JPS6133017B2 - - Google Patents
Info
- Publication number
- JPS6133017B2 JPS6133017B2 JP56107516A JP10751681A JPS6133017B2 JP S6133017 B2 JPS6133017 B2 JP S6133017B2 JP 56107516 A JP56107516 A JP 56107516A JP 10751681 A JP10751681 A JP 10751681A JP S6133017 B2 JPS6133017 B2 JP S6133017B2
- Authority
- JP
- Japan
- Prior art keywords
- tower
- water
- absorption
- column
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 55
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 claims description 46
- 238000010521 absorption reaction Methods 0.000 claims description 39
- 238000011084 recovery Methods 0.000 claims description 34
- 239000007788 liquid Substances 0.000 claims description 29
- 239000002904 solvent Substances 0.000 claims description 25
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 18
- 230000018044 dehydration Effects 0.000 claims description 18
- 238000006297 dehydration reaction Methods 0.000 claims description 18
- 150000002825 nitriles Chemical class 0.000 claims description 15
- 238000004821 distillation Methods 0.000 claims description 13
- 238000010791 quenching Methods 0.000 claims description 12
- 230000000171 quenching effect Effects 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 238000000895 extractive distillation Methods 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 239000000047 product Substances 0.000 description 21
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 230000002745 absorbent Effects 0.000 description 6
- 239000002250 absorbent Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】
この発明はオレフインのアンモオキシデーシヨ
ン反応による不飽和ニトリルの製造法、例えばプ
ロピレンあるいはイソブチレンのアンモオキシデ
ーシヨン反応によるアクリロニトリルあるいはメ
タクリロニトリルの製造法に関する。その目的は
製造系内で発生する比較的低温の今まで利用し得
なかつた顕熱あるいは潜熱を冷熱源あるいは加熱
源に転換して有効利用するエネルギー効率が極め
て高い製造法を提案するにある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing unsaturated nitriles by the ammoxidation reaction of olefins, such as a process for producing acrylonitrile or methacrylonitrile by the ammoxidation reaction of propylene or isobutylene. The purpose is to propose an extremely energy-efficient manufacturing method that converts the relatively low-temperature sensible or latent heat generated in the manufacturing system into a cold or heating source and uses it effectively.
オレフインのアンモオキシデーシヨン反応によ
る不飽和ニトリルの製造工程は、高温の反応物を
水で冷却し、多量の水(例えば、特許公告公報昭
41−6571号によるとアクリロニトリルに対し17.8
倍(重量)の吸収水を使用)で吸収し、吸収液を
加熱蒸留、冷却凝縮を繰返し、不飽和ニトリルを
副反応物や、未反応物から分離精製して得てい
る。このため、加熱用、冷却用のエネルギーは甚
だ大きく、コストに占めるエネルギー費が高かつ
た。 The process for producing unsaturated nitriles by the ammoxidation reaction of olefins involves cooling the high-temperature reactants with water and adding a large amount of water (for example,
According to No. 41-6571, 17.8 for acrylonitrile.
The unsaturated nitrile is obtained by separating and purifying the unsaturated nitrile from side reactants and unreacted products by repeating heating distillation and cooling condensation of the absorbed liquid. Therefore, the energy required for heating and cooling is extremely large, and the energy cost is high.
以下アクリロニトリルの製造例により、従来の
プロセスを具体的に説明する。 The conventional process will be specifically explained below using an example of producing acrylonitrile.
反応器1内で酸化触媒の存在下、連続供給され
たプロピレン、アンモニア、空気が高温気相でア
ンモオキシデーシヨン反応し、アクリロニトリ
ル、アセトニトリル、青酸、高沸点有機物等の反
応生成物、および未反応物の混合物が生成する。
この高温ガス状の混合物を熱交換器2を通り、急
冷塔3に送り込み、ライン4を経由し塔頂から流
下する冷却用循環水と接触させ低温ガスに冷却す
る。この冷却過程において、高沸点有機物や生成
水分は循環水に取り込まれ除去され、必要に応じ
循環水中に鉱酸を添加し、反応ガス中の未反応ア
ンモニアを除去する。昇温した循環水は塔底から
ライン5を通り流出し冷却器6で冷却後再び塔頂
にライン4を通り循環供給され、一部は系外に排
出される。 In the presence of an oxidation catalyst in reactor 1, continuously supplied propylene, ammonia, and air undergo an ammoxidation reaction in a high-temperature gas phase, and reaction products such as acrylonitrile, acetonitrile, hydrocyanic acid, and high-boiling organic substances, and unreacted A mixture of substances is produced.
This high-temperature gaseous mixture is sent through a heat exchanger 2 to a quenching tower 3, and is brought into contact with circulating water for cooling flowing down from the top of the tower via a line 4 to be cooled to a low-temperature gas. In this cooling process, high-boiling organic substances and produced water are taken into the circulating water and removed, and if necessary, mineral acid is added to the circulating water to remove unreacted ammonia in the reaction gas. The heated circulating water flows out from the bottom of the tower through a line 5, is cooled by a cooler 6, and is again circulated and supplied to the top of the tower through a line 4, and a portion is discharged to the outside of the system.
急冷塔3の塔頂からライン7を通り吸収塔8の
下方部に導入されたガスは、塔頂から塔内を流下
するライン9を経て供給された吸収水に接触し
て、アクリロニトリル、アセトニトリル、青酸は
吸収水に吸収される。この吸収液は塔底液として
ライン10から抜出され、吸収されないガスは塔
頂からライン11を経て排出される。 The gas introduced into the lower part of the absorption tower 8 from the top of the quenching tower 3 through the line 7 comes into contact with the absorption water supplied through the line 9 flowing down inside the tower from the top of the tower, and produces acrylonitrile, acetonitrile, Hydrocyanic acid is absorbed into absorbed water. This absorption liquid is withdrawn from line 10 as a bottom liquid, and unabsorbed gas is discharged from the top of the column via line 11.
吸収液は熱交換器12を通り昇温し、回収塔1
3にそのやや上方位置から供給されリボイラー1
4で加熱される。回収塔は通常少なくとも50、好
ましくは60〜100段のトレイを有し塔上部にライ
ン15を経て送り込まれた溶媒水と向流接触して
抽出蒸留を行ない、塔頂から青酸および水を含む
粗アクリロニトリル蒸気がライン16を経て留出
し、ライン15を経て、アセトニトリル放散塔1
8を通らない溶媒水分流が抜き出され、熱交換器
12を通り降温し、ライン9を経て吸収水として
吸収塔8に供給される。さらに塔底から溶媒水が
ライン17を経て抜き出され回収塔13に送り込
まれる。ライン16から留出した粗アクリロニト
リル蒸気は凝縮器19で冷却し凝縮液はデカンタ
ー20で油・水分離し、油層は脱青酸塔21に送
り込まれ、水層は回収塔13に戻される。 The absorption liquid passes through a heat exchanger 12 to raise its temperature, and then passes through a recovery tower 1.
Reboiler 1 is supplied to Reboiler 3 from a position slightly above it.
It is heated at 4. The recovery column usually has at least 50 trays, preferably 60 to 100 trays, and performs extractive distillation in countercurrent contact with solvent water fed through line 15 to the top of the column, and crude oil containing hydrocyanic acid and water is removed from the top of the column. Acrylonitrile vapor is distilled out via line 16, and then via line 15 to acetonitrile stripping tower 1.
The solvent water stream that does not pass through 8 is withdrawn, cooled through a heat exchanger 12 and fed to the absorption column 8 via line 9 as absorption water. Further, solvent water is extracted from the bottom of the column via line 17 and sent to recovery column 13. The crude acrylonitrile vapor distilled from the line 16 is cooled in a condenser 19, the condensate is separated from oil and water in a decanter 20, the oil layer is sent to a hydrocyanic removal tower 21, and the water layer is returned to the recovery tower 13.
脱青酸塔21はボイラー22で加熱され、蒸留
により塔頂から青酸が留出し凝縮器23で分縮さ
れ青酸蒸気が分離され、塔底液はライン24を通
り脱水塔25に送られる。脱水塔25はリボイラ
ー26で加熱され、蒸留により塔頂から留出する
蒸気を凝縮器27で凝縮して油・水分離して脱水
し、塔底液は製品塔28に送られる。製品塔28
はリボイラー29で加熱され、蒸留により塔頂か
ら留出する蒸気を凝縮器30で凝縮して製品品位
のアクリロニトリルが得られ、塔底液は引出され
排出される。 The hydrocyanic acid removal tower 21 is heated by a boiler 22, and hydrocyanic acid is distilled from the top of the tower by distillation, decomposed in a condenser 23 to separate hydrocyanic acid vapor, and the bottom liquid is sent to a dehydration tower 25 through a line 24. The dehydration tower 25 is heated by a reboiler 26, and the steam distilled from the top of the tower is condensed in a condenser 27 to separate oil and water for dehydration, and the bottom liquid is sent to a product tower 28. Product tower 28
is heated in a reboiler 29, and the vapor distilled from the top of the column is condensed in a condenser 30 to obtain product-grade acrylonitrile, and the bottom liquid is drawn out and discharged.
従来のアクリロニトリルの製法は上記のごとく
であり、工程中には多くの加熱部分と冷却部分と
が組込まれている。すなわち、回収塔13、脱青
酸塔21、脱水塔25、製品塔28にはそれぞれ
リボイラー14,22,26,29および凝縮器
19,23,27,30があり、急冷器3には冷
却器6が付帯している。これら、加熱、冷却を繰
返す工程のエネルギー効率を高めるために、従来
様々な対策が試みられている。例えば公開特許公
報昭和55−81848号によると、回収塔から出る高
温(110〜130℃)の溶媒水を脱青酸塔や製品塔の
リボイラー熱源として使用した後、吸収液を熱交
換器12で予熱し、吸収水として用いる提案がな
されている。しかしこの方法においては、溶媒水
が降温してしまうので、回収塔13に供給する吸
収液を予熱(第1図熱交換器12において)する
には熱量不足となり、回収塔熱源(リボイラー1
4)を余計に必要としたりあるいは熱交換器12
の伝熱面積を著しく広くしなければならない欠点
があつた。 The conventional method for producing acrylonitrile is as described above, and the process incorporates many heating sections and cooling sections. That is, the recovery tower 13, dehydrogenation tower 21, dehydration tower 25, and product tower 28 have reboilers 14, 22, 26, 29 and condensers 19, 23, 27, 30, respectively, and the quencher 3 has a cooler 6. is attached. Various measures have been attempted in the past in order to improve the energy efficiency of these processes that repeat heating and cooling. For example, according to Published Patent Publication No. 1981-81848, after the high temperature (110 to 130°C) solvent water discharged from the recovery tower is used as a reboiler heat source for the prussic acid removal tower and product tower, the absorption liquid is preheated in a heat exchanger 12. However, proposals have been made to use it as absorption water. However, in this method, since the temperature of the solvent water drops, there is insufficient heat to preheat the absorption liquid supplied to the recovery tower 13 (in the heat exchanger 12 in Figure 1), and the heat source of the recovery tower (reboiler 12) is insufficient.
4) or heat exchanger 12
The disadvantage was that the heat transfer area had to be significantly widened.
この発明は上記事情に鑑みなされたもので、そ
の要旨は、オレフインのアンモオキシデーシヨン
反応により生成する不飽和ニトリル、飽和ニトリ
ル類、および青酸を含む反応混合物を急冷塔にお
いて水冷却し、吸収塔において吸収水中に吸収さ
せ、得られた吸収液を回収塔において溶媒水を用
い抽出蒸留し、塔頂から粗不飽和ニトリル、青酸
および水を含む留出物を得、この留出物から青酸
および水等を脱青酸塔、脱水塔および製品塔等蒸
留塔類において蒸留分離して不飽和ニトリルを
得、前記回収塔において不飽和ニトリルおよび青
酸を含む留分を実質的に留出除去した溶媒水流で
あつて、アセトニトリル放散塔を通らない溶媒水
分流を回収塔から分取し、吸収水として吸収塔に
もどし循環使用する不飽和ニトリルの製造法にお
いて、吸収塔から流出する吸収液を前記分取溶媒
水で予熱し、回収塔に供給するに当り、前記吸収
液を予め急冷塔循環水の冷却器、脱水塔、製品塔
または回収塔留出蒸気凝縮器の少なくとも一つに
通液して予熱し、前記溶媒水は前記吸収液を予熱
する前に脱青酸塔、脱水塔および製品塔等の蒸留
塔類からの選択される少なくとも一塔の熱源とし
て使用することを特徴とする不飽和ニトリルの製
造法である。 This invention was made in view of the above circumstances, and its gist is that a reaction mixture containing unsaturated nitriles, saturated nitriles, and hydrocyanic acid produced by the ammoxidation reaction of olefins is cooled with water in a quench tower, and then The resulting absorption liquid is extracted and distilled using solvent water in a recovery column, and a distillate containing crude unsaturated nitrile, hydrocyanic acid and water is obtained from the top of the column, and from this distillate, hydrocyanic acid and Water, etc. is distilled and separated in distillation columns such as a hydrocyanic acid removal column, a dehydration column, and a product column to obtain unsaturated nitrile, and a solvent aqueous stream is obtained by distilling off substantially the fraction containing unsaturated nitrile and hydrocyanic acid in the recovery column. In a method for producing unsaturated nitrile in which a solvent water stream that does not pass through an acetonitrile stripping tower is separated from a recovery tower and returned to the absorption tower as absorbed water for circulation use, the absorption liquid flowing out from the absorption tower is collected in the aforementioned fractionated manner. Before preheating with solvent water and supplying it to the recovery tower, the absorption liquid is preheated by passing it through at least one of the quenching tower circulating water cooler, the dehydration tower, the product tower, or the recovery tower distillate vapor condenser. and, before preheating the absorption liquid, the solvent water is used as a heat source for at least one column selected from distillation columns such as a hydrocyanic acid removal column, a dehydration column, and a product column. It is a manufacturing method.
この発明においては、吸収液を急冷塔循環水、
冷却器、脱水塔、製品塔または回収塔留出蒸気凝
縮器の1つまたはそれらを組合せたものに通液し
て昇温させた後に、溶媒水で予熱して回収塔に供
給する。このため、溶媒水を吸収液を予熱する前
に、脱青酸塔、脱水塔、製品塔などの蒸留塔のリ
ボイラー熱源として用い降温していても、吸収液
を必要とする温度まで予熱することができ、回収
塔蒸留熱源を余計に必要としたり、吸収液を予熱
する熱交換器能力を増大させる必要もない。 In this invention, the absorption liquid is quenching tower circulating water,
After raising the temperature by passing the liquid through one or a combination of a cooler, a dehydration tower, a product tower, a product tower, and a recovery tower distillate vapor condenser, it is preheated with solvent water and supplied to the recovery tower. Therefore, even if solvent water is used as a reboiler heat source for a distillation column such as a prussic acid removal tower, dehydration tower, or product tower before preheating the absorption liquid, the absorption liquid cannot be preheated to the required temperature. This eliminates the need for an additional distillation heat source for the recovery column or for increasing the heat exchanger capacity for preheating the absorption liquid.
他方吸収塔から低温で流出する吸収液を、急冷
塔循環水冷却器、蒸留塔類の凝縮器に通液して循
環水の冷却や、留出蒸気の凝縮に利用するので、
これらに用いる冷却水の再生エネルギーが節減で
きる。 On the other hand, the absorption liquid flowing out from the absorption tower at a low temperature is passed through the quenching tower circulating water cooler and the condenser of the distillation column and used for cooling the circulating water and condensing the distilled vapor.
The regeneration energy of the cooling water used for these can be saved.
以下実施例により説明する。 This will be explained below using examples.
実施例 1
この実施例は第2図に示す通り、吸収塔8から
流出する吸収液を熱交換器12で溶媒水により予
熱するに先立つて、急冷塔3の循環水冷却器6に
通液して昇温した循環水により昇温せしめた。他
方回収塔13のライン15から流出した高温の溶
媒水を製品塔28のリボイラー29熱源とし使用
した後、吸収液予熱用熱交換器12に通液して吸
収液を予熱して吸収液を回収塔13に供給した。Example 1 As shown in FIG. 2, in this example, the absorption liquid flowing out from the absorption tower 8 is passed through the circulating water cooler 6 of the quenching tower 3 before being preheated with solvent water in the heat exchanger 12. The temperature was raised by circulating water that had been raised in temperature. On the other hand, the high temperature solvent water flowing out from the line 15 of the recovery tower 13 is used as a heat source for the reboiler 29 of the product tower 28, and then passed through the absorbent preheating heat exchanger 12 to preheat the absorbent and recover the absorbent. Column 13 was fed.
この結果、回収塔流出の溶媒水を製品塔28の
熱源に利用し熱源の削減ができ、同時に熱交換器
12の能力を殆んど増大することなく、吸収液を
適温まで予熱でき、回収塔熱源を余計に必要とす
ることはなかつた。また、急冷塔3の冷却器6の
冷却水が著しく節減された。 As a result, the solvent water flowing out of the recovery tower can be used as a heat source for the product column 28, reducing the heat source. At the same time, the absorption liquid can be preheated to an appropriate temperature without increasing the capacity of the heat exchanger 12, and the recovery tower No additional heat source was required. Furthermore, the amount of cooling water in the cooler 6 of the quenching tower 3 was significantly reduced.
この実施例においては、回収塔13から流出し
た溶媒水を製品塔28のリボイラー29の熱源と
し用いたが、このほか脱青酸塔21、脱水塔2
5、等蒸留塔類の1つあるいは2つ以上の熱源と
して用いてもよい。 In this embodiment, the solvent water flowing out from the recovery tower 13 was used as a heat source for the reboiler 29 of the product tower 28, but in addition to this, the hydrocyanic acid removal tower 21, the dehydration tower 2
5. It may be used as a heat source for one or more distillation columns.
実施例 2
この実施例は第3図に示す通り、吸収塔8から
流出する吸収液を熱交換器12で溶媒水により予
熱するに先立つて、回収塔13の凝縮器19に通
液して、回収塔の留出蒸気の顕熱および潜熱によ
り昇温せしめた。他方回収塔13のライン15か
ら流出した高温の溶媒水を製品塔28のリボイラ
ー29熱源として使用した後、吸収液予熱用熱交
換器12に通液して吸収液を予熱して吸収液を回
収塔13に供給した。Example 2 As shown in FIG. 3, in this example, before the absorption liquid flowing out from the absorption tower 8 is preheated with solvent water in the heat exchanger 12, it is passed through the condenser 19 of the recovery tower 13. The temperature was raised by sensible heat and latent heat of distilled steam from the recovery tower. On the other hand, the high temperature solvent water flowing out from the line 15 of the recovery tower 13 is used as a heat source for the reboiler 29 of the product tower 28, and then passed through the absorbent preheating heat exchanger 12 to preheat the absorbent and recover the absorbent. Column 13 was fed.
この結果回収塔流出の溶媒水を製品塔28の熱
源に利用し熱源の削減ができ、同時に熱交換器1
2の能力増大をほとんど図ることなく、吸収液を
適温まで予熱でき、回収塔熱源を余計に必要とす
ることはなかつた。また、回収塔の凝縮器19の
冷却水が不要となつた。 As a result, the solvent water flowing out of the recovery tower can be used as a heat source for the product tower 28, reducing the heat source, and at the same time, the heat exchanger 1
The absorption liquid could be preheated to an appropriate temperature without increasing the capacity of 2, and no additional recovery tower heat source was required. Furthermore, cooling water for the condenser 19 of the recovery tower is no longer necessary.
この実施例においても、溶媒水を製品塔28の
熱源として用いるほか、脱青酸塔21、脱水塔2
5等蒸留塔類の1つあるいは2つ以上の熱源とし
て用いてもよい。また、この実施例においては、
吸収液を回収塔留出蒸気により予熱したが、脱水
塔25、製品塔28の留出蒸気により予熱しても
同様の効果を挙げることができる。また、2種以
上の留出蒸気により多段に予熱してもよい。 In this embodiment as well, in addition to using solvent water as a heat source for the product column 28, the hydrocyanic acid removal column 21 and the dehydration column 2
It may be used as a heat source for one or more of the fifth class distillation columns. Furthermore, in this example,
Although the absorption liquid was preheated by the distilled steam from the recovery tower, the same effect can be achieved by preheating it by the distilled steam from the dehydration tower 25 and the product tower 28. Further, preheating may be performed in multiple stages using two or more types of distilled steam.
この発明は以上の通りであり、脱青酸塔、脱水
塔、製品塔等蒸留塔類の熱源の削減と、回収塔熱
源の節減ができ、このために吸収液予熱用の熱交
換器の能力増大のための設備費を殆んど必要とし
ない。また、急冷塔循環水の冷却水や回収塔、脱
水塔、製品塔など蒸留塔類の凝縮用冷却水が節減
できるので高度のエネルギー効率化が達成でき
る。 This invention is as described above, and it is possible to reduce the heat source of distillation columns such as a hydrocyanic acid removal column, dehydration column, and product column, and to save the heat source of a recovery column, thereby increasing the capacity of the heat exchanger for preheating the absorption liquid. Almost no equipment costs are required. In addition, a high degree of energy efficiency can be achieved because cooling water for circulating water in the quenching tower and cooling water for condensing distillation towers such as recovery towers, dehydration towers, and product towers can be saved.
第1図は従来のアクリロニトリル製造プロセス
を示すフローシート、第2図、第3図はそれぞれ
実施例1、2のプロセスを示すフローシートであ
る。
1……反応器、2……熱交換器、3……急冷
塔、4,5,7,9,10,11……ライン、6
……冷却器、12……熱交換器、13……回収
塔、14,22,29……リボイラー、15,1
6,17……ライン、18……アセトニトリル放
散塔、19……凝縮器、20……デカンター、2
1……脱青酸塔、23……凝縮器、24……ライ
ン、25……脱水塔、26……リボイラー、2
7,30……凝縮器、28……製品塔。
FIG. 1 is a flow sheet showing a conventional acrylonitrile manufacturing process, and FIGS. 2 and 3 are flow sheets showing processes of Examples 1 and 2, respectively. 1... Reactor, 2... Heat exchanger, 3... Quenching tower, 4, 5, 7, 9, 10, 11... Line, 6
...Cooler, 12...Heat exchanger, 13...Recovery tower, 14,22,29...Reboiler, 15,1
6, 17... Line, 18... Acetonitrile stripping tower, 19... Condenser, 20... Decanter, 2
1... Dehydrogenation tower, 23... Condenser, 24... Line, 25... Dehydration tower, 26... Reboiler, 2
7, 30... Condenser, 28... Product tower.
Claims (1)
より生成する不飽和ニトリル、飽和ニトリル類、
および青酸を含む反応混合物を急冷塔において水
冷却し、吸収塔において吸収水中に吸収させ、得
られた吸収液を回収塔において溶媒水を用い抽出
蒸留し、塔頂から粗不飽和ニトリル、青酸および
水を含む留出物を得、この留出物から青酸および
水等を脱青酸塔、脱水塔および製品塔等蒸留塔類
において蒸留分離して不飽和ニトリルを得、前記
回収塔において不飽和ニトリルおよび青酸を含む
留分を実質的に留出除去した溶媒水流であつて、
アセトニトリル放散塔を通らない溶媒水分流を回
収塔から分取し、吸収水として吸収塔に戻し循環
使用する不飽和ニトリルの製造法において、吸収
塔から流出する吸収液を前記分取溶媒水で予熱
し、回収塔に供給するに当り、前記吸収液を予め
急冷塔循環水の冷却器、脱水塔、製品塔または回
収塔留出蒸気凝縮器の少なくとも一つに通液して
予熱し、前記溶媒水は前記吸収を予熱する前に脱
青酸塔、脱水塔および製品塔等の蒸留塔類から選
択される少なくとも一塔の熱源として使用するこ
とを特徴とする不飽和ニトリルの製造法。1 Unsaturated nitriles and saturated nitriles produced by the ammoxidation reaction of olefins,
The reaction mixture containing hydrocyanic acid and hydrocyanic acid is cooled with water in a quenching tower, absorbed into absorption water in an absorption tower, and the obtained absorption liquid is subjected to extractive distillation using solvent water in a recovery tower. A distillate containing water is obtained, and from this distillate, hydrocyanic acid, water, etc. are distilled and separated in distillation columns such as a prussic acid removal column, a dehydration column, and a product column to obtain unsaturated nitrile. and a solvent aqueous stream from which a fraction containing hydrocyanic acid has been substantially distilled off,
In a method for producing unsaturated nitrile in which the solvent water flow that does not pass through the acetonitrile stripping tower is separated from the recovery tower and returned to the absorption tower as absorption water for circulation use, the absorption liquid flowing out from the absorption tower is preheated with the fractionated solvent water. Before supplying the absorption liquid to the recovery tower, the absorption liquid is preheated by passing it through at least one of the quenching tower circulating water cooler, the dehydration tower, the product tower, or the recovery tower distillate vapor condenser, and the solvent is A method for producing an unsaturated nitrile, characterized in that water is used as a heat source for at least one distillation column such as a prussic acid removal column, a dehydration column, and a product column before preheating the absorption.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56107516A JPS5810551A (en) | 1981-07-09 | 1981-07-09 | Preparation of unsaturated nitrile |
KR1019810004675A KR850001603B1 (en) | 1980-12-03 | 1981-12-01 | Process for producing unsaturated nitrile |
AT81305681T ATE10490T1 (en) | 1980-12-03 | 1981-12-02 | PROCESS FOR PRODUCTION OF UNSATURATED NITRILE. |
EP81305681A EP0053518B1 (en) | 1980-12-03 | 1981-12-02 | Process for producing unsaturated nitrile |
US06/326,781 US4434029A (en) | 1980-12-03 | 1981-12-02 | Process for producing unsaturated nitrile |
DE8181305681T DE3167503D1 (en) | 1980-12-03 | 1981-12-02 | Process for producing unsaturated nitrile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56107516A JPS5810551A (en) | 1981-07-09 | 1981-07-09 | Preparation of unsaturated nitrile |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5810551A JPS5810551A (en) | 1983-01-21 |
JPS6133017B2 true JPS6133017B2 (en) | 1986-07-31 |
Family
ID=14461175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56107516A Granted JPS5810551A (en) | 1980-12-03 | 1981-07-09 | Preparation of unsaturated nitrile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5810551A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2565945B2 (en) * | 1987-11-27 | 1996-12-18 | 三菱化学株式会社 | Optical isolator |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169372U (en) * | 1984-10-15 | 1986-05-12 | ||
JP5364884B2 (en) * | 2008-02-25 | 2013-12-11 | 三菱レイヨン株式会社 | Method for producing (meth) acrylonitrile |
JP5643064B2 (en) * | 2010-11-18 | 2014-12-17 | 旭化成ケミカルズ株式会社 | Method for purifying polymerizable compounds |
CN106892843A (en) * | 2015-12-17 | 2017-06-27 | 英尼奥斯欧洲股份公司 | Recovery tower is controlled |
-
1981
- 1981-07-09 JP JP56107516A patent/JPS5810551A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2565945B2 (en) * | 1987-11-27 | 1996-12-18 | 三菱化学株式会社 | Optical isolator |
Also Published As
Publication number | Publication date |
---|---|
JPS5810551A (en) | 1983-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4530826A (en) | Method for recovering and utilizing waste heat | |
US7071348B2 (en) | Process for the purification of olefinically unsaturated nitriles | |
EP0053518B1 (en) | Process for producing unsaturated nitrile | |
JPS6251958B2 (en) | ||
US4377444A (en) | Recovery and purification of olefinic nitriles | |
JPS6133017B2 (en) | ||
US20090299087A1 (en) | Process for manufacturing unsaturated mononitriles to improve on-stream time and reduce fouling | |
CN1524849A (en) | Recycle of condensed quench overheads in a process for purifying acrylonitrile | |
US6984749B2 (en) | Method for inhibiting polymerization during the recovery and purification of unsaturated mononitriles | |
US6716977B1 (en) | Method for making caprolactam from impure ACN wherein ammonia and water are removed from crude caprolactam in a simple separation step and then THA is removed from the resulting caprolactam melt | |
JPS6042236B2 (en) | Production method of unsaturated nitrile | |
US4502997A (en) | Treatment of purge gas | |
JPH0250103B2 (en) | ||
US6858728B2 (en) | Method for making caprolactam from impure ACN in which THA is not removed until after caprolactam is produced | |
JPS6158463B2 (en) | ||
JPS6144861B2 (en) | ||
JPS6315265B2 (en) | ||
JPS6133815B2 (en) | ||
JPS61180756A (en) | Recovery of unsaturated nitrile | |
JPS61180757A (en) | Recovery of unsaturated nitrile |