

蒸留手段から供給される前記留出蒸気は、分離膜モジュールの蒸気分離処理室内へ導入され、この蒸気は加熱手段に前記処理室内で加熱され、膜分離法によって成分分離処理される。   The distillate vapor supplied from the distillation means is introduced into the vapor separation treatment chamber of the separation membrane module, and this vapor is heated in the treatment chamber by the heating means and subjected to component separation treatment by the membrane separation method.

本発明においては、前記膜分離手段は、前記膜モジュールを複数基備えた構成を採用することができる(第2の発明)。また、前記膜モジュールの分離膜は、ゼオライト膜で構成した分離膜を採用することができる(第3の発明)。   In the present invention, the membrane separation means may employ a configuration including a plurality of the membrane modules (second invention). Moreover, the separation membrane of the said membrane module can employ | adopt the separation membrane comprised with the zeolite membrane (3rd invention).

本発明によれば次のような効果を奏する。
(1)蒸留手段は充填物を充填した蒸留塔と、この塔の塔頂に設けた分縮器とを備えて構成されているので、蒸留手段により液体混合物を高濃度に濃縮することができると共に、設備をコンパクト化できる。
(2)蒸留手段の分縮器を通過して留出する留出蒸気を膜分離手段の分離膜モジュールへ供給して蒸気分離処理室内で加熱して膜分離するように構成したので、加熱に要する消費エネルギーを削減できると共に分離効率性及び分離性能を向上することができる。
(3)共沸混合物を共沸点以上の濃度に濃縮できると共に沸点が近接した液体混合物も高精度に濃縮することができる。
(4)第2の発明によれば、前記諸効果に加え、分離性能をさらに向上することができる。
(5)第3の発明によれば、前記諸効果に加え、耐熱性,耐溶剤性,耐酸性に優れた効果を奏する。
The present invention has the following effects.
(1) The distillation means comprises a distillation column filled with a packing and a partial condenser provided at the top of the tower, so that the liquid mixture can be concentrated to a high concentration by the distillation means. At the same time, the equipment can be made compact.
(2) Since the distillate distilled through the fractionator of the distillation means is supplied to the separation membrane module of the membrane separation means and heated in the vapor separation treatment chamber, the membrane is separated. The energy consumption required can be reduced and the separation efficiency and separation performance can be improved.
(3) The azeotropic mixture can be concentrated to a concentration equal to or higher than the azeotropic point, and a liquid mixture having a boiling point close to that can be concentrated with high accuracy.
(4) According to the second invention, in addition to the above effects, the separation performance can be further improved.
(5) According to the third invention, in addition to the above-mentioned effects, the effects excellent in heat resistance, solvent resistance, and acid resistance are exhibited.

以下、図面を参照して本発明の実施の形態の一例を説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

図1〜図4は本発明の一実施の形態(実施の形態1)を示す。図1は分離装置の全体構成を概略的に示す説明図、図2は分縮器の部分を拡大し、その構成を概略的に示す断面図、図3は図1のA−A線拡大断面図、図4は分離膜を拡大し、その構成を概略的に示す説明図である。   1 to 4 show an embodiment (Embodiment 1) of the present invention. FIG. 1 is an explanatory diagram schematically showing the overall configuration of the separation device, FIG. 2 is an enlarged cross-sectional view schematically showing the configuration of the divider, and FIG. 3 is an enlarged cross-sectional view taken along line AA in FIG. FIG. 4 and FIG. 4 are explanatory views schematically showing the structure of the separation membrane in an enlarged manner.

上記図1〜図4において、本発明の分離装置は、液体混合物を分離する蒸留手段100と、蒸留手段100の塔頂部から留出する混合蒸気を膜分離法により分離する膜分離手段200とで構成されている。   1 to 4, the separation apparatus of the present invention includes a distillation means 100 for separating a liquid mixture, and a membrane separation means 200 for separating a mixed vapor distilled from the top of the distillation means 100 by a membrane separation method. It is configured.

蒸留手段100は、蒸留塔1と、この蒸留塔1の塔頂に設けた分縮器2とを備える。蒸留塔1の径や長さは適当に設定する。実施の形態1の蒸留塔1は円筒状に形成されているが、角筒状等に形成してもよい。
蒸留塔1内には充填物10が充填されて大きな気液接触面積が確保されている。充填物10は液体混合物の蒸気が流通可能であれば、特に限定されることなく、一般に使用されているものを任意に選択して採用できる。例えば、陶管,ガラス球,ステンレス線のコイルパックやシンングルターン,マクマホン,ヘリパック,スルザーパッキング等を挙げることができる。但し、上記に限定するものではなく、別に開発したもの等を使用できること勿論である。
The distillation means 100 includes a distillation column 1 and a partial condenser 2 provided at the top of the distillation column 1. The diameter and length of the distillation column 1 are set appropriately. Although the distillation column 1 of Embodiment 1 is formed in a cylindrical shape, it may be formed in a rectangular tube shape or the like.
The distillation column 1 is filled with a packing 10 to ensure a large gas-liquid contact area. The filling 10 is not particularly limited as long as the vapor of the liquid mixture can be circulated, and any generally used one can be selected and employed. For example, a ceramic tube, a glass bulb, a stainless steel coil pack, a single turn, a McMahon, a helipack, a sulzer packing, and the like can be given. However, the present invention is not limited to the above, and it is of course possible to use a separately developed one.

分縮器2は蒸留塔1内で分離処理されて導入される混合蒸気を沸点差より再度分離処理するものである。実施の形態1の分縮器2は、図2の詳細に示すように、円筒状に形成され、側部に蒸気導入口21と留出口22を対向して設けた熱交換室20と、この室20内に配置して設けた熱交換用のコイル管23(パイプ製コイル)とを備える。
分縮器2の熱交換室20の大きさは蒸留塔1の大きさ等に対応して適当に決定する。実施の形態1の熱交換室20は両端(図1,図2において左右端)を閉塞した円筒状に形成されている。コイル管23の両端は気密性を保持させて熱交換室20外に突出させ、一端で熱交換用媒体(作動流体)の入口23aが、また、他端で出口23bが形成されている。熱交換用媒体は入口23aから供給され、コイル管23を循環させて出口23bから流出させる。分縮器2は前記導入口21を蒸留塔1の塔頂開口部10a(図2参照)と連通させ、気密性を保持して塔1の塔頂に連結して設けてある。
The partial condenser 2 separates again the mixed steam introduced after being separated in the distillation column 1 from the boiling point difference. As shown in detail in FIG. 2, the partial reducer 2 according to Embodiment 1 is formed in a cylindrical shape, and includes a heat exchange chamber 20 provided with a steam inlet 21 and a distillation outlet 22 facing each other on the side, And a coil tube 23 (pipe coil) for heat exchange provided in the chamber 20.
The size of the heat exchange chamber 20 of the partial condenser 2 is appropriately determined according to the size of the distillation column 1 and the like. The heat exchange chamber 20 of Embodiment 1 is formed in a cylindrical shape with both ends (left and right ends in FIGS. 1 and 2) closed. Both ends of the coil tube 23 are kept airtight and project outside the heat exchange chamber 20, and an inlet 23a for a heat exchange medium (working fluid) is formed at one end and an outlet 23b is formed at the other end. The heat exchange medium is supplied from the inlet 23a, circulates through the coil tube 23, and flows out from the outlet 23b. The partial condenser 2 is provided in such a manner that the inlet 21 communicates with the top opening 10a (see FIG. 2) of the distillation column 1 and is connected to the top of the column 1 while maintaining airtightness.

実施の形態1の蒸留手段100は、液体混合物81を貯留する貯槽11を備え、貯槽11は管路11aで蒸留塔1の中間部位と連結されている。管路11aにはポンプ12及びプレヒータ13が介装して配置され、貯槽11内の液体混合物は適当量宛づつ連続的又は間欠的にポンプ12で送給され、ヒータ13で加熱されて蒸留塔1内へ供給される。
蒸留塔1の塔底部側には循環管路14を備え、管路14に加熱部15(ボイラやヒータ等)が介装して設けてある。蒸留塔1内へ供給された液体混合物81は管路14を通り、加熱部15で加熱して蒸気化され、この蒸気化した混合蒸気は管路14を通して塔底部の適当な部位から塔1内へ連続的に導入される。
The distillation means 100 of Embodiment 1 includes a storage tank 11 that stores a liquid mixture 81, and the storage tank 11 is connected to an intermediate portion of the distillation tower 1 through a pipe line 11a. A pump 12 and a preheater 13 are disposed in the pipe line 11a, and the liquid mixture in the storage tank 11 is continuously or intermittently sent to the appropriate amount by the pump 12, and is heated by the heater 13 to be distilled. 1 is supplied.
A circulation pipe 14 is provided on the bottom side of the distillation column 1, and a heating unit 15 (boiler, heater, etc.) is provided in the pipe 14. The liquid mixture 81 supplied into the distillation column 1 passes through the pipe line 14 and is vaporized by being heated by the heating unit 15, and the vaporized mixed vapor passes through the pipe line 14 from an appropriate portion at the bottom of the column to enter the column 1. Introduced continuously.

また、実施の形態1の蒸留手段100は、蒸留塔1の塔底に排出管16を備え、排出管16には開閉バルブ17が介装して設けてある。前記排出管16は所要時にバルブ17を開けて蒸留塔1内の液体を排出するために設けたものである。この場合において、前記バルブ17の開閉とポンプ12のON,OFFとを関連させて動作させるように構成してもよい。また、バルブ17の開閉は塔底の液体混合物の液レベルを感知してON,OFFさせるように構成することもできる。   Further, the distillation means 100 of the first embodiment includes a discharge pipe 16 at the bottom of the distillation column 1, and the discharge pipe 16 is provided with an open / close valve 17. The discharge pipe 16 is provided to open the valve 17 and discharge the liquid in the distillation column 1 when necessary. In this case, the valve 17 may be opened / closed and the pump 12 may be turned on / off in association with each other. Further, the valve 17 can be opened and closed by detecting the liquid level of the liquid mixture at the bottom of the column and turning it on and off.

熱交換用媒体としては、水道水や井戸水等の水(水温、例えば約5℃〜約35℃)、或いは所望温度(例えば約35℃〜約50℃)の湯等を採用することができる。前記媒体として水を使用する場合、水道水をそのまま使用してもよいが、クーリングタワーや冷却器等(図示せず)を装備し、水を循環して使用するように構成してもよい。前記媒体として湯を使用する場合は、例えば、媒体ライン中に加熱器(図示せず)を設置し、所望温度(例えば35℃〜50℃)に加熱した湯をコイル管に供給して循環させるように構成することができる。また、コイル管23の温度並びに室20内の雰囲気温度は、コイル管23内を流れる前記媒体の単位時間当たりの流量、コイル管の巻数、コイル径、管径、或いは供給圧力等により調整ないし変更することができる。
なお、実施の形態1では、上記したように分縮器2として、コイル型で構成した例を開示したが、シェルアンドチューブ型等の分縮器を採用することもできる。
As the heat exchange medium, water (water temperature, for example, about 5 ° C. to about 35 ° C.) such as tap water or well water, hot water at a desired temperature (for example, about 35 ° C. to about 50 ° C.), or the like can be used. When water is used as the medium, tap water may be used as it is, but a cooling tower, a cooler or the like (not shown) may be provided to circulate and use the water. When hot water is used as the medium, for example, a heater (not shown) is installed in the medium line, and hot water heated to a desired temperature (for example, 35 ° C. to 50 ° C.) is supplied to the coil tube and circulated. It can be constituted as follows. Further, the temperature of the coil tube 23 and the atmospheric temperature in the chamber 20 are adjusted or changed by the flow rate per unit time of the medium flowing in the coil tube 23, the number of turns of the coil tube, the coil diameter, the tube diameter, or the supply pressure. can do.
In the first embodiment, as described above, an example in which a coil type is used as the divider 2 is disclosed, but a shell and tube type divider or the like can also be employed.

膜分離手段200は、任意数(1又は複数)の分離膜モジュール、加熱手段4、真空ポンプ5及び濃縮蒸気凝縮器6等を備えている。実施の形態1は、第1〜第4の4基の分離膜モジュール3a…3dを並べて設けた例が開示されている。この場合、前記膜モジュールの数量は任意に増減可能である。   The membrane separation means 200 includes an arbitrary number (one or more) of separation membrane modules, a heating means 4, a vacuum pump 5, a concentrated vapor condenser 6, and the like. Embodiment 1 discloses an example in which first to fourth four separation membrane modules 3a to 3d are arranged side by side. In this case, the number of the membrane modules can be arbitrarily increased or decreased.

前記第1〜第4の各膜モジュール3a…3dは、蒸気分離処理室31と、この処理室31内に設けた分離膜32とを備えている。実施の形態1の前記処理室31は、一端(図1において下端)を閉塞すると共に他端(図1において上端)に透過蒸気室33(蒸気出口)を有する適当な径及び長さの円筒(管)状に形成されている。前記処理室31の径及び長さは分離膜の大きさ等(径及び長さ等)に応じて決定される。前記各処理室31は、一端側(図1において下端側)に蒸気入口34を、また、他端側(図1において上端側)に蒸気出口35を備えている。   Each of the first to fourth membrane modules 3 a to 3 d includes a vapor separation processing chamber 31 and a separation membrane 32 provided in the processing chamber 31. The processing chamber 31 of the first embodiment is a cylinder having an appropriate diameter and length that has one end (lower end in FIG. 1) closed and a permeate vapor chamber 33 (steam outlet) at the other end (upper end in FIG. 1). Tube). The diameter and length of the processing chamber 31 are determined according to the size and the like (diameter and length) of the separation membrane. Each processing chamber 31 includes a steam inlet 34 on one end side (lower end side in FIG. 1) and a steam outlet 35 on the other end side (upper end side in FIG. 1).

前記第1の膜モジュール3aの前記処理室31の蒸気入口34は、管路36aにより分縮器2の留出口22と接続されている。前記第1と第2の膜モジュール3a,3b、第2と第3の膜モジュール3b,3c及び第3と第4の膜モジュール3c,3dの前記各処理室31は、前位側に位置する前記処理室31の蒸気出口35と後位側に位置する前記処理室31の蒸気入口34を管路36b,36c,36dにより、それぞれ接続されている。前記第4の膜モジュール36dの前記処理室31の蒸気出口35は、管路61により濃縮液回収タンク62と接続されている。前記濃縮蒸気凝縮器6は前記管路61に介装して設けてある。   The steam inlet 34 of the processing chamber 31 of the first membrane module 3a is connected to the outlet 22 of the partial condenser 2 by a pipe line 36a. The processing chambers 31 of the first and second membrane modules 3a and 3b, the second and third membrane modules 3b and 3c, and the third and fourth membrane modules 3c and 3d are located on the front side. The steam outlet 35 of the processing chamber 31 and the steam inlet 34 of the processing chamber 31 located on the rear side are connected by pipes 36b, 36c, and 36d, respectively. The steam outlet 35 of the processing chamber 31 of the fourth membrane module 36 d is connected to a concentrate recovery tank 62 by a pipe 61. The concentrated vapor condenser 6 is provided in the pipe 61.

実施の形態1では、前記管路36aの適当部に開閉バルブ26が介装して設けてある。また、前記管路36aの前記バルブ26と留出口22との間に位置させて、前記管路36aに接続して設けた分岐管路27を有している。前記分岐管路27には開閉バルブ28が介装して設けてある。   In the first embodiment, the opening / closing valve 26 is provided at an appropriate portion of the pipe line 36a. Further, a branch pipe 27 is provided between the valve 26 and the outlet 22 of the pipe 36a and connected to the pipe 36a. The branch pipe 27 is provided with an opening / closing valve 28.

実施の形態1の第1〜第4の膜モジュール3a…3dは、前記各処理室31の底部(図1において下端)に、開閉バルブ37を有するドレーン38が設けてある。実施の形態1においては、分縮器2の留出口22と第1の膜モジュール3aの前記処理室31の蒸気入口34とを接続した管路36aに、この管路36aの外周面を被覆して設けたリボンヒータ39を備えている。また、前記管路36a内の留出口22の近傍に位置させて塔頂温度(留出口22部の温度)を測定する温度センサ24が設けてある。前記センサ24は温度表示器等を有する制御部25と電気的に接続されている。前記管路36a…36dは、その外周面を断熱材等で被覆する等により断熱性を付与することが好ましい。なお、上記の場合において、前記リボンヒータ39に替え、前記管路36aを二重管で形成し、内側管と外側管との間隙部に熱媒体を循環させて内側管を加熱する構成等を採用することもできる。   In the first to fourth membrane modules 3a to 3d of the first embodiment, a drain 38 having an opening / closing valve 37 is provided at the bottom (lower end in FIG. 1) of each processing chamber 31. In the first embodiment, an outer peripheral surface of the pipe line 36a is covered with a pipe line 36a that connects the distillation outlet 22 of the partial condenser 2 and the steam inlet 34 of the processing chamber 31 of the first membrane module 3a. The ribbon heater 39 provided is provided. Further, a temperature sensor 24 is provided which is positioned in the vicinity of the distillation outlet 22 in the pipe 36a and measures the tower top temperature (temperature of the distillation outlet 22 portion). The sensor 24 is electrically connected to a control unit 25 having a temperature indicator or the like. The pipes 36a to 36d are preferably provided with heat insulation properties by covering the outer peripheral surface with a heat insulating material or the like. In the above case, instead of the ribbon heater 39, the pipe line 36a is formed of a double pipe, and a heat medium is circulated through the gap between the inner pipe and the outer pipe to heat the inner pipe. It can also be adopted.

前記分離膜32は、多孔質支持体の表面に分離膜を合成(成膜)して構成される。多孔質支持体としては、例えば、アルミナ,ジルコニア,チッ化ケイ素,炭化ケイ素等のセラミック、ステンレス,ニッケル,アルミニウム等の金属、ポリエチレン,ポリスルホン,ポリイミド等の有機高分子よりなる多孔質材料であって、その平均気孔径が0.05〜10μm程度、気孔率が10〜60%程度のものを用いることができる。分離膜は親水性膜と疎水性膜とに分類される。親水性膜としては、例えば、PVA(ポリビニールアルコール),キトサン,ゼオライト等が挙げられる。分離膜として使用されるゼオライトとしては、例えばA型,T型,X型,Y型等がある。また、疎水性膜としては、例えば、シリコン系等が挙げられる。本発明においては、前記例示したものから任意に選択して採用することができる。なお、前記材料は一例として挙げたもので、本発明の使用材料を限定するものではない。   The separation membrane 32 is formed by synthesizing (depositing) a separation membrane on the surface of a porous support. Examples of the porous support include porous materials made of ceramics such as alumina, zirconia, silicon nitride and silicon carbide, metals such as stainless steel, nickel and aluminum, and organic polymers such as polyethylene, polysulfone and polyimide. , Those having an average pore diameter of about 0.05 to 10 μm and a porosity of about 10 to 60% can be used. Separation membranes are classified into hydrophilic membranes and hydrophobic membranes. Examples of the hydrophilic membrane include PVA (polyvinyl alcohol), chitosan, zeolite, and the like. Examples of the zeolite used as the separation membrane include A type, T type, X type, and Y type. Moreover, as a hydrophobic film | membrane, a silicon system etc. are mentioned, for example. In this invention, it can select arbitrarily from what was illustrated above and can employ | adopt. In addition, the said material was mentioned as an example and does not limit the use material of this invention.

実施の形態1の分離膜32は、図4に詳細に示すように、管状に形成した多孔質支持体32aの外表面にゼオライト膜32b(分離膜)を合成(成膜)し、一端を封止(図示せず)すると共に他端を開口32cした管状ゼオライト膜で構成されている。分離膜32は、開口端を透過蒸気室33(蒸気出口)と気密性を保持して接続し、前記各処理室31内にそれぞれ配設されている。これにより、処理室31内と蒸気出口33は分離膜により隔離した構成となっている。   As shown in detail in FIG. 4, the separation membrane 32 of Embodiment 1 synthesizes (deposits) a zeolite membrane 32b (separation membrane) on the outer surface of a tubular porous support 32a and seals one end. It is formed of a tubular zeolite membrane that is stopped (not shown) and has the other end 32c. The separation membrane 32 is connected to the permeate vapor chamber 33 (steam outlet) while maintaining airtightness at the open end, and is disposed in each processing chamber 31. As a result, the inside of the processing chamber 31 and the vapor outlet 33 are separated by the separation membrane.

多孔質支持体32aの寸法は特に限定しないが、例えば外径5〜100mm程度、肉厚0.2〜2mm程度、長さ100〜2000mm程度の範囲を挙げることができる。また、ゼオライト膜の膜厚としては、例えば10〜50μm程度の範囲を挙げることができる(但し、上記範囲内に限定するものではない)。   Although the dimension of the porous support body 32a is not specifically limited, For example, the range of about 5-100 mm in outer diameter, about 0.2-2 mm in thickness, and about 100-2000 mm in length can be mentioned. Moreover, as a film thickness of a zeolite membrane, the range of about 10-50 micrometers can be mentioned, for example (however, it does not limit to the said range).

前記各膜モジュール3a…3dの各透過蒸気室33は、管路51により真空ポンプ5と接続されている。管路51中には透過蒸気凝縮器52及び透過液回収容器53が介装して設けてある。透過蒸気室33から排出される蒸気は凝縮器52で凝縮させて液化し、容器53に回収される。この場合、前記凝縮器52及び容器53は、両者を組み合わせたトラップで構成することもできる。   The permeate vapor chambers 33 of the membrane modules 3 a to 3 d are connected to the vacuum pump 5 by pipe lines 51. A permeate vapor condenser 52 and a permeate recovery container 53 are interposed in the pipe line 51. The vapor discharged from the permeated vapor chamber 33 is condensed and liquefied by the condenser 52 and collected in the container 53. In this case, the condenser 52 and the container 53 can be configured by a trap in which both are combined.

前記ポンプ5により各分離膜32内部及び透過蒸気室33を適当な真空度で減圧する。減圧する真空度は特に限定されないが、例えば、真空度13.0〜5000Pa、好ましくは130〜2600Pa(1〜20mmHg)程度を挙げることができる。   The pump 5 depressurizes the inside of each separation membrane 32 and the permeate vapor chamber 33 at an appropriate vacuum degree. The degree of vacuum to be reduced is not particularly limited, and examples thereof include a degree of vacuum of 13.0 to 5000 Pa, preferably about 130 to 2600 Pa (1 to 20 mmHg).

前記加熱手段4は、第1〜第4の膜モジュールの前記各蒸気分離処理室31内を所望温度に加熱するものである。実施の形態1の加熱手段4は、前記各処理室31に、処理室31の外周面との間に適当な空間部41(図3参照)を形成して包囲すると共に気密性を保持して設けた熱交換用の加熱室40を備える。各加熱室40は、一端側(図1において下端側)に熱媒(加熱媒体)入口42を、また、他端側(図1において上端側)に熱媒出口43を備えている。熱媒としては、例えば、油等を採用することができる。   The heating means 4 heats the inside of each of the vapor separation processing chambers 31 of the first to fourth membrane modules to a desired temperature. The heating means 4 of the first embodiment forms and surrounds each processing chamber 31 with an appropriate space 41 (see FIG. 3) between the outer peripheral surface of the processing chamber 31 and maintains airtightness. A heating chamber 40 for heat exchange is provided. Each heating chamber 40 includes a heating medium (heating medium) inlet 42 on one end side (lower end side in FIG. 1) and a heating medium outlet 43 on the other end side (upper end side in FIG. 1). As the heat medium, for example, oil or the like can be employed.

第1の膜モジュール3aの加熱室40の熱媒入口42は、管路44により第4の膜モジュール3dの加熱室40の熱媒出口43と接続されている。第1と第2の膜モジュール3a,3b、第2と第3の膜モジュール3b,3cの前記各加熱室40は、前位側に位置する加熱室40の熱媒出口43と後位側に位置する加熱室40の熱媒入口42を管路45a,45b,45cにより、それぞれ接続されている。前記管路44中には、加熱部46(加熱釜やヒータ等)及び送給ポンプ47が介装して設けてある。これにより、熱媒は各加熱室40内(空間部41)を通って循環するように構成されている。   The heating medium inlet 42 of the heating chamber 40 of the first membrane module 3a is connected to the heating medium outlet 43 of the heating chamber 40 of the fourth membrane module 3d by a pipe 44. The heating chambers 40 of the first and second membrane modules 3a and 3b and the second and third membrane modules 3b and 3c are arranged on the rear side with the heat medium outlet 43 of the heating chamber 40 located on the front side. The heating medium inlet 42 of the heating chamber 40 located is connected by pipe lines 45a, 45b, and 45c, respectively. A heating unit 46 (heating kettle, heater, etc.) and a feed pump 47 are provided in the pipe 44. Thereby, a heat medium is comprised so that it may circulate through each heating chamber 40 (space part 41).

実施の形態1では、前記熱媒として油を採用している。但し、油に限定するものではない。熱媒の温度は、分離する液体混合物の種類等に応じて適当に決定するものであるが、例えば、80℃〜160℃程度、好ましくは100℃〜140℃程度の範囲を挙げることができる。   In Embodiment 1, oil is adopted as the heat medium. However, it is not limited to oil. The temperature of the heating medium is appropriately determined according to the type of the liquid mixture to be separated, and can be, for example, about 80 ° C to 160 ° C, preferably about 100 ° C to 140 ° C.

実施の形態1の分離装置は上記した構成を具備してなっている。次に分離する液体混合物81をエタノール水溶液として、その使用方法の一例及び作用効果等について説明する。蒸留塔1の開閉バルブ17、分岐管路27の開閉バルブ28、各膜モジュールの開閉バルブ37は閉じておく。プレヒータ13、リボンヒータ39、加熱部15,46、真空ポンプ5及び送給ポンプ47をONにする。また、分縮器2のコイル管23へ所望温度の冷媒(水道水等)を所望流量づつ連続的に供給して流通させる。この状態でポンプ12を稼動して貯槽11内のエタノール水溶液81を蒸留塔1内へ適当量供給する。所定量のエタノール水溶液を供給後、ポンプ12を停止する。貯槽から送られるエタノール水溶液はプレヒータ13で加熱されて蒸留塔内へ供給され、前記加熱により水溶液の一部は蒸気化し、この蒸気は塔1内を上昇するが、大部分の水溶液81aは塔底部に流下する。なお、管路36aの開閉バルブ26は開にする。   The separation apparatus according to Embodiment 1 has the above-described configuration. Next, an example of a method of using the liquid mixture 81 to be separated as an aqueous ethanol solution and its effects will be described. The open / close valve 17 of the distillation column 1, the open / close valve 28 of the branch pipe 27, and the open / close valve 37 of each membrane module are closed. The preheater 13, the ribbon heater 39, the heating units 15 and 46, the vacuum pump 5 and the feed pump 47 are turned on. Further, a refrigerant (tap water or the like) having a desired temperature is continuously supplied to the coil tube 23 of the divider 2 at a desired flow rate so as to be circulated. In this state, the pump 12 is operated to supply an appropriate amount of the aqueous ethanol solution 81 in the storage tank 11 into the distillation column 1. After supplying a predetermined amount of the aqueous ethanol solution, the pump 12 is stopped. The aqueous ethanol solution sent from the storage tank is heated by the pre-heater 13 and supplied into the distillation tower. A part of the aqueous solution is vaporized by the heating, and this vapor rises in the tower 1, but most of the aqueous solution 81 a is at the bottom of the tower. To flow down. The opening / closing valve 26 of the pipe line 36a is opened.

塔底部に流下した水溶液は管路14を通り、加熱部15で加熱されて蒸気化し、この蒸気(混合蒸気)は管路14を通じて蒸留塔1内へ順次供給され、充填物10と接触しながら塔1内を上昇する。この上昇過程において混合蒸気は充填物との接触で熱交換され、混合蒸気中、沸点の高い成分(水系成分)は液化して充填物に付着し、塔底部へ環流し、沸点の低い成分(エタノール系成分)は液化しないで、そのまま上昇し、分縮器2へ順次導入される。塔底部へ環流した液体は加熱部15で加熱されて再び蒸気化し、塔内へ供給され、塔内を上昇過程において上記と同様に気相と液相に分離される。
上記のように、混合蒸気は蒸留塔1内を上昇中、高沸点の成分は塔内の途中で液化して流下して塔底部へ環流し、これにより、混合蒸気は蒸留塔1内で成分分離処理(一次処理)される。
The aqueous solution flowing down to the bottom of the column passes through the pipe line 14 and is heated and vaporized by the heating unit 15, and this vapor (mixed vapor) is sequentially supplied into the distillation column 1 through the pipe line 14 while contacting the packing 10. Ascend in tower 1. In this ascending process, the mixed steam is heat-exchanged by contact with the packing, and in the mixed steam, the component having a high boiling point (aqueous component) is liquefied and adheres to the packing, circulates to the bottom of the column, and the component having a low boiling point ( The ethanol component is not liquefied but rises as it is and is sequentially introduced into the partial condenser 2. The liquid recirculated to the bottom of the column is heated by the heating unit 15 to be vaporized again, supplied into the column, and separated into a gas phase and a liquid phase in the same way as described above in the column.
As described above, while the mixed steam is rising in the distillation tower 1, the high boiling point component is liquefied and flows down in the middle of the tower and circulates to the bottom of the tower, whereby the mixed steam is a component in the distillation tower 1. Separation processing (primary processing) is performed.

一方、蒸留塔内で液化しないで分縮器2の熱交換室20内へ導入された蒸気(一次処理された混合蒸気)は、コイル管23との接触で熱交換され、前記蒸気中における高沸点の成分(水系成分)は凝縮(液化)して蒸留塔1内へ環流し、低沸点の成分(エタノール系成分)は液化しないで気体(蒸気)状態を維持して上昇し、熱交換室20内を通過して留出口から室外へ留出し、管路36aを通って第1の膜モジュール3aの蒸気入口34から蒸気分離処理室31内へ供給される。
上記のように、蒸留塔1内で分離処理(一次処理)された混合蒸気は分縮器2で再び細密に成分分離処理(二次処理)されるので、液体混合物(エタノール水溶液)は高濃度に濃縮された留出蒸気となる。
On the other hand, the steam (primarily treated mixed steam) introduced into the heat exchange chamber 20 of the partial condenser 2 without being liquefied in the distillation column is heat-exchanged by contact with the coil tube 23, and the high steam in the steam is Boiling components (water-based components) are condensed (liquefied) and circulated into the distillation column 1, and low-boiling components (ethanol-based components) are not liquefied and rise while maintaining a gas (vapor) state. After passing through the inside 20, it is distilled out of the outlet from the outlet, and is supplied into the steam separation processing chamber 31 from the steam inlet 34 of the first membrane module 3 a through the pipe 36 a.
As described above, the mixed vapor separated in the distillation column 1 (primary treatment) is finely separated again in the partial condenser 2 (secondary treatment), so that the liquid mixture (ethanol aqueous solution) has a high concentration. Distilled steam concentrated in

分縮器2の留出口22から室外へ流出した留出蒸気は、リボンヒータ39で加温されながら管路36aを通って第1の膜モジュール3aの処理室31の蒸気入口34から室31内へ連続的に導入される。この導入された蒸気は加熱室40内の熱媒により加熱されると共に分離膜32(管状ゼオライト膜)の内部は適当な真空度で減圧されているので、処理室31内の混合蒸気中、主に親水性成分(主に水成分)が選択的に分離膜32(ゼオライト膜)の外側から内側へ透過する。
透過蒸気は分離膜32の内側を流れ、透過蒸気室33(蒸気出口)から排出され、管路51を通って真空ポンプで吸引され、透過蒸気凝縮器52により凝縮されて透過液回収容器53へ回収される。
Distilled steam that flows out of the outlet from the outlet 22 of the partial condenser 2 is heated by the ribbon heater 39 and passes through the conduit 36a from the steam inlet 34 of the processing chamber 31 of the first membrane module 3a. Introduced continuously. The introduced steam is heated by the heat medium in the heating chamber 40 and the inside of the separation membrane 32 (tubular zeolite membrane) is depressurized with an appropriate degree of vacuum. The hydrophilic component (mainly water component) selectively permeates from the outside to the inside of the separation membrane 32 (zeolite membrane).
The permeate vapor flows inside the separation membrane 32, is discharged from the permeate vapor chamber 33 (steam outlet), is sucked by the vacuum pump through the pipe 51, is condensed by the permeate vapor condenser 52, and is transferred to the permeate recovery container 53. To be recovered.

上記のように第1の膜モジュール3aの処理室31内へ導入された混合蒸気は分離膜32によって脱水され、疎水性成分であるエタノールは分離膜を透過しないので、混合蒸気は濃縮される。前記のように濃縮された混合蒸気(一次濃縮蒸気)は処理室31の蒸気出口35から室外へ排出され、管路36bを通って第2の膜モジュール3bの処理室31の蒸気入口34から室31内へ導入される。そして、前記と同様に室31内において前記蒸気中の親水性成分が選択的に分離膜32を透過し、この透過蒸気は分離膜32内を流れ、管路51を通って前記容器53へ回収される。   As described above, the mixed vapor introduced into the processing chamber 31 of the first membrane module 3a is dehydrated by the separation membrane 32, and ethanol, which is a hydrophobic component, does not pass through the separation membrane, so that the mixed vapor is concentrated. The mixed steam (primary concentrated steam) concentrated as described above is discharged from the steam outlet 35 of the processing chamber 31 to the outside of the chamber, and passes through the pipe 36b from the steam inlet 34 of the processing chamber 31 of the second membrane module 3b. 31 is introduced. Then, the hydrophilic component in the vapor selectively permeates through the separation membrane 32 in the chamber 31 in the same manner as described above, and this permeated vapor flows through the separation membrane 32 and is collected into the container 53 through the pipe 51. Is done.

上記のように第2の膜モジュール3bの処理室31内へ導入された混合蒸気は分離膜により脱水されて再度濃縮され、この濃縮された混合蒸気(二次濃縮蒸気)は、処理室31の蒸気出口35から室外へ排出され、管路36cを通って第3の膜モジュール3cの処理室31の蒸気入口34から室31内へ導入される。そして、前記と同様に室31内において分離膜32により脱水されて、更に濃縮され、透過蒸気は分離膜32内を流れ、管路51を通って前記容器53へ回収され、前記濃縮された混合蒸気(三次濃縮蒸気)は、処理室31の蒸気出口35から室外へ排出され、管路36dを通って第4の膜モジュール3dの処理室31の蒸気入口34から室31内へ導入される。   The mixed steam introduced into the processing chamber 31 of the second membrane module 3b as described above is dehydrated by the separation membrane and concentrated again, and this concentrated mixed steam (secondary concentrated steam) is stored in the processing chamber 31. The steam is discharged from the steam outlet 35 to the outside of the room, and is introduced into the chamber 31 from the steam inlet 34 of the processing chamber 31 of the third membrane module 3c through the conduit 36c. In the same manner as described above, the water is dehydrated by the separation membrane 32 and further concentrated, and the permeated vapor flows through the separation membrane 32 and is collected into the container 53 through the pipe 51, and the concentrated mixing. The steam (tertiary concentrated steam) is discharged from the steam outlet 35 of the processing chamber 31 to the outside, and is introduced into the chamber 31 from the steam inlet 34 of the processing chamber 31 of the fourth membrane module 3d through the conduit 36d.

第4の膜モジュール3dの処理室31内へ導入された三次濃縮蒸気は、前記と同様に室31内において分離膜32により脱水されて、更に濃縮されて精製され、透過蒸気は管路51を通って前記容器53へ回収される。そして、前記濃縮、精製された蒸気(四次濃縮蒸気)は、処理室31の蒸気出口35から室外へ排出され、管路61を通り、濃縮蒸気凝縮器6で凝縮されて回収タンク62へ回収される。前記タンク62に回収された液体はエタノール水溶液の共沸濃度(95.6重量%)以上の濃度に濃縮・精製された溶液(エタノール)となり、例えば、バイオエタノールの製品とし、そのまま利用可能な製品が得られる。   The tertiary concentrated vapor introduced into the processing chamber 31 of the fourth membrane module 3d is dehydrated by the separation membrane 32 in the chamber 31 and further concentrated and purified in the same manner as described above, and the permeated vapor passes through the pipe 51. It passes through and is collected in the container 53. The concentrated and refined steam (quaternary concentrated steam) is discharged outside from the steam outlet 35 of the processing chamber 31, passes through the pipeline 61, is condensed in the concentrated steam condenser 6, and is recovered in the recovery tank 62. Is done. The liquid recovered in the tank 62 becomes a solution (ethanol) concentrated and purified to a concentration equal to or higher than the azeotropic concentration (95.6% by weight) of the aqueous ethanol solution. For example, a product that can be used as it is as a bioethanol product Is obtained.

一方、前記分離操作中において、分縮器2の上部に設けられている温度センサ24の測定温度(分縮器2の留出口22から留出する留出蒸気の温度)が所定温度以上、例えば約90℃になった時点で、加熱部15をOFFにすると共に管路36aのバルブ26を閉じ、分岐管27のバルブ28を開いて大気開放とする。そして、塔底部のバルブ17を開けて塔1内の水溶液(大部分は水)を塔外へ排出して回収する。混合蒸気中の水成分が多くなると蒸気の温度は蒸気中の水成分の混合割合に比例して高くなる。即ち、水溶液中のエタノール成分の配合比が少なくなると、これに伴って、蒸気中の水成分の配合比が多くなる。
そこで、前記温度が所定温度(例えば90℃程度)に達した時、上述したように、バルブ17を開けて塔1内の水溶液を排出し、排出した後、バルブ17を閉じる。そして、ポンプ12を稼動して貯槽11内のエタノール水溶液を蒸留塔1内へ適当量供給し、上記と同様に分離操作を再開する。前記塔底部から排出して回収した水溶液は、これを貯槽11へ戻す等、再利用してもよい。
On the other hand, during the separation operation, the temperature measured by the temperature sensor 24 provided on the top of the partial condenser 2 (the temperature of the distillate distilled from the outlet 22 of the partial condenser 2) is a predetermined temperature or higher, for example, When the temperature reaches about 90 ° C., the heating unit 15 is turned off, the valve 26 of the pipe 36a is closed, and the valve 28 of the branch pipe 27 is opened to release to the atmosphere. Then, the valve 17 at the bottom of the tower is opened, and the aqueous solution (mostly water) in the tower 1 is discharged outside and recovered. When the water component in the mixed steam increases, the temperature of the steam increases in proportion to the mixing ratio of the water component in the steam. That is, when the mixing ratio of the ethanol component in the aqueous solution decreases, the mixing ratio of the water component in the steam increases accordingly.
Therefore, when the temperature reaches a predetermined temperature (for example, about 90 ° C.), as described above, the valve 17 is opened, the aqueous solution in the tower 1 is discharged, the valve 17 is closed after being discharged. Then, the pump 12 is operated to supply an appropriate amount of the aqueous ethanol solution in the storage tank 11 into the distillation column 1, and the separation operation is resumed in the same manner as described above. The aqueous solution discharged and recovered from the bottom of the tower may be reused, for example, by returning it to the storage tank 11.

前記第1〜第4の各膜モジュール3a…3dのドレーン38は、分離装置の運転休止時等、所要時にバルブ37を開けて各処理室31内に残溜している残溜液を排出するためのものであり、それ以外は閉じておく。前記排出した液体は再利用してもよい。   The drains 38 of the first to fourth membrane modules 3a... 3d open the valve 37 when necessary, such as when the operation of the separator is stopped, and discharge the residual liquid remaining in the processing chambers 31. For the rest, keep the rest closed. The discharged liquid may be reused.

なお、貯槽11内のエタノール水溶液を適当量宛づつ連続的に蒸留塔1へ供給して分離操作するように構成することもできる。この構成を採用する場合には、例えば、ポンプ12のON,OFF操作機構及びバルブ17を電磁弁で構成し、上述した温度センサ24の測定温度に基づくバルブ17の開閉操作及びポンプ12のON,OFF(駆動、停止)操作を、制御部25で自動制御して行うように構成してもよい。   In addition, it can also comprise so that the ethanol aqueous solution in the storage tank 11 may be continuously supplied to the distillation tower 1 for an appropriate amount, and may be separated. In the case of adopting this configuration, for example, the ON / OFF operation mechanism of the pump 12 and the valve 17 are configured by electromagnetic valves, the opening / closing operation of the valve 17 based on the measured temperature of the temperature sensor 24 described above, and the ON / OFF of the pump 12. An OFF (drive, stop) operation may be configured to be automatically controlled by the control unit 25.

また、上述の実施の形態1では、液体混合物としてエタノール水溶液を成分分離する使用例について説明したが、液体混合物はこれに限定されるものではない。本発明の分離対象となる液体混合物としては、水とメタノール,プロパノールなどのアルコール類との液体混合物、水とアセトン,メチルエチルケトン等のケトン類との液体混合物、水と四塩化炭素,トリクロロエチレン等のハロゲン化炭水素などの有機液体との液体混合物等を例示することができる。但し、分離対象となる液体混合物は上記に限定するものではない。   Moreover, in the above-mentioned Embodiment 1, although the usage example which isolate | separates ethanol aqueous solution as a liquid mixture was demonstrated, a liquid mixture is not limited to this. The liquid mixture to be separated in the present invention includes a liquid mixture of water and alcohols such as methanol and propanol, a liquid mixture of water and ketones such as acetone and methyl ethyl ketone, and water and halogens such as carbon tetrachloride and trichloroethylene. Examples thereof include liquid mixtures with organic liquids such as chemical hydrocarbons. However, the liquid mixture to be separated is not limited to the above.

さらにまた、実施の形態1では、分離膜モジュールを縦向きの姿勢で配置した例を開示したが、本発明においては、分離膜モジュールを横向き等の姿勢で配置する構成を採用できること勿論である。   Furthermore, in the first embodiment, the example in which the separation membrane module is disposed in the vertical orientation is disclosed. However, in the present invention, it is needless to say that the configuration in which the separation membrane module is disposed in the lateral orientation or the like can be employed.

図5は本発明の他の実施の形態(実施の形態2)の分離装置の要部の構成を概略的に示す説明図である。この実施の形態2及び以下に開示する各実施の形態の分離装置において、実施の形態1で既に説明した構成と共通する構成等には同一符号を付して説明を省略する。実施の形態2の分離装置は蒸留塔1の塔底部側の構成に特徴がある。   FIG. 5 is an explanatory view schematically showing a configuration of a main part of a separation apparatus according to another embodiment (Embodiment 2) of the present invention. In the separation device according to the second embodiment and each embodiment disclosed below, the same reference numerals are assigned to the same components as those already described in the first embodiment, and the description thereof is omitted. The separation apparatus according to the second embodiment is characterized by the structure on the bottom side of the distillation column 1.

実施の形態2の分離装置の蒸留手段100は、蒸留塔1の塔底部側に、実施の形態1の排出管16に代え、循環管路70を備え、管路70にポンプ71が介装して設けてある。前記管路70の前記ポンプ71の上部側には、三方コック等の切換弁72を介して切換管路73が接続して設けてある。前記弁72は循環側に切り換えてあり、塔底部内の液体混合物(水溶液)をポンプ71により塔底部で循環させて混合させるように構成してある。そして、所要時、即ち、前記温度センサ24の測定温度が所定温度に達した時などに前記弁72を切換管路73側に切り換えて塔底部内の水溶液を塔外へ排出して回収するように構成してある。前記回収した水溶液は前記と同様に再利用してもよい。前記弁72の切り換え操作は手動又は自動制御により行われる。他の構成は実施の形態1と同様である。   The distillation means 100 of the separation apparatus of the second embodiment includes a circulation pipe 70 instead of the discharge pipe 16 of the first embodiment on the bottom side of the distillation tower 1, and a pump 71 is interposed in the pipe 70. It is provided. A switching line 73 is connected to the upper side of the pump 71 of the line 70 via a switching valve 72 such as a three-way cock. The valve 72 is switched to the circulation side, and the liquid mixture (aqueous solution) in the tower bottom is circulated in the tower bottom by the pump 71 and mixed. Then, when necessary, that is, when the temperature measured by the temperature sensor 24 reaches a predetermined temperature, the valve 72 is switched to the switching pipe 73 side so that the aqueous solution in the bottom of the tower is discharged outside and recovered. It is configured. The recovered aqueous solution may be reused as described above. The switching operation of the valve 72 is performed manually or automatically. Other configurations are the same as those in the first embodiment.

実施の形態2の分離装置は上記のように構成され、実施の形態1の分離装置と同様に使用するものであり、実施の形態1と同様の作用効果を奏する。   The separation device according to the second embodiment is configured as described above, and is used in the same manner as the separation device according to the first embodiment, and has the same effects as those of the first embodiment.

図6は本発明のさらに他の実施の形態(実施の形態3)の分離装置の要部の構成を概略的に示す説明図である。実施の形態3の分離装置は分縮器2の蒸留塔1に対する取付け配置姿勢の構成に特徴がある。   FIG. 6 is an explanatory view schematically showing a configuration of a main part of a separation apparatus according to still another embodiment (Embodiment 3) of the present invention. The separation apparatus according to the third embodiment is characterized by the configuration of the mounting arrangement posture of the partial condenser 2 with respect to the distillation column 1.

実施の形態3の蒸留手段100の分縮器2は、円筒状に形成され、一端に蒸気導入口21aを設けると共に他端に留出口22aを設けた熱交換室20aと、この室20a内に配置して設けた熱交換用のコイル管23とを備えて構成されている。前記分縮器2は前記導入口21aを蒸留塔1の塔頂開口部10aと連通させ、気密性を保持して塔1の塔頂に連結して直列状に配置して設けてある。他の構成は実施の形態1と同様である。なお、蒸留塔1の塔底部側の構成については実施の形態2の構成を採用してもよい。   The partial condenser 2 of the distillation means 100 according to the third embodiment is formed in a cylindrical shape, provided with a steam inlet 21a at one end and a distillation outlet 22a at the other end, and a heat exchange chamber 20a in the chamber 20a. It is configured to include a coil tube 23 for heat exchange disposed and provided. The partial condenser 2 is provided in such a manner that the inlet 21a communicates with the top opening 10a of the distillation column 1 and is connected in series with the top of the column 1 while maintaining airtightness. Other configurations are the same as those in the first embodiment. Note that the configuration of the second embodiment may be adopted as the configuration on the bottom side of the distillation column 1.

実施の形態3の分離装置は上記のように構成され、実施の形態1の分離装置と同様に使用するものであり、これにより、実施の形態1と同様の作用効果を奏する。   The separation device according to the third embodiment is configured as described above, and is used in the same manner as the separation device according to the first embodiment. Thus, the same effects as those of the first embodiment can be achieved.

図7は本発明のさらに他の実施の形態(実施の形態4)の分離装置の要部を示すものであって、同図(a)は分離膜モジュールの構成を概略的に示す説明図、同図(b)は同図(a)のB−B線拡大断面図である。実施の形態4の分離装置は分離膜モジュールの構成に特徴がある。   FIG. 7 shows a main part of a separation apparatus according to still another embodiment (Embodiment 4) of the present invention, and FIG. 7 (a) is an explanatory view schematically showing the configuration of the separation membrane module. FIG. 2B is an enlarged sectional view taken along line BB in FIG. The separation device of the fourth embodiment is characterized by the configuration of the separation membrane module.

実施の形態4の膜分離手段200の分離膜モジュール3Aは、蒸気分離処理室31Aと、この処理室31A内に設けた複数本(図示では4本)の分離膜32とを備えてなっている。前記処理室31Aは、一端(図7(a)において下端)を閉塞すると共に他端(図7(a)において上端)に透過蒸気室33(蒸気出口)を有する適当な径及び長さの円筒状に形成されている。   The separation membrane module 3A of the membrane separation means 200 of Embodiment 4 includes a vapor separation processing chamber 31A and a plurality (four in the figure) of separation membranes 32 provided in the processing chamber 31A. . The processing chamber 31A is a cylinder with an appropriate diameter and length that closes one end (lower end in FIG. 7A) and has a permeate vapor chamber 33 (steam outlet) at the other end (upper end in FIG. 7A). It is formed in a shape.

前記処理室31Aの径及び長さは室31A内に設ける分離膜32の本数等に応じて決定される。前記処理室31A内に設ける分離膜32の本数は任意に決定する。各分離膜32は、開口部を透過蒸気室33(蒸気出口)と気密性を保持して接続し、処理室31A内に配置して設けてある。これにより、処理室31A内と透過蒸気室33は各分離膜により隔離した構成となっている。   The diameter and length of the processing chamber 31A are determined according to the number of separation membranes 32 provided in the chamber 31A. The number of separation membranes 32 provided in the processing chamber 31A is arbitrarily determined. Each separation membrane 32 has an opening connected to the permeate vapor chamber 33 (steam outlet) while maintaining airtightness, and is disposed in the processing chamber 31A. Thus, the processing chamber 31A and the permeate vapor chamber 33 are separated from each other by the separation membrane.

前記膜モジュール3Aは一基又は所望数の複数基設けられる。膜モジュールを一基設ける構成を採用する場合にあっては、処理室31Aの蒸気入口34を管路36aにより分縮器2の留出口22と接続すると共に処理室31Aの蒸気出口35を管路61により濃縮液回収タンク62と接続する。また、熱交換用の加熱室40の熱媒入口42と熱媒出口43を管路44により接続してセットされる。   One or a plurality of membrane modules 3A are provided. In the case of adopting a configuration in which one membrane module is provided, the steam inlet 34 of the processing chamber 31A is connected to the outlet 22 of the partial condenser 2 by a conduit 36a and the steam outlet 35 of the processing chamber 31A is connected to the conduit. 61 is connected to the concentrate recovery tank 62. In addition, the heat medium inlet 42 and the heat medium outlet 43 of the heating chamber 40 for heat exchange are connected by a pipe 44 and set.

膜モジュール3Aを複数基設ける構成を採用する場合には、任意の一基の膜モジュール3Aの処理室31Aの蒸気入口34を管路36aにより分縮器2の留出口22と接続する。その他の膜モジュール3Aは、実施の形態1と同様に、前位側に位置する処理室31Aの蒸気出口35と後位側に位置する処理室31Aの蒸気入口34を管路36b,36c,36dによりそれぞれ接続し、最後位に位置する処理室31Aの蒸気出口43を管路61により濃縮液回収タンク62と接続する。   In the case of adopting a configuration in which a plurality of membrane modules 3A are provided, the steam inlet 34 of the processing chamber 31A of any one membrane module 3A is connected to the outlet 22 of the condenser 2 by a pipe 36a. In the other membrane module 3A, as in the first embodiment, the steam outlet 35 of the processing chamber 31A located on the front side and the steam inlet 34 of the processing chamber 31A located on the rear side are connected to the pipelines 36b, 36c, and 36d. And the steam outlet 43 of the processing chamber 31A located at the rearmost position is connected to the concentrated liquid recovery tank 62 through a pipe 61.

また、前記蒸気入口34を前記留出口22と接続した膜モジュール3Aの加熱室40の熱媒入口42と最後位に位置する膜モジュール3Aの加熱室40の熱媒出口43を管路44により接続する。その他の膜モジュール3Aは、実施の形態1と同様に、前位側に位置する処理室31Aの加熱室40の熱媒出口43と後位側に位置する加熱室40の熱媒入口42を管路45a,45b,45cにより、それぞれ接続してセットされる。他の構成は実施の形態1と同様である。
なお、蒸留塔1の塔底部側の構成については実施の形態2の構成を採用してもよい。また、蒸留手段100の分縮器2については実施の形態3の構成の分縮器2を採用することもできる。
Further, a heat medium outlet 42 of the heating chamber 40 of the membrane module 3A in which the steam inlet 34 is connected to the distillation outlet 22 and a heat medium outlet 43 of the heating chamber 40 of the membrane module 3A located at the last position are connected by a pipe 44. To do. As in the first embodiment, the other membrane module 3A is provided with a heat medium outlet 43 of the heating chamber 40 of the processing chamber 31A located on the front side and a heat medium inlet 42 of the heating chamber 40 located on the rear side. They are connected and set by paths 45a, 45b and 45c, respectively. Other configurations are the same as those in the first embodiment.
Note that the configuration of the second embodiment may be adopted as the configuration on the bottom side of the distillation column 1. Further, as the partial condenser 2 of the distillation unit 100, the partial condenser 2 having the configuration of the third embodiment can be adopted.

実施の形態4の分離装置は上記のように構成され、実施の形態1の分離装置と同様に使用するものであり、これにより、実施の形態1と同様の作用効果を奏する。なお、実施の形態4の分離装置によれば、膜分離手段200による膜分離作用の効率性を一層向上する。   The separation device according to the fourth embodiment is configured as described above, and is used in the same manner as the separation device according to the first embodiment. Thus, the same effects as those of the first embodiment can be achieved. In addition, according to the separation apparatus of Embodiment 4, the efficiency of the membrane separation action by the membrane separation means 200 is further improved.

図8は本発明のさらに他の実施の形態(実施の形態5)の分離装置の全体構成を概略的に示す説明図である。実施の形態5は本発明の分離装置を実験用装置に適用した一例を示すものである。   FIG. 8 is an explanatory diagram schematically showing the overall configuration of a separation apparatus according to still another embodiment (Embodiment 5) of the present invention. Embodiment 5 shows an example in which the separation apparatus of the present invention is applied to an experimental apparatus.

実施の形態5の分離装置の蒸留手段100は、所望量の液体混合物81を収容して加熱蒸発させる所望容量の釜80を備える。釜80は底部側に循環管路82を備え、前記管路82にポンプ83及びパイプヒータ84が介装して設けてあり、釜80内の液体混合物81を所望温度に加熱して循環させるように構成してある。液体混合物81の加熱温度はヒータ84に印加する電圧により調整する。   The distillation means 100 of the separation apparatus according to the fifth embodiment includes a kettle 80 having a desired capacity for containing a desired amount of the liquid mixture 81 and heating and evaporating it. The pot 80 is provided with a circulation line 82 on the bottom side, and a pump 83 and a pipe heater 84 are provided in the line 82 so that the liquid mixture 81 in the pot 80 is heated to a desired temperature and circulated. It is configured. The heating temperature of the liquid mixture 81 is adjusted by the voltage applied to the heater 84.

前記釜80は、釜80内に挿入して設けた温度計85を備え、釜80内の液体混合物の温度を測定可能に構成してある。実施の形態5の蒸留塔1は塔底部が開口され、塔底部を釜80の上端口部80aに気密性を保持して着脱可能に連結して立設させるように構成してある。これにより、釜80内の液体混合物を加熱して蒸発させ、混合蒸気を塔1内へ供給して上昇させるように構成してある。
実施の形態5の蒸留塔1、分縮器2、釜80、膜モジュール3a…3dの蒸気分離処理室31、加熱手段4の熱交換用の加熱室40及び各管路等は耐熱ガラス等のガラス材で製造されている。他の構成は実施の形態1と同様である。なお、実施の形態5においては、一部の符号を省略してある。
The pot 80 includes a thermometer 85 provided by being inserted into the pot 80, and is configured to be able to measure the temperature of the liquid mixture in the pot 80. The distillation column 1 of the fifth embodiment is configured such that the bottom of the column is opened, and the column bottom is detachably connected to the upper end port 80a of the kettle 80 while being detachably connected. Thus, the liquid mixture in the pot 80 is heated and evaporated, and the mixed vapor is supplied into the tower 1 and raised.
The distillation column 1, the fractionator 2, the kettle 80, the vapor separation processing chamber 31 of the membrane module 3a ... 3d, the heating chamber 40 for heat exchange of the heating means 4 and the respective pipes of the fifth embodiment are made of heat-resistant glass or the like. Manufactured from glass. Other configurations are the same as those in the first embodiment. In the fifth embodiment, some symbols are omitted.

実施の形態5の分離装置は上記のように構成され、釜80内の液体混合物81を加熱しながら循環させ、釜80内で蒸発させて成分分離するものである。これにより実施の形態1と同様の作用効果を発揮する。なお、実施の形態5において、前記釜80に代え、フラスコ等を採用し、マントルヒータその他の加熱器で加熱する等の構成に変更可能なこと勿論である。   The separation apparatus according to the fifth embodiment is configured as described above, and circulates the liquid mixture 81 in the kettle 80 while heating and evaporates the kettle 80 to separate components. As a result, the same effects as those of the first embodiment are exhibited. In the fifth embodiment, it is needless to say that a configuration such as employing a flask or the like and heating with a mantle heater or other heater instead of the kettle 80 can be used.

なお、上記した各実施の形態の分離装置は一例として開示したもので、本発明は上記の実施の形態に限定されるものではなく、特許請求の範囲に記載の技術思想を越脱しない範囲内において任意に変更可能なものである。   Note that the separation device of each of the above embodiments is disclosed as an example, and the present invention is not limited to the above embodiment, and does not depart from the technical idea described in the claims. It can be changed arbitrarily.

次に本発明の実施の形態5の分離装置を用いて実施した実験例の一例について説明する。実験例はエタノール5重量%(wt%)水溶液を原料(液体混合物)とし、本発明と比較例とを比較して二種類の実験(実験例1と実験例2)について行った。実験例1は蒸留手段のみで実施、実験例2は蒸留手段と膜分離手段とを組み合わせて実施した。実験例1は蒸留手段と膜分離手段とを切り離し、留出口22に管路の一端を接続すると共に管路の他端に回収容器(いずれも図示せず)を接続し、留出口から留出する留出蒸気を前記管路に介装した凝縮器(図示せず)で凝縮して前記容器に回収し、この回収液を測定した。なお、前記管路には、留出口の近くに位置させて開閉コック(図示せず)が介装して設けてある。実験例2は、蒸留手段と膜分離手段とを組み合わせた本発明の実施の形態5の分離装置を用い、濃縮液回収タンク62に回収した回収液を測定した。   Next, an example of an experiment performed using the separation apparatus according to Embodiment 5 of the present invention will be described. In the experimental example, an ethanol 5 wt% (wt%) aqueous solution was used as a raw material (liquid mixture), and the present invention and the comparative example were compared and two types of experiments (experimental example 1 and experimental example 2) were performed. Experimental Example 1 was conducted using only distillation means, and Experimental Example 2 was conducted using a combination of distillation means and membrane separation means. In Experimental Example 1, the distillation means and the membrane separation means are separated, one end of the pipe line is connected to the distillation outlet 22, and a recovery container (none of which is shown) is connected to the other end of the pipe, and the distillate is distilled from the distillation outlet. The distillate vapor to be condensed was condensed by a condenser (not shown) interposed in the pipe line and collected in the container, and the recovered liquid was measured. The pipe is provided with an open / close cock (not shown) located near the outlet. In Experimental Example 2, the recovered liquid collected in the concentrated liquid recovery tank 62 was measured using the separation apparatus according to the fifth embodiment of the present invention in which the distillation means and the membrane separation means were combined.

(実験例1)
まず、実験例1について説明する。
(実験装置…蒸留装置)
蒸留塔:外径70mmφ×高さ700mm。内部に充填物を充填。
分縮器:外径50mmφ×長さ150mm。
釜容量:10L。
(測定方法)
原料(エタノール5wt%水溶液)を釜に8000g(純分400g)収容し、パイプヒータの電圧を170Vに設定し、原料をポンプで循環しながら加熱して釜内で蒸発させ、全環流の状態とする。分縮器の熱交換用冷媒として水道水(20℃)を使用し、コイル管の入口を水道の蛇口に接続し、水道水の流量を適当に調整し、連続的に供給してコイル管を流通させる。
原料の加熱から所定時間(1時間)経過後、前記コックを開け、蒸留蒸気を留出口から流出させて回収し、この回収液の濃度(エタノール純度)及び回収率について測定し、その測定結果を表1に示す。比較例と本発明の相違点は、熱交換用媒体(水道水)の供給の有無のみである(比較例では水を供給しない)。なお、前記回収容器は測定時ごとに別の容器と交換し、前記測定は交換した容器内の回収液を用いて行った。
(Experimental example 1)
First, Experimental Example 1 will be described.
(Experimental equipment: distillation equipment)
Distillation tower: outer diameter 70 mmφ × height 700 mm. Filled inside.
Reducer: outer diameter 50 mmφ × length 150 mm.
Kettle capacity: 10L.
(Measuring method)
The raw material (ethanol 5 wt% aqueous solution) is stored in a kettle with 8000 g (pure content 400 g), the pipe heater voltage is set to 170 V, the raw material is heated while circulating with a pump and evaporated in the kettle. To do. Tap water (20 ° C) is used as a refrigerant for heat exchange of the condenser, the inlet of the coil pipe is connected to a tap, the flow rate of tap water is appropriately adjusted, and the coil pipe is supplied continuously. Circulate.
After the elapse of a predetermined time (1 hour) from the heating of the raw material, the cock is opened, the distilled vapor is discharged from the distillation outlet and recovered, and the concentration (ethanol purity) and recovery rate of the recovered liquid are measured. Table 1 shows. The difference between the comparative example and the present invention is only the presence or absence of supply of a heat exchange medium (tap water) (in the comparative example, no water is supplied). In addition, the said collection | recovery container was replaced | exchanged for another container for every measurement, and the said measurement was performed using the collection | recovery liquid in the replaced container.

Figure 2009066519
Figure 2009066519

表1の結果から、本発明によれば、エタノール純度は比較例に比べてはるかに高くなることが確認できた。エタノール回収率については、測定開始当初は比較例の方が高いが、後半から本発明の方が優勢となる。なお、表1には記載されていないが、処理時間60分の時点における本発明による全回収液の測定値は、エタノール純度86.0wt%、回収率95%であることを確認した。   From the results in Table 1, it was confirmed that according to the present invention, the ethanol purity was much higher than that of the comparative example. Regarding the ethanol recovery rate, the comparative example is higher at the beginning of the measurement, but the present invention is dominant from the latter half. Although not shown in Table 1, it was confirmed that the measured values of all the collected liquids according to the present invention at a processing time of 60 minutes were an ethanol purity of 86.0 wt% and a recovery rate of 95%.

(実験例2)
次に、実験例2について説明する。
(実験装置…膜分離装置)
分離膜モジュールの分離膜は、外径12mmφ、長さ400mmの管状ゼオライト膜(三井造船社製のゼオライト4A)を採用。熱媒は油を採用。蒸留装置は実験例1と同一である。
(測定方法)
真空ポンプによる真空度を3mmHg(400Pa)に調整し、熱媒の温度を105℃に調整した。原料の蒸留は実験例1と同一条件で実施し、留出口から留出する留出蒸気を第1の膜モジュールに供給し、処理室内で加熱して膜分離する。透過蒸気は透過液回収容器へ回収し、分離膜を透過しない蒸気(濃縮蒸気)を第4の膜モジュールの蒸気出口から排出させて濃縮液回収タンクへ回収する。この回収液の濃度(エタノール純度)及び回収率について測定し、その測定結果を表2に示す。比較例と本発明の相違点は、実験例1と同様に熱交換用媒体(水道水)の供給の有無のみである。塔頂温度(留出口の近くの留出蒸気の温度)についても測定(本発明のみ)した。
(Experimental example 2)
Next, Experimental Example 2 will be described.
(Experimental device ... Membrane separation device)
The separation membrane module uses a tubular zeolite membrane (Zeolite 4A manufactured by Mitsui Engineering & Shipbuilding) with an outer diameter of 12 mmφ and a length of 400 mm. Oil is used as the heating medium. The distillation apparatus is the same as Experimental Example 1.
(Measuring method)
The degree of vacuum by the vacuum pump was adjusted to 3 mmHg (400 Pa), and the temperature of the heating medium was adjusted to 105 ° C. Distillation of the raw material is carried out under the same conditions as in Experimental Example 1. Distilled vapor distilled from the distillation outlet is supplied to the first membrane module and heated in the processing chamber for membrane separation. The permeate vapor is collected in the permeate collection container, and the vapor that does not pass through the separation membrane (concentrated vapor) is discharged from the vapor outlet of the fourth membrane module and collected in the concentrate collection tank. The concentration (ethanol purity) and recovery rate of this recovered liquid were measured, and the measurement results are shown in Table 2. The difference between the comparative example and the present invention is only the presence or absence of supply of a heat exchange medium (tap water) as in Experimental Example 1. The tower top temperature (temperature of the distilled steam near the distillation outlet) was also measured (only the present invention).

Figure 2009066519
Figure 2009066519

表2の結果から明らかなとおり、本発明によれば、共沸濃度(95.6wt%)以上の濃度(99.5wt%)にまで精製されたエタノールが得られた。一方、比較例では、共沸濃度以上に達することはなかった。なお、エタノール回収率は、実験例1と同様に開始当初は比較例に比べて劣るが、後半から優勢となることも確認された。   As is apparent from the results in Table 2, according to the present invention, ethanol purified to a concentration (99.5 wt%) higher than the azeotropic concentration (95.6 wt%) was obtained. On the other hand, in the comparative example, the azeotropic concentration was not reached. The ethanol recovery rate was inferior to that of the comparative example at the beginning of the experiment as in Experimental Example 1, but it was also confirmed that it became dominant from the latter half.

上記のように本発明によれば、比較例に比べて分離性能及び分離効率性を大巾に向上することができた。この事実は予想し得ないことであった。   As described above, according to the present invention, the separation performance and the separation efficiency can be greatly improved as compared with the comparative example. This fact was unexpected.

本発明の一実施の形態の分離装置の全体構成を示す系統図である。1 is a system diagram showing an overall configuration of a separation apparatus according to an embodiment of the present invention. 分縮器の部分を拡大し、その構成を概略的に示す断面図である。It is sectional drawing which expands the part of a voltage divider and shows the structure roughly. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 分離膜を拡大し、その構成を概略的に示す説明図である。It is explanatory drawing which expands a separation membrane and shows the structure roughly. 本発明の他の実施の形態の分離装置の要部の構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of the principal part of the separation apparatus of other embodiment of this invention. 本発明のさらに他の実施の形態の分離装置の要部の構成を概略的に示す説明図である。It is explanatory drawing which shows schematically the structure of the principal part of the separation apparatus of further another embodiment of this invention. 本発明のさらに他の実施の形態の分離装置の要部示すものであって、同図(a)は分離膜モジュールの構成を概略的に示す説明図、同図(b)は同図(a)のB−B線拡大断面図である。The principal part of the separation apparatus of further another embodiment of this invention is shown, Comprising: The figure (a) is explanatory drawing which shows the structure of a separation membrane module roughly, The figure (b) is the figure (a). It is a BB line expanded sectional view of). 本発明の分離装置を実験用装置に適用した一例の構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of an example which applied the separation apparatus of this invention to the apparatus for experiment.

符号の説明Explanation of symbols

1 蒸留塔
2 分縮器
3a…3d 回動操作用ハンドル
10 充填物
31 蒸気分離処理室
32 分離膜
DESCRIPTION OF SYMBOLS 1 Distillation tower 2 Condenser 3a ... 3d Handle 10 for rotation operation Packing material 31 Steam separation processing chamber 32 Separation membrane

Claims (3)

液体混合物を分離する蒸留手段と、前記蒸留手段の塔頂部から留出する混合蒸気を膜分離法により分離する膜分離手段とからなる分離装置であって、
前記蒸留手段は、充填物を充填した蒸留塔と、前記蒸留塔の塔頂に設けた分縮器とを備え、
前記膜分離手段は、蒸気分離処理室及び前記処理室内に設けた分離膜を有する分離膜モジュールと、前記処理室内を加熱する加熱手段とを備え、
前記分縮器を通過して留出する混合蒸気を前記膜モジュールへ供給して前記処理室内で加熱し、膜分離するように構成した
蒸留と膜分離を組み合わせた分離装置。
A separation apparatus comprising a distillation means for separating a liquid mixture, and a membrane separation means for separating a mixed vapor distilled from the top of the distillation means by a membrane separation method,
The distillation means includes a distillation column filled with a packing, and a partial condenser provided at the top of the distillation column,
The membrane separation means comprises a vapor separation treatment chamber and a separation membrane module having a separation membrane provided in the treatment chamber, and a heating means for heating the treatment chamber,
A separation apparatus combining distillation and membrane separation, configured to supply mixed steam distilled through the partial condenser to the membrane module and heat in the processing chamber to perform membrane separation.
前記膜分離手段は、前記膜モジュールを複数基備えている請求項1に記載の蒸留と膜分離を組み合わせた分離装置。   The separation apparatus according to claim 1, wherein the membrane separation means includes a plurality of the membrane modules. 前記膜モジュールの前記分離膜がゼオライト膜で構成されている請求項1又は2に記載の蒸留と膜分離を組み合わせた分離装置。   The separation apparatus combining distillation and membrane separation according to claim 1 or 2, wherein the separation membrane of the membrane module is composed of a zeolite membrane.
JP2007237516A 2007-09-13 2007-09-13 Separator employing distillation and membrane separation in combination Pending JP2009066519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237516A JP2009066519A (en) 2007-09-13 2007-09-13 Separator employing distillation and membrane separation in combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237516A JP2009066519A (en) 2007-09-13 2007-09-13 Separator employing distillation and membrane separation in combination

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012003276U Continuation JP3177643U (en) 2012-06-01 2012-06-01 Separation device combining distillation and membrane separation

Publications (1)

Publication Number Publication Date
JP2009066519A true JP2009066519A (en) 2009-04-02

Family

ID=40603348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237516A Pending JP2009066519A (en) 2007-09-13 2007-09-13 Separator employing distillation and membrane separation in combination

Country Status (1)

Country Link
JP (1) JP2009066519A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008014A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Associated-water concentration system and associated-water concentration method
US9120724B2 (en) 2011-09-09 2015-09-01 Takara Shuzo Co., Ltd. Method for producing absolute alcohol and absolute alcohol
JP2015205240A (en) * 2014-04-18 2015-11-19 株式会社ササクラ Evaporative concentration device and evaporative concentration method
CN108905259A (en) * 2018-07-18 2018-11-30 芜湖青悠静谧环保科技有限公司 A kind of novel process unit for preparing alcohol fuel
JP2020175333A (en) * 2019-04-18 2020-10-29 三菱ケミカル株式会社 Membrane separation system and separation treatment method of mixture of organic compound and water

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654223A (en) * 1979-08-02 1981-05-14 Degussa Method and apparatus for refining crude cyanogen chloride by fractional distillation
JPS60260529A (en) * 1984-06-06 1985-12-23 Hitachi Zosen Corp Method of separation of ethanol
JPH0228720U (en) * 1988-08-10 1990-02-23
JPH05226A (en) * 1991-06-21 1993-01-08 Ube Ind Ltd Dehydration and concentration of aqueous solution of organic matter
JP2001328957A (en) * 2000-03-15 2001-11-27 Mitsui Chemicals Inc Method for producing aromatic carboxylic acid
JP2003093828A (en) * 2001-09-27 2003-04-02 Mitsui Eng & Shipbuild Co Ltd Distillation apparatus equipped with separation membrane module and distillation column
JP2003093827A (en) * 2001-09-26 2003-04-02 Tsukishima Kikai Co Ltd Azeotropic mixture separation method, azotropic mixture separator and distillation column
JP2004089882A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Separation apparatus for mixture, separation method using the same and method for producing aromatic carboxylic acid
JP2005095782A (en) * 2003-09-25 2005-04-14 Mitsui Eng & Shipbuild Co Ltd Membrane separation/reaction system
JP2005103407A (en) * 2003-09-30 2005-04-21 New Energy & Industrial Technology Development Organization Heat exchanger using tower top vapor and tower bottom liquid and its heat exchange method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654223A (en) * 1979-08-02 1981-05-14 Degussa Method and apparatus for refining crude cyanogen chloride by fractional distillation
JPS60260529A (en) * 1984-06-06 1985-12-23 Hitachi Zosen Corp Method of separation of ethanol
JPH0228720U (en) * 1988-08-10 1990-02-23
JPH05226A (en) * 1991-06-21 1993-01-08 Ube Ind Ltd Dehydration and concentration of aqueous solution of organic matter
JP2001328957A (en) * 2000-03-15 2001-11-27 Mitsui Chemicals Inc Method for producing aromatic carboxylic acid
JP2003093827A (en) * 2001-09-26 2003-04-02 Tsukishima Kikai Co Ltd Azeotropic mixture separation method, azotropic mixture separator and distillation column
JP2003093828A (en) * 2001-09-27 2003-04-02 Mitsui Eng & Shipbuild Co Ltd Distillation apparatus equipped with separation membrane module and distillation column
JP2004089882A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Separation apparatus for mixture, separation method using the same and method for producing aromatic carboxylic acid
JP2005095782A (en) * 2003-09-25 2005-04-14 Mitsui Eng & Shipbuild Co Ltd Membrane separation/reaction system
JP2005103407A (en) * 2003-09-30 2005-04-21 New Energy & Industrial Technology Development Organization Heat exchanger using tower top vapor and tower bottom liquid and its heat exchange method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008014A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Associated-water concentration system and associated-water concentration method
JP5495404B2 (en) * 2010-07-12 2014-05-21 株式会社日立製作所 Accompanying water concentration system and accompanying water concentration method
AU2010357341B2 (en) * 2010-07-12 2014-06-05 Hitachi, Ltd. Associated-water concentration system and associated-water concentration method
US9120724B2 (en) 2011-09-09 2015-09-01 Takara Shuzo Co., Ltd. Method for producing absolute alcohol and absolute alcohol
JP2015205240A (en) * 2014-04-18 2015-11-19 株式会社ササクラ Evaporative concentration device and evaporative concentration method
CN108905259A (en) * 2018-07-18 2018-11-30 芜湖青悠静谧环保科技有限公司 A kind of novel process unit for preparing alcohol fuel
JP2020175333A (en) * 2019-04-18 2020-10-29 三菱ケミカル株式会社 Membrane separation system and separation treatment method of mixture of organic compound and water
JP7238567B2 (en) 2019-04-18 2023-03-14 三菱ケミカル株式会社 MEMBRANE SEPARATION SYSTEM AND METHOD FOR SEPARATION OF ORGANIC COMPOUND/WATER MIXTURE

Similar Documents

Publication Publication Date Title
JP3764894B2 (en) Method for concentrating water-soluble organic substances
JP4491153B2 (en) A method for purifying a liquid by membrane distillation, in particular for the purpose of producing demineralized water from seawater, blackish water or process water
JP6783384B2 (en) NMP aqueous solution purification system and purification method
Klinov et al. Experimental investigation and modeling through using the solution-diffusion concept of pervaporation dehydration of ethanol and isopropanol by ceramic membranes HybSi
Khayet et al. Possibility of nuclear desalination through various membrane distillation configurations: a comparative study
JP2009066519A (en) Separator employing distillation and membrane separation in combination
CA2675397C (en) Dehydrating apparatus, dehydration system, and dehydration method
KR101459702B1 (en) Membrane distillation apparatus by Using waste heat recovery
Sato et al. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution
JP2016190220A (en) Membrane distillation system and operation method thereof
JP2016041419A (en) Separation method and separation apparatus
CA2675399C (en) Dehydration system and dehydration method
JP2020146639A (en) Dehydration apparatus and dehydration method of organic solvent
JP3177643U (en) Separation device combining distillation and membrane separation
JP2010115596A (en) Membrane container
Sato et al. Separation of ethanol/ethyl acetate mixture by pervaporation at 100–130 C through NaY zeolite membrane for industrial purpose
JP4360194B2 (en) Method and apparatus for concentrating water-soluble organic substances
JP7217648B2 (en) Dehydrating apparatus and dehydrating method for mixed liquid containing organic solvent and water
JP2007083138A (en) Distillation process and distillation plant
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
CA2676899A1 (en) Method for transporting fluid
EP3135635B1 (en) Method for purifying fluids by distillation
JP2017042724A (en) Separation method
JP2006263574A (en) Double-cylinder heating type membrane module
JP7177733B2 (en) Purification system and purification method for mixed liquid containing organic solvent and water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424