JPS6042236B2 - Production method of unsaturated nitrile - Google Patents

Production method of unsaturated nitrile

Info

Publication number
JPS6042236B2
JPS6042236B2 JP55170493A JP17049380A JPS6042236B2 JP S6042236 B2 JPS6042236 B2 JP S6042236B2 JP 55170493 A JP55170493 A JP 55170493A JP 17049380 A JP17049380 A JP 17049380A JP S6042236 B2 JPS6042236 B2 JP S6042236B2
Authority
JP
Japan
Prior art keywords
tower
column
water
absorption
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55170493A
Other languages
Japanese (ja)
Other versions
JPS5793947A (en
Inventor
茂 栗原
宏行 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP55170493A priority Critical patent/JPS6042236B2/en
Priority to KR1019810004675A priority patent/KR850001603B1/en
Priority to US06/326,781 priority patent/US4434029A/en
Priority to AT81305681T priority patent/ATE10490T1/en
Priority to DE8181305681T priority patent/DE3167503D1/en
Priority to EP81305681A priority patent/EP0053518B1/en
Publication of JPS5793947A publication Critical patent/JPS5793947A/en
Publication of JPS6042236B2 publication Critical patent/JPS6042236B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 この発明はオレフィンのアンモオキシデージヨン反応に
よる不飽和ニトリルの製造法、例えばプロピレンあるい
はイソブチレンのアンモオキシデージヨン反応によるア
クリロニトリルあるいはメタクリロニトリルの製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing unsaturated nitriles by ammoxidation reaction of olefins, such as a process for producing acrylonitrile or methacrylonitrile by ammoxidation reaction of propylene or isobutylene.

その目的は製造系内で発生する比較的低温の今まで利用
し得なかつた顕然あるいは潜熱を冷熱源あるいは加熱源
に転換して有効利用するエネルギー効率が極めて高い製
造法を提案するにある。オレフィンのアンモオキシデー
ジヨン反応による不飽和ニトリルの製造工程は、高温の
反応物を水で冷却し、多量の水(例えば、特許公告公報
昭41−6571号によるアクリロニトリルに対し17
.8倍(重量)の吸収水を使用)て吸収し、吸収液を加
熱蒸留、冷却凝縮を繰返し、不飽和ニトリルを副反応物
や未反応物から分離精製して得ている。
The purpose is to propose an extremely energy-efficient manufacturing method that converts the relatively low-temperature, hitherto unusable, manifest or latent heat generated within the manufacturing system into a cold or heating source and utilizes it effectively. The process for producing unsaturated nitriles by the ammoxidation reaction of olefins involves cooling the reactants at a high temperature with water and using a large amount of water (for example,
.. The unsaturated nitrile is obtained by separating and purifying the unsaturated nitrile from side reactants and unreacted products by repeating heating distillation and cooling condensation of the absorbed liquid.

このため、加熱用、冷却用のエネルギーは甚だ大きく、
コストに占めるエネルギー費が高かつた。以下アクリロ
ニトリルの製造例により、従来のプロセスを具体的に説
明する。反応器1内で酸化触媒の存在下、連続供給され
たプロピレン、アンモニア、空気が高温気相でアンモオ
キシデージヨン反応し、アクリロニトリル、アセトニト
リル、青酸、高沸点有機物等の反ヨ応生成物、および未
反応物の混合物が生成する。
Therefore, the energy required for heating and cooling is extremely large.
Energy costs accounted for a high proportion of costs. The conventional process will be specifically explained below using an example of producing acrylonitrile. In the presence of an oxidation catalyst in the reactor 1, continuously supplied propylene, ammonia, and air undergo an ammoxidation reaction in a high-temperature gas phase, producing reaction products such as acrylonitrile, acetonitrile, hydrocyanic acid, and high-boiling organic substances, and A mixture of unreacted substances is produced.

この高温ガス状の混合物を熱交換器2を通り、急冷塔3
に送り込み、ライン4を経由し塔頂から流下する冷却用
循環水と接触させ低温ガスに冷却する。この冷却過程に
おいて、高沸点有機物や生成i水分は循環水に取り込ま
れ除去され、必要に応じ循環水中に鉱酸を添加し、反応
ガス中の未反応アンモニアを除去する。昇温した循環水
は塔底からライン5を通り流出し冷却器6で冷却後再び
塔頂にライン4を通り循環供給され、一部は系外に排出
される。急冷塔3の塔頂からライン7を通り吸収塔8の
下方部に導入されたガスは、塔頂から塔内を流下するラ
イン9を経て供給された吸収水に接触して、アクリロニ
トリル、アセトニトリル、青酸は吸収水に吸収される。
This high-temperature gaseous mixture is passed through a heat exchanger 2 and then passed through a quenching tower 3.
The gas is brought into contact with circulating cooling water flowing down from the top of the tower via line 4, and cooled to low-temperature gas. In this cooling process, high-boiling organic matter and produced water are taken into the circulating water and removed, and if necessary, mineral acid is added to the circulating water to remove unreacted ammonia in the reaction gas. The heated circulating water flows out from the bottom of the tower through a line 5, is cooled by a cooler 6, and is again circulated and supplied to the top of the tower through a line 4, and a portion is discharged to the outside of the system. The gas introduced into the lower part of the absorption tower 8 from the top of the quenching tower 3 through the line 7 comes into contact with the absorption water supplied through the line 9 flowing down inside the tower from the top of the tower, and produces acrylonitrile, acetonitrile, Hydrocyanic acid is absorbed into absorbed water.

この吸収液は塔底液としてライン10から抜出され、吸
収されないガスは塔頂からライン11を経て排出される
。吸収液は熱交換器12を通り昇温し、回収塔13にそ
のやや上方位置から供給されリボイラー14て加熱され
る。
This absorption liquid is withdrawn from line 10 as a bottom liquid, and unabsorbed gas is discharged from the top of the column via line 11. The absorption liquid passes through a heat exchanger 12 to raise its temperature, is supplied to a recovery tower 13 from a position slightly above it, and is heated by a reboiler 14.

回収塔は通常少なくとも50.好ましくは60〜10鍛
のトレイを有し塔上部にライン15を経て送り込まれた
溶媒水と向流接触して抽出蒸留を行ない、塔頂から青酸
および水を含む粗アクリロニトリル蒸気がライン16を
経て留出し、塔底から溶媒水がライン17を経て抜き出
される。なお、吸収液中のアセトニトリルは回収塔13
に付帯したアセトニトリル回収塔18においてその大部
分が蒸留分離される。ライン17から抜出された大部分
のアセトニトリルを除去した溶媒水はライン15を経て
回収塔13に送り込まれるとともに、その一部は熱交換
器12を通り降温しライン9を経て吸収水として吸収塔
8に供給される。ライン16から留出した粗アクリロニ
トリル蒸気は凝縮器19で冷却し凝縮液はデカンター2
0で油・水分離し、油層は脱青酸塔21に送り込まれ、
水層は回収塔13に戻される。脱青酸塔21はリボイラ
ー22で加熱され、蒸.留により塔頂から青酸が留出し
凝縮器23で分縮され青酸蒸気が分離され、塔底液はラ
イン24を通り脱水塔25に送られる。
The recovery tower is usually at least 50. Preferably, the column has a tray of 60 to 10 mm, and performs extractive distillation by contacting in countercurrent with the solvent water fed into the upper part of the column via line 15, and crude acrylonitrile vapor containing hydrocyanic acid and water is passed from the top of the column via line 16. After distillation, solvent water is extracted from the bottom of the column via line 17. Note that the acetonitrile in the absorption liquid is collected in the recovery tower 13.
Most of the acetonitrile is separated by distillation in the acetonitrile recovery column 18 attached to the acetonitrile. The solvent water extracted from line 17 and from which most of the acetonitrile has been removed is sent to recovery tower 13 via line 15, while a part of it passes through heat exchanger 12 to cool down and passes through line 9 as absorbed water to absorption tower. 8. The crude acrylonitrile vapor distilled from line 16 is cooled in condenser 19, and the condensate is sent to decanter 2.
Oil and water are separated at 0, and the oil layer is sent to the prussic acid removal tower 21.
The aqueous layer is returned to the recovery tower 13. The prussic acid removal tower 21 is heated by a reboiler 22 and steamed. Hydrocyanic acid is distilled out from the top of the column by distillation, condensed in a condenser 23 to separate hydrocyanic acid vapor, and the bottom liquid is sent to a dehydration column 25 through a line 24.

脱水塔25はリボイラー26で加熱され、蒸留により塔
頂から留出する蒸気を凝縮器27で凝縮して油・水分離
して脱、水し、塔底液は製品塔28に送られる。製品塔
28はリボイラー29で加熱され、蒸留により塔頂から
留出する蒸気を凝縮器30で凝縮して製品品位のアクリ
ロニトリルが得られ、塔底液は引出され排出される。従
来のアクリロニトリルの製法は上記のごとくてあり、工
程中には多くの加熱部分と冷却部分とが組込まれている
The dehydration tower 25 is heated by a reboiler 26, and the steam distilled from the top of the tower is condensed in a condenser 27 to separate oil and water for dehydration, and the bottom liquid is sent to a product tower 28. The product column 28 is heated by a reboiler 29, and the vapor distilled from the top of the column is condensed in a condenser 30 to obtain product-grade acrylonitrile, and the bottom liquid is drawn out and discharged. The conventional method for producing acrylonitrile is as described above, and the process incorporates many heating and cooling sections.

すなわち、回収塔13、脱青酸塔21、脱水塔25、製
品塔28にはそれぞれリボイラー14,22,26,2
9および凝縮器19,23,27,30があり、急冷塔
3には冷却器6が付帯している。これら、加熱、冷却を
繰返す工程のエネルギー効率を高めるために、従来様々
な対策が試みられている。例えば公開特許公報昭和55
−81848号によると、回収塔から出る高温(110
〜130℃)の溶媒水を脱青酸塔や製品塔のリボイラー
熱源として使用した後、吸収液を熱交換器12で予熱し
、吸収水として用いる提案がなフされている。しかしこ
の方法においては、溶媒水が降温してしまうので、回収
塔13に供給する吸収液を予熱(第1図熱交換器12に
おいて)するには熱量不足となり、回収塔熱源(リボイ
ラー14)を余計に必要としたり、あるいは熱交換器1
2の伝熱面積を著しく広くしなければならない欠点があ
つた。この発明は上記事情に鑑みなされたものでその要
旨はオレフィンのアンモオキシデージヨン反応により生
成する不飽和ニトリル、飽和ニトリルl類、および青酸
を含む反応混合物を急冷塔において水冷却し、吸収塔に
おいて吸収水中に吸収させ、得られた吸収液を回収塔に
おいて溶媒水を用い抽出蒸留し、塔頂から粗不飽和ニト
リルおよび青酸を含む留出物を得、この留出物から青酸
および水等を脱青酸塔、脱水塔および製品塔等蒸留塔類
において蒸留分離して不飽和ニトリルを得、回収塔下部
液からアセトニトリルを除いた溶媒水を吸収塔吸収水お
むび回収塔溶媒水として循環させる不飽和ニトリルの製
造法において、吸収塔から流出する吸収液をアセトニト
リル除去後の溶媒水で予熱し回収塔に供給するに当り、
前記吸収液を予め急冷塔循環水の冷却器、脱水塔、製品
塔または回収塔留出蒸気凝縮器の少なくとも一つに通液
して予熱し、前記溶媒水は前記吸収液を予熱する前に脱
青酸塔、脱水塔および製品塔等の蒸留塔類から選択され
る少なくとも一塔の熱源として使用することを特徴とす
る不飽和ニトリルの製造法である。
That is, the recovery tower 13, the prussic acid removal tower 21, the dehydration tower 25, and the product tower 28 are provided with reboilers 14, 22, 26, and 2, respectively.
9 and condensers 19, 23, 27, and 30, and a cooler 6 is attached to the quenching tower 3. Various measures have been attempted in the past in order to improve the energy efficiency of these processes that repeat heating and cooling. For example, published patent publication 1972
According to No.-81848, the high temperature (110
A proposal has been made to use solvent water at a temperature of 130° C. as a reboiler heat source for a prussic acid removal tower or a product tower, and then preheat the absorption liquid in a heat exchanger 12 and use it as absorption water. However, in this method, since the temperature of the solvent water drops, there is insufficient heat to preheat the absorption liquid supplied to the recovery tower 13 (in the heat exchanger 12 in Fig. 1), and the recovery tower heat source (reboiler 14) is If you need extra heat exchanger 1
2 had the disadvantage that the heat transfer area had to be significantly widened. This invention was made in view of the above circumstances, and its gist is that a reaction mixture containing unsaturated nitriles, saturated nitriles, and hydrocyanic acid produced by the ammoxidation reaction of olefins is cooled with water in a quenching tower, and then in an absorption tower. The resulting absorption liquid is subjected to extractive distillation using solvent water in a recovery column to obtain a distillate containing crude unsaturated nitrile and hydrocyanic acid from the top of the column, and from this distillate, hydrocyanic acid, water, etc. Unsaturated nitrile is obtained by distillation separation in distillation columns such as hydrocyanic acid removal tower, dehydration tower, and product tower, and the solvent water obtained by removing acetonitrile from the lower part of the recovery tower is circulated as absorption tower absorption water and recovery tower solvent water. In the method for producing saturated nitrile, the absorption liquid flowing out from the absorption tower is preheated with solvent water after acetonitrile has been removed and then supplied to the recovery tower.
The absorption liquid is preheated by passing it through at least one of a quenching tower circulating water cooler, a dehydration tower, a product tower, or a recovery tower distillate vapor condenser, and the solvent water is used before preheating the absorption liquid. This is a method for producing an unsaturated nitrile, which is characterized in that it is used as a heat source for at least one column selected from distillation columns such as a prussic acid removal column, a dehydration column, and a product column.

この製造法では吸収塔の底から流出する低温の吸収液を
、急冷塔循環水の冷却器、脱水塔、製品塔または回収塔
の留出蒸気凝縮器に通液する。
In this production method, the low-temperature absorption liquid flowing out from the bottom of the absorption tower is passed through a cooling tower circulating water cooler, a dehydration tower, a product tower, or a distillate vapor condenser of a recovery tower.

これにより、従来、冷却水を用い系外に放出していた前
記冷却器あるいは凝縮器の熱を吸収液に吸収して系内に
取込むことができ、結果として吸収液の昇温と冷却水再
生エネルギーが節減できる。さらに、吸収液は予め昇温
してあるので、回収塔から流出した高温の溶媒水を、吸
収液の予熱に用いる前に脱青酸塔、脱水塔、製品塔など
のリボイラー熱源として用いて降温しても、吸収液を必
要とする温度まで予熱することができ、回収塔蒸留熱源
を余計に必要としたり、吸収液を予熱する熱交換器能力
を増大させる必要もない。以下実施例により説明する。
As a result, the heat of the cooler or condenser, which was conventionally released outside the system using cooling water, can be absorbed into the absorption liquid and taken into the system, resulting in an increase in the temperature of the absorption liquid and the cooling water. Renewable energy can be saved. Furthermore, since the temperature of the absorption liquid has been raised in advance, the high-temperature solvent water flowing out from the recovery tower is used as a reboiler heat source for the hydrocyanic acid removal tower, dehydration tower, product tower, etc. to lower the temperature before being used to preheat the absorption liquid. Even if the absorption liquid is heated, the absorption liquid can be preheated to the required temperature, and there is no need for an additional recovery column distillation heat source or an increase in the heat exchanger capacity for preheating the absorption liquid. This will be explained below using examples.

実施例1 この実施例は第2図に示す通り、吸収塔8から流出する
吸収液を熱交換器12で溶媒水により予熱するに先だつ
て、急冷塔3の循環水冷却器6を通液して昇温した循環
水により昇温せしめた。
Example 1 As shown in FIG. 2, in this example, before the absorption liquid flowing out from the absorption tower 8 is preheated by solvent water in the heat exchanger 12, the liquid is passed through the circulating water cooler 6 of the quenching tower 3. The temperature was raised by circulating water that had been raised in temperature.

他方回収塔13塔底から流出した高温の溶媒水を製品塔
28のリボイラー29熱源とし使用した後、吸収液予熱
用熱交換器12に通液して吸収液を予熱して吸収液を回
収塔13に供給した。この結果、回収塔流出の溶媒水を
製品塔28の熱源に利用し熱源の削減ができ、同時に熱
交換器12の能力を殆んど増大することなく、吸収液を
適温まで予熱でき、回収塔熱源を余計に必要とすること
はなかつた。
On the other hand, the high-temperature solvent water flowing out from the bottom of the recovery tower 13 is used as a heat source for the reboiler 29 of the product column 28, and then passed through the heat exchanger 12 for preheating the absorption liquid to preheat the absorption liquid and transfer the absorption liquid to the recovery tower. 13 was supplied. As a result, the solvent water flowing out of the recovery tower can be used as a heat source for the product column 28, reducing the heat source. At the same time, the absorption liquid can be preheated to an appropriate temperature without increasing the capacity of the heat exchanger 12, and the recovery tower No additional heat source was required.

また、急冷塔3の冷却器6の冷却水が著しく節減された
。この実施例においては、回収塔13から流出した溶媒
水を製品塔28のリボイラー29の熱源とし用いたが、
このほか脱青酸塔21、脱水塔25、等蒸留塔類の1つ
あるいは2つ以上の熱源として用いてもよい。
Furthermore, the amount of cooling water in the cooler 6 of the quenching tower 3 was significantly reduced. In this example, the solvent water flowing out from the recovery tower 13 was used as a heat source for the reboiler 29 of the product tower 28.
In addition, it may be used as a heat source for one or more distillation columns such as the prussic acid removal column 21 and the dehydration column 25.

実施例2 この実施例は第3図に示す通り、吸収塔8から流出する
吸収液を熱交換器12で溶媒水により予熱するに先だつ
て、回収塔13の凝縮器19に通液して、回収塔の留出
蒸気の顕熱および潜熱により昇温せしめた。
Example 2 As shown in FIG. 3, in this example, before the absorption liquid flowing out from the absorption tower 8 is preheated with solvent water in the heat exchanger 12, it is passed through the condenser 19 of the recovery tower 13. The temperature was raised by sensible heat and latent heat of distilled steam from the recovery tower.

他方回収塔13塔底から流出した高温の溶媒水の製品塔
28のリボイラー29熱源として使用した後、吸収液予
熱用熱交換器12に通液して吸収液を予熱して吸収液を
回収塔13に供給した。この結果回収塔流出の溶媒水を
製品塔28の熱源に利用し熱源の削減ができ、同時に熱
交換器12の能力増大を殆んど図ることなく、吸収液を
適温まで予熱でき、回収塔熱源を余計に必要とすること
はなかつた。
On the other hand, after the high temperature solvent water flowing out from the bottom of the recovery tower 13 is used as a heat source for the reboiler 29 of the product column 28, the liquid is passed through the heat exchanger 12 for preheating the absorption liquid to preheat the absorption liquid, and the absorption liquid is transferred to the recovery tower. 13 was supplied. As a result, the solvent water flowing out of the recovery tower can be used as a heat source for the product column 28, reducing the heat source.At the same time, the absorption liquid can be preheated to an appropriate temperature without increasing the capacity of the heat exchanger 12, and the heat source of the recovery tower can be There was no need for any extra.

また、回収塔の凝縮器19の冷却水が不要となつた。こ
の実施例においても、溶媒水を製品塔28の熱源として
用いるほか、脱青酸塔21、脱水塔25等蒸留塔類の1
つあるいは2つ以上の熱源として用いてもよい。
Furthermore, cooling water for the condenser 19 of the recovery tower is no longer necessary. In this embodiment as well, in addition to using solvent water as a heat source for the product column 28, one of the distillation columns such as the hydrocyanic acid removal column 21 and the dehydration column 25 is used.
It may be used as one or more heat sources.

またこの実施例においては、吸収液を回収塔留出蒸気に
より予熱したが、脱水塔25、製品塔28の留出蒸気に
より予熱しても同様の効果を挙げることができる。また
、2種以上の留出蒸気により多段に予熱してもよい。こ
の発明は以上の通りであり、脱青酸塔、脱水塔、製品塔
等蒸留塔類の熱源の削減と、回収塔熱源の節減ができ、
このために吸収液予熱用の熱交換器の能力増大のための
設備費を殆んど必要としない。
Further, in this example, the absorption liquid was preheated by the distilled steam from the recovery tower, but the same effect can be obtained by preheating it by the distilled steam from the dehydration tower 25 and the product tower 28. Further, preheating may be performed in multiple stages using two or more types of distilled steam. This invention is as described above, and it is possible to reduce the heat source of distillation columns such as a hydrocyanic acid removal column, dehydration column, and product column, and to save the heat source of a recovery column.
For this reason, almost no equipment cost is required to increase the capacity of the heat exchanger for preheating the absorption liquid.

また、急冷塔循環水の冷却水や回収塔、脱水塔、製品塔
など蒸留塔類の凝縮用冷却水が節減できるので高度のエ
ネルギー効率化が達成できる。
In addition, a high degree of energy efficiency can be achieved because cooling water for circulating water in the quenching tower and cooling water for condensing distillation towers such as recovery towers, dehydration towers, and product towers can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアクリロニトリル製造プロセスを示すフ
ローシート、第2図、第3図はそれぞれ実施例1,2の
プロセスを示すフローシートである。 1・・・・・・反応器、2・・・・・・熱交換器、3・
・・・・急冷塔、4・・・・・ライン、5・・・・・ラ
イン、6・・・・・冷却・器、7・・・・・ライン、8
・・・・・・吸収塔、9・・・・・ライン、10・・・
・ライン、11・・・・・ライン、12・・熱交換器、
13・・・・・・回収塔、14・・・・・・リボイラー
、15・・・・ライン、16・・・・ライン、17・・
ライン、18・・・・・・アセトニトリル回収塔、19
・・・・・凝縮器、20・・・・・・デカンター、21
・・・・・・脱青酸塔、22・・・・・リボイラー、2
3・・・・・・凝縮器、24・・ライン、25・・・・
・・脱水塔、26・・・・・リボイラー、27・・・・
・・凝縮器、28・・・・・・製品塔、29・・リボイ
ラー、30・・・・・・凝縮器。
FIG. 1 is a flow sheet showing a conventional acrylonitrile manufacturing process, and FIGS. 2 and 3 are flow sheets showing processes of Examples 1 and 2, respectively. 1... Reactor, 2... Heat exchanger, 3.
...quenching tower, 4 ... line, 5 ... line, 6 ... chiller, 7 ... line, 8
...Absorption tower, 9...Line, 10...
・Line, 11...Line, 12...Heat exchanger,
13...Recovery tower, 14...Reboiler, 15...Line, 16...Line, 17...
Line, 18...Acetonitrile recovery tower, 19
...Condenser, 20 ...Decanter, 21
...... Hydrocyanic removal tower, 22 ... Reboiler, 2
3...Condenser, 24...Line, 25...
... Dehydration tower, 26 ... Reboiler, 27 ...
... Condenser, 28 ... Product tower, 29 ... Reboiler, 30 ... Condenser.

Claims (1)

【特許請求の範囲】[Claims] 1 オレフィンのアンモオキシデージヨン反応により生
成する不飽和ニトリル、飽和ニトリル類、および青酸を
含む反応混合物を急冷塔において水冷却し、吸収塔にお
いて吸収水中に吸収させ、得られた吸収液を回収塔にお
いて溶媒水を用い抽出蒸留し、塔頂から粗不飽和ニトリ
ルおよび青酸を含む留出物を得、この留出物から青酸お
よび水等を脱青酸塔、脱水塔および製品塔等蒸塔類にお
いて蒸留分離して不飽和ニトリルを得、回収塔下部液か
らアセトニトリルを除いた溶媒水を吸収塔吸収水および
回収塔溶媒水として循環させる不飽和ニトリルの製造法
において、吸収塔から流出する吸収液をアセトニトリル
除却後の溶媒水で予熱し回収塔に供給するに当り、前記
吸収液を予め急冷塔循環水の冷却器、脱水塔、製品塔ま
たは回収塔留出蒸気凝縮器の少なくとも一つに通液して
予熱し、前記溶媒水は前記吸収液を予熱する前に脱青酸
塔、脱水塔および製品塔等の蒸留塔類から選択される少
なくとも一塔の熱源として使用することを特徴とする不
飽和ニトリルの製造法。
1. A reaction mixture containing unsaturated nitriles, saturated nitriles, and hydrocyanic acid produced by the ammoxidation reaction of olefins is cooled with water in a quenching tower, absorbed into absorption water in an absorption tower, and the resulting absorption liquid is transferred to a recovery tower. Extractive distillation is carried out using solvent water at the top of the column to obtain a distillate containing crude unsaturated nitrile and hydrocyanic acid, and from this distillate, hydrocyanic acid, water, etc. are removed in distillation columns such as a hydrocyanic acid removal tower, a dehydration tower, and a product tower. In the method for producing unsaturated nitrile, in which unsaturated nitrile is obtained by distillation separation, and the solvent water from which acetonitrile is removed from the bottom liquid of the recovery column is circulated as absorption column absorption water and recovery column solvent water, the absorption liquid flowing out from the absorption column is Before preheating with solvent water after acetonitrile removal and supplying it to the recovery tower, the absorption liquid is passed through at least one of the cooling tower circulating water cooler, the dehydration tower, the product tower, or the recovery tower distillate vapor condenser in advance. and the solvent water is used as a heat source for at least one column selected from distillation columns such as a prussic acid removal column, a dehydration column, and a product column, before preheating the absorption liquid. Method of manufacturing nitrile.
JP55170493A 1980-12-03 1980-12-03 Production method of unsaturated nitrile Expired JPS6042236B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP55170493A JPS6042236B2 (en) 1980-12-03 1980-12-03 Production method of unsaturated nitrile
KR1019810004675A KR850001603B1 (en) 1980-12-03 1981-12-01 Process for producing unsaturated nitrile
US06/326,781 US4434029A (en) 1980-12-03 1981-12-02 Process for producing unsaturated nitrile
AT81305681T ATE10490T1 (en) 1980-12-03 1981-12-02 PROCESS FOR PRODUCTION OF UNSATURATED NITRILE.
DE8181305681T DE3167503D1 (en) 1980-12-03 1981-12-02 Process for producing unsaturated nitrile
EP81305681A EP0053518B1 (en) 1980-12-03 1981-12-02 Process for producing unsaturated nitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55170493A JPS6042236B2 (en) 1980-12-03 1980-12-03 Production method of unsaturated nitrile

Publications (2)

Publication Number Publication Date
JPS5793947A JPS5793947A (en) 1982-06-11
JPS6042236B2 true JPS6042236B2 (en) 1985-09-20

Family

ID=15905981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55170493A Expired JPS6042236B2 (en) 1980-12-03 1980-12-03 Production method of unsaturated nitrile

Country Status (1)

Country Link
JP (1) JPS6042236B2 (en)

Also Published As

Publication number Publication date
JPS5793947A (en) 1982-06-11

Similar Documents

Publication Publication Date Title
EP0053517B1 (en) Method for recovering and utilizing waste heat
US7071348B2 (en) Process for the purification of olefinically unsaturated nitriles
US4434029A (en) Process for producing unsaturated nitrile
JPS6251958B2 (en)
US4377444A (en) Recovery and purification of olefinic nitriles
JPS6133017B2 (en)
US20090299087A1 (en) Process for manufacturing unsaturated mononitriles to improve on-stream time and reduce fouling
JPS6042236B2 (en) Production method of unsaturated nitrile
CN1524849A (en) Recycle of condensed quench overheads in a process for purifying acrylonitrile
US6716977B1 (en) Method for making caprolactam from impure ACN wherein ammonia and water are removed from crude caprolactam in a simple separation step and then THA is removed from the resulting caprolactam melt
RU2280026C1 (en) Method and installation for production of carbamide
US7282600B2 (en) Method for inhibiting polymerization during the recovery and purification of unsaturated mononitriles
JPH0250103B2 (en)
US4502997A (en) Treatment of purge gas
US6858728B2 (en) Method for making caprolactam from impure ACN in which THA is not removed until after caprolactam is produced
JPS6158463B2 (en)
JPS6144861B2 (en)
JPS6133812B2 (en)
JPS6315265B2 (en)
JPS6133815B2 (en)
JPS61180756A (en) Recovery of unsaturated nitrile
JPS61180757A (en) Recovery of unsaturated nitrile
JPS6133810B2 (en)