JPS6355355A - Exhaust gas recirculation controller for internal combustion engine - Google Patents

Exhaust gas recirculation controller for internal combustion engine

Info

Publication number
JPS6355355A
JPS6355355A JP61200563A JP20056386A JPS6355355A JP S6355355 A JPS6355355 A JP S6355355A JP 61200563 A JP61200563 A JP 61200563A JP 20056386 A JP20056386 A JP 20056386A JP S6355355 A JPS6355355 A JP S6355355A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
egr
intake
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61200563A
Other languages
Japanese (ja)
Inventor
Tomoyuki Inoue
知之 井上
Minoru Nishida
稔 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61200563A priority Critical patent/JPS6355355A/en
Publication of JPS6355355A publication Critical patent/JPS6355355A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves

Abstract

PURPOSE:To improve the response, when exhaust gas recirculation control valve is feedback controlled through an O2 sensor such that a target exhaust gas recirculation rate corresponding to an operating condition of engine is obtained, by varying a proportional constant and an integration constant of the feedback control system according to an intake air flow. CONSTITUTION:An EGR control circuit 14 reads out a target exhaust gas recirculation rate from a data map corresponding to detection values of an intake pressure detector 10 and an engine rotation sensor 8, and feedback controls the opening of an EGR control valve 12 through a control negative pressure generator 16 based on a detection value of an O2 sensor 18 disposed in the downstream of an EGR path 11 for an intake tube 2. The EGR control circuit 14 increases the proportional constant and the integration constant of the feedback control system as the intake air flow increases based on a detection value of an intake air flow sensor 19 so as to calculate a feedback control signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の排気ガス再循環量を制御する機関
の排気ガス還流制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine exhaust gas recirculation control device that controls the amount of exhaust gas recirculation in an internal combustion engine.

〔従来の技術〕[Conventional technology]

内燃機関の排気ガス中の有害成分である窒素酸化物を減
少させるために排気ガスの一部を機関の吸気側に導入す
るいわゆる排気ガスの再循環が行なわれることは周知の
通りである。
It is well known that exhaust gas recirculation, in which a portion of the exhaust gas is introduced into the intake side of the engine, is carried out in order to reduce nitrogen oxides, which are harmful components in the exhaust gas of an internal combustion engine.

再循環される排気ガス流量は窒素酸化物の減少以外に機
関の性能、燃費などに影#を与えるので、再循環排気ガ
ス流量は機関の運転状態に応じて精度よく制御されるこ
とが望まれる。
In addition to reducing nitrogen oxides, the flow rate of recirculated exhaust gas has an impact on engine performance, fuel efficiency, etc., so it is desirable that the flow rate of recirculated exhaust gas be precisely controlled according to the operating conditions of the engine. .

第6図は、たとえば特開昭55−93950号公報など
に示される従来の排気ガス還流(以下EGRと略記)制
御装置を示す構成図である。この第6図において、1は
エンジン本体、2はエンジンの吸気管、3は一排気管で
ある。
FIG. 6 is a configuration diagram showing a conventional exhaust gas recirculation (hereinafter abbreviated as EGR) control device disclosed in, for example, Japanese Patent Laid-Open No. 55-93950. In FIG. 6, 1 is an engine body, 2 is an intake pipe of the engine, and 3 is an exhaust pipe.

吸気管2に燃料供給装置4が配設されており、また、ス
ロットル弁5が吸気管2と吸気ダクト6との連結部近傍
に配置されている。この吸気ダクト6の入口部分には、
エアークリーナ7が配置されている。
A fuel supply device 4 is disposed in the intake pipe 2, and a throttle valve 5 is disposed near the connection portion between the intake pipe 2 and the intake duct 6. At the entrance of this intake duct 6,
An air cleaner 7 is arranged.

吸気管2には、吸気負圧導入通路9が連通している。こ
の吸気負圧導入通路9を通して、吸気管2の吸気圧力を
吸気圧力検出器10で検出するようにしている。
An intake negative pressure introduction passage 9 communicates with the intake pipe 2 . The intake pressure in the intake pipe 2 is detected by an intake pressure detector 10 through this intake negative pressure introduction passage 9.

この吸気圧力検出器10の出力、EGR制御弁12の開
度検出器13の出力、エンジン回転数検出器8の出力は
EGR制嫂回路14に送出するようになっている。
The output of the intake pressure detector 10, the opening degree detector 13 of the EGR control valve 12, and the output of the engine speed detector 8 are sent to an EGR control circuit 14.

EGR制御弁12はEGR通路11に設けられており、
このEGR通路11は排気管3と吸気管2を連通してい
る。
The EGR control valve 12 is provided in the EGR passage 11,
This EGR passage 11 communicates the exhaust pipe 3 and the intake pipe 2.

EGR制御回路14の出力により制御負圧発生器16を
制御するようになっている。この制御負圧発生器16は
EGR制御弁12の開閉度会を制御するためにアクチュ
エータ負圧を吸気負圧と大気圧とにより調圧して発生す
るものである。
A controlled negative pressure generator 16 is controlled by the output of the EGR control circuit 14. The control negative pressure generator 16 generates the actuator negative pressure by adjusting the pressure of the intake negative pressure and the atmospheric pressure in order to control the degree of opening and closing of the EGR control valve 12.

次に、動作について説明する。エンジンの運転状態を示
す址であるエンジン回転数とエンジン吸気圧力が、各々
エンジン回転数検出器8と吸気圧力検出器10で検出さ
れ、EGR制御回路14に入力される。
Next, the operation will be explained. Engine rotation speed and engine intake pressure, which indicate the operating state of the engine, are detected by an engine rotation speed detector 8 and an intake pressure detector 10, respectively, and are input to an EGR control circuit 14.

EGR通路11を流れるEGR量はエンジン回転数検出
器8、吸気圧力検出器10で検出するエンジン運転状態
量に応じてEGR制御回路14に記憶された目標EGR
率に対応する開度検出器13の出力値と、EGR制御弁
12と連動した開度検出器13の実測出力値との比較偏
差が零となるよう、EGR制御回路14の出力信号によ
り制御負圧発生器16の出力負圧を、吸気負圧導入通路
9、大気圧導入通路15の圧力により調圧して、EGR
制御弁12の開度を制御することにより定まる。
The amount of EGR flowing through the EGR passage 11 is determined by the target EGR stored in the EGR control circuit 14 according to the engine operating state quantities detected by the engine rotation speed detector 8 and the intake pressure detector 10.
The output signal of the EGR control circuit 14 is used to control the negative The output negative pressure of the pressure generator 16 is regulated by the pressure of the intake negative pressure introduction passage 9 and the atmospheric pressure introduction passage 15, and the EGR
It is determined by controlling the opening degree of the control valve 12.

すなわち、EGR制御弁12の開度を、開度検出器13
の出力を用いてフィードバック制御すること:(15、
エンジンの運転状態に応じたEGR量を得る。
That is, the opening degree of the EGR control valve 12 is detected by the opening degree detector 13.
Feedback control using the output of: (15,
To obtain an EGR amount according to the operating state of an engine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のEGR制御装置においては、長時間使用すると、
EGR制御弁12には、排気ガス中に含まれているカー
ボンなどが多量付着し、制御弁の開閉度に対応した初期
の排気ガス流量が変化し、精度よい制御ができなくなる
問題があった。
In conventional EGR control devices, when used for a long time,
A large amount of carbon contained in the exhaust gas adheres to the EGR control valve 12, which causes the initial exhaust gas flow rate to change depending on the degree of opening and closing of the control valve, making accurate control impossible.

本発明の目的は、かかる従来の問題点を解決するために
なされたもので、経年変化のない高精度な排気ガス還流
制御が可能となる内燃機関の排気ガス還流制御装置を提
供することにある。
An object of the present invention is to provide an exhaust gas recirculation control device for an internal combustion engine that enables highly accurate exhaust gas recirculation control that does not change over time. .

〔問題点を解決するための平膜〕[Flat membrane to solve problems]

本発明の内燃機関の排気ガス還流制御装置は、排気ガス
が混入された機関の吸入空気中の酸素濃度を検出するた
めに吸気管中に設けられた酸素センサの出力を入力して
排気ガス還流量を制御するEGR制御手股平膜けたもの
である。
The exhaust gas recirculation control device for an internal combustion engine according to the present invention inputs the output of an oxygen sensor installed in an intake pipe to detect the oxygen concentration in the intake air of the engine mixed with exhaust gas. This is an EGR control device that controls the flow rate.

〔作 用〕[For production]

本発明の内燃機関の排気ガス還流制御装置によると、酸
素センサで吸入空気中の酸素濃度を検知し、この酸素セ
ンサの検知する酸素濃度と機関の運転状態に応じて予め
設定される目標酸素711度とを比較し、これらの比較
偏差を比例増幅回路と積分回路に入力し、両回路の出力
信号の加算信号に応動して比較偏差を零にすべく排気ガ
ス還流制御弁を開閉する制御回路において、前記比例増
幅回路の比例増幅度及び積分回路の積分時間が前記機関
の吸気流量に応じて変化する。従って、本装置では、排
気ガスの混入率に比例する酸素濃度によって排気ガスの
還流量が制御され、しかも機関の運転状態によらず、応
答性よく且つ安定に還流量を制御する。
According to the exhaust gas recirculation control device for an internal combustion engine of the present invention, the oxygen concentration in the intake air is detected by the oxygen sensor, and the target oxygen 711 is preset according to the oxygen concentration detected by the oxygen sensor and the operating state of the engine. A control circuit that inputs these comparative deviations into a proportional amplifier circuit and an integral circuit, and opens and closes the exhaust gas recirculation control valve in order to reduce the comparative deviation to zero in response to the sum signal of the output signals of both circuits. In this case, the proportional amplification degree of the proportional amplification circuit and the integration time of the integration circuit change depending on the intake air flow rate of the engine. Therefore, in this device, the amount of recirculation of exhaust gas is controlled by the oxygen concentration that is proportional to the mixing rate of exhaust gas, and the amount of recirculation is controlled stably and with good responsiveness regardless of the operating state of the engine.

〔実施例〕〔Example〕

以下、本発明の内燃機関の排気ガス還流制御製置を添付
図面に示された好適な実施例について更に詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the exhaust gas recirculation control system for an internal combustion engine according to the present invention will be described in more detail with reference to preferred embodiments shown in the accompanying drawings.

第1図は本発明の一実施例の構成1示す図である。この
第1図において、第6図と同一部分には同一符号を何す
るにとどめ、第6図と異なる部分を主体に述べる。
FIG. 1 is a diagram showing a configuration 1 of an embodiment of the present invention. In FIG. 1, parts that are the same as those in FIG. 6 are given the same reference numerals, and the parts that are different from FIG. 6 will be mainly described.

第1図f:第6図と比較しても明らかなように、第1図
では、符号1〜16で示す部分は第6図と同様であフ、
符号17以降で示す部分がこの第1図によシ新たに設け
られた部分であり、この発明の特徴をなす部分である。
Fig. 1 f: As is clear from a comparison with Fig. 6, in Fig. 1, the parts indicated by numerals 1 to 16 are the same as in Fig. 6;
The parts indicated by the reference numeral 17 and after are newly provided in FIG. 1, and are the parts that characterize the present invention.

すなわち、17はEGR通路11の吸気管2への開口部
、18はこの開口部17の下流の吸気管2に設けられた
酸素センサである。この酸素センサ18は吸気管2を流
れる吸入空気中の酸素濃度を検知するものであり、この
酸素センサ18は例えば特開昭58−153155号公
報などで提案されている固体電解質酸素ポンプ式の酸素
センサのごとく、酸素@度に比例し次センサ出力を発生
するものである。
That is, 17 is an opening of the EGR passage 11 to the intake pipe 2, and 18 is an oxygen sensor provided in the intake pipe 2 downstream of this opening 17. This oxygen sensor 18 detects the oxygen concentration in the intake air flowing through the intake pipe 2, and this oxygen sensor 18 is a solid electrolyte oxygen pump type oxygen sensor proposed in, for example, Japanese Patent Laid-Open No. 58-153155. Like a sensor, it generates the following sensor output in proportion to oxygen degree.

この酸素センナ18の出力はEGR制御回路14に送出
するようにしている。19はエアクリーナ7と吸気ダク
ト6の間に設けられた吸気流量センサ19でちる。その
他の構成は第6図と同様である。
The output of this oxygen sensor 18 is sent to the EGR control circuit 14. Reference numeral 19 denotes an intake flow rate sensor 19 provided between the air cleaner 7 and the intake duct 6. The other configurations are the same as in FIG. 6.

次に、前述の実施例の動作につき、第2図ないし第5図
を参照し麦から具体的に説明する。第2図はEGR率に
と吸気中の酸素温度Cδ2との関係を示す図、第3図は
ECR制御回路14内に記憶されているエンジンの運転
状態シて対応して定められた目標EGR率Kok示す図
、第4図(a)はEGIR制御弁12の開度とEGR率
にとの関係を示す図、第4図(b)はエンジン吸気流f
tQによってEGR制御弁120開度が一定であっても
EGR率Kが変化を受けるようすを示す図、第5図(a
)および第5図(b)はそれぞれEGR制御回路14内
に記憶されているエンジンの吸気流量Qに対応して定め
られた比例増幅回路の比例増幅回路及び積分回路の積分
時間Txt−示す図である。
Next, the operation of the above embodiment will be explained in detail with reference to FIGS. 2 to 5. FIG. 2 is a diagram showing the relationship between the EGR rate and the oxygen temperature Cδ2 in the intake air, and FIG. 3 is a diagram showing the relationship between the EGR rate and the oxygen temperature Cδ2 in the intake air, and FIG. FIG. 4(a) is a diagram showing the relationship between the opening degree of the EGIR control valve 12 and the EGR rate, and FIG. 4(b) is a diagram showing the relationship between the opening degree of the EGIR control valve 12 and the EGR rate.
FIG. 5 (a) is a diagram showing how the EGR rate K changes depending on tQ even if the opening degree of the EGR control valve 120 is constant.
) and FIG. 5(b) are diagrams showing the integral time Txt of the proportional amplifier circuit and the integral circuit, respectively, which are determined corresponding to the engine intake flow rate Q stored in the EGR control circuit 14. be.

エンジン本体1が始動されると、エンジン本体1の運転
状態を示すエンジン回転数NEとエンジンの吸気圧力P
Bが、エンジン回転数検出器8と吸気圧力検出器10で
検出され、EGR制御回路14に入力される。
When the engine body 1 is started, the engine rotation speed NE and the engine intake pressure P, which indicate the operating state of the engine body 1, are
B is detected by the engine speed detector 8 and the intake pressure detector 10, and is input to the EGR control circuit 14.

このEGR制御回路14内には、第3図に示すごとく回
転数Ngと吸気圧力pBに対応した目標EGR率Koが
記憶されており、回転数NE、吸気圧力PBの値に応じ
て、例えば目標EGR率KOiが選択される。
In this EGR control circuit 14, as shown in FIG. 3, a target EGR rate Ko corresponding to the rotational speed Ng and intake pressure pB is stored. EGR rate KOi is selected.

この目標EGR率KOiに対応した目標酸素濃度Cσ2
1が第2図にしたがって計算される。
Target oxygen concentration Cσ2 corresponding to this target EGR rate KOi
1 is calculated according to FIG.

一方、吸気管2中のBGRガスが混入した空気の酸素温
度は、酸素センサ18の出力IPより計算される。この
計算された酸素濃度CO2と前記目標酸素濃度C52i
とを比較し、それらの比較偏差をEGR制御回路14内
の比例増幅回路と積分回路に入力する。両回路の出力信
号の加算信号は、EGR制御弁12の開度に対応するも
ので、EGR制御回路14は、EGR制御弁12の開度
が前記加算信号と対応関係が一致するように制御負圧発
生器16に信号全田力する。制御負圧発生器16はEG
R制御回路14の出力により出力負圧を吸気負圧導入通
路9と大気圧導入通路15の圧力を用いて調圧して、E
GR制御弁12の開度を駆動制御し、前記EGRガス量
を調整して比較偏差がなくなるように制御するわけでお
るが、エンジンの運転状態はスロットル弁5の開閉度合
とニンジンの出力負荷とに関係して常に変2!;’J 
している。
On the other hand, the oxygen temperature of the air mixed with the BGR gas in the intake pipe 2 is calculated from the output IP of the oxygen sensor 18. This calculated oxygen concentration CO2 and the target oxygen concentration C52i
and inputs the comparison deviation to the proportional amplification circuit and the integration circuit in the EGR control circuit 14. The sum signal of the output signals of both circuits corresponds to the opening degree of the EGR control valve 12, and the EGR control circuit 14 controls the control negative so that the opening degree of the EGR control valve 12 matches the correspondence relationship with the addition signal. A signal is sent to the pressure generator 16. Control negative pressure generator 16 is EG
The output negative pressure is regulated by the output of the R control circuit 14 using the pressure of the intake negative pressure introduction passage 9 and the atmospheric pressure introduction passage 15, and the E
The opening degree of the GR control valve 12 is controlled and the EGR gas amount is adjusted to eliminate the comparison deviation, but the engine operating state is determined by the opening/closing degree of the throttle valve 5 and the output load of the carrot. It's always weird 2! ;'J
are doing.

EGR制御弁12の開度とEGR率KOとの関係は、第
5図(a)に示されるように、エンジンの運転状態が一
定のときはほぼEGR制御弁12の開度に比例したEG
R率KOが得られるが、エンジンの運転状態を示す量の
うち吸気流量Qが変化すると、第5図中)に示されるよ
うにEGR率KがEGR制御弁12の開度が一定にもか
かわらず変化する。
The relationship between the opening degree of the EGR control valve 12 and the EGR rate KO is as shown in FIG.
Although the R rate KO is obtained, if the intake flow rate Q changes among the quantities that indicate the operating state of the engine, the EGR rate K changes even though the opening degree of the EGR control valve 12 is constant, as shown in Fig. 5). It changes without any change.

このことは、制御対象であるエンジンの特性が運転状態
により変化することを示しており、例えば吸気流fit
Qの大なる領域で応答性がよく且つ安定になるようにE
GR制御回路14内の比例増幅回路の比例増幅度KPと
積分回路の積分時間TIを設定すると、吸気流量Qの小
なる領域では、第5図中)に示されるようにEGR制御
弁12の開度変化に対するE G R”lr= Kの変
化が大きいので不安定になりやすい。
This shows that the characteristics of the engine, which is the object of control, change depending on the operating condition. For example, the intake air flow fit
E so that the response is good and stable in the large Q region.
When the proportional amplification degree KP of the proportional amplification circuit and the integration time TI of the integral circuit in the GR control circuit 14 are set, in a region where the intake flow rate Q is small, the opening of the EGR control valve 12 is changed as shown in FIG. Since the change in EGR''lr=K with respect to the change in temperature is large, it tends to become unstable.

そこで、このEGR♂1]御回路14内には、第5図(
a)及び第5図(1))に示されるごとくエンジンの運
転状態全示す量の内、吸気流量Qに対応した比例増幅回
路の比例増幅度Kp及び積分回路の積分時間TIが記憶
されており、吸気流量センサ19の出力する吸気流量Q
の値に応じて、例えば比例増幅度KPi及び積分時間T
Iiが選択される。
Therefore, in this EGR♂1] control circuit 14, as shown in FIG.
As shown in a) and FIG. 5 (1)), among the quantities indicating all the engine operating conditions, the proportional amplification degree Kp of the proportional amplification circuit and the integration time TI of the integral circuit corresponding to the intake air flow rate Q are stored. , intake flow rate Q output by the intake flow rate sensor 19
For example, the proportional amplification degree KPi and the integration time T
Ii is selected.

この比例増幅度KPi及び積分時間TIiに基づいて比
例増幅回路及び積分回路の出力が逐時変更され、両出力
の加算信号に対応するEGR制御弁12の開度となるよ
うに、EGR制御回路14は制御負圧発生器16に信号
を出力し、EGR制御弁12が駆動制御される。
The EGR control circuit 14 changes the outputs of the proportional amplification circuit and the integration circuit from time to time based on the proportional amplification degree KPi and the integration time TIi, so that the opening degree of the EGR control valve 12 corresponds to the sum signal of both outputs. outputs a signal to the control negative pressure generator 16, and the EGR control valve 12 is driven and controlled.

なお、前述の実施例において、比例増幅度KP及び積分
時間TIは、吸気流量センサ19の出力する吸気流mQ
に対応するようKm成されていたが、回転数Ng 、吸
気圧力PB及び吸気温Tから演算される吸気流量qに対
応するようにしてもよい。
In the above-mentioned embodiment, the proportional amplification degree KP and the integration time TI are based on the intake flow mQ output from the intake flow rate sensor 19.
Although Km was made to correspond to the number of revolutions Ng, the intake air flow rate q calculated from the intake air pressure PB and the intake air temperature T may be changed.

また、前述の実施例では、EGR制御弁12を圧力ダイ
アフラムを介して負圧で駆動するように構成されている
が、電気モータによって駆動するように構成してもよい
。なお、開度検出器13になくてもよい。更に、EGR
制御回路14は、電気的な記憶回路を含む電子回路で構
成されており、内部の構成はアナログ式でも、アナログ
ーデイジメル変換器、マイクロコンビヱータを含んで構
成されるディジタル式のものでもよい。
Further, in the above embodiment, the EGR control valve 12 is configured to be driven by negative pressure via the pressure diaphragm, but it may be configured to be driven by an electric motor. Note that the opening degree detector 13 does not need to have it. Furthermore, EGR
The control circuit 14 is composed of an electronic circuit including an electric memory circuit, and the internal configuration may be analog type or digital type including an analog-daisymel converter and a micro combinator. But that's fine.

〔発明の効果〕 以上説明したように、本発明の内燃機関の排気ガス還流
制御装置によれば、排気ガスが混入された吸入空気中の
酸素濃度を検知する酸素センナの出力に基づきEGR制
御回路で計算される酸素濃度と機関の運転状態に応じて
設定されたEGR率に対応して定まる吸入空気中の酸素
a度とを比較し、その比較偏差をEGR制御回路内の比
例増幅回路、および積分回路に入力し、両回路の出力信
号の加算信号に相当する開度となるように、機関の吸入
空気に導入される排気ガス還流tを制御するEGR制御
弁を制御すると共に、前記比例増幅回路及び積分回路の
比例増幅度及び積分時間を機関の吸気流量に対応して変
化するようにしたので、経年変化のない排気ガス還流制
御が可能となり、しかも機関の運転状態によらず、応答
性よく且つ安定に還流量を制御することができる。
[Effects of the Invention] As explained above, according to the exhaust gas recirculation control device for an internal combustion engine of the present invention, the EGR control circuit is controlled based on the output of the oxygen sensor that detects the oxygen concentration in the intake air mixed with exhaust gas. The oxygen concentration calculated in the above is compared with the oxygen a degree in the intake air, which is determined according to the EGR rate set according to the operating state of the engine, and the comparison deviation is calculated by the proportional amplification circuit in the EGR control circuit, and The EGR control valve that controls the exhaust gas recirculation t introduced into the intake air of the engine is input to the integral circuit so that the opening corresponds to the sum signal of the output signals of both circuits, and the proportional amplification The proportional amplification degree and integration time of the circuit and integral circuit are made to change in accordance with the intake flow rate of the engine, making it possible to control exhaust gas recirculation that does not change over time.Moreover, the responsiveness is maintained regardless of the operating state of the engine. The reflux amount can be well and stably controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る内燃機関の排気ガス還
流制御装置を示す構成説明図、第2図は前記内燃機関の
排気ガス還流制御装置における吸入空気中の酸素濃度と
EGR率にの関係を示す図、第3図は前記内燃機関の排
気ガス還流制御装置における目標EGR率KOを示す図
、第4図(a)はEGR制御弁12の開度とEGR率に
との関係を示す図、第4図中)は吸気流量QによってE
GR制御弁12の開開が一定であってもEGR率Kが変
化を受けるようすを示す図、第5図(a)及び第5図(
ロ)はEGR制御回路内に記憶されているエンジンの吸
気流量Qに対応して定められた比例増幅回路の比例増幅
度KP及び積分回路の積分時間T、を示す図、第6図は
従来の内燃機関の排気ガス還流制御装置を示す溝底説明
図でちる。 1・・・エンジン本体、2・・・吸気管、3・・・排気
管、5・・・スロットル弁、8・・・エンジン回転数検
出器、10・・・吸気圧力検出器、11・・−、E G
 R通路、12・・・EGR制御弁、14・・・EGR
制御回路、18・・・酸素センサ、19・・・吸気流量
センナ。 なお、図中同一符号は同一ま7′cニ相当部分を示す。
FIG. 1 is a configuration explanatory diagram showing an exhaust gas recirculation control device for an internal combustion engine according to an embodiment of the present invention, and FIG. 3 is a diagram showing the target EGR rate KO in the exhaust gas recirculation control device of the internal combustion engine, and FIG. 4(a) is a diagram showing the relationship between the opening degree of the EGR control valve 12 and the EGR rate. The diagram shown in Figure 4) shows that E due to the intake flow rate Q
Figures 5(a) and 5(a) show how the EGR rate K changes even if the opening and opening of the GR control valve 12 is constant.
B) is a diagram showing the proportional amplification degree KP of the proportional amplification circuit and the integration time T of the integral circuit, which are determined corresponding to the engine intake flow rate Q stored in the EGR control circuit. This is a groove bottom explanatory diagram showing an exhaust gas recirculation control device for an internal combustion engine. DESCRIPTION OF SYMBOLS 1... Engine body, 2... Intake pipe, 3... Exhaust pipe, 5... Throttle valve, 8... Engine speed detector, 10... Intake pressure detector, 11... -, E G
R passage, 12...EGR control valve, 14...EGR
Control circuit, 18...Oxygen sensor, 19...Intake flow rate sensor. In addition, the same reference numerals in the drawings indicate the same parts corresponding to 7'c and 2.

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の排気系と吸気系を連通した排気ガス還流通路
に設けられた排気ガス還流制御弁、および吸気系の排気
ガス還流通路開口部より下流に設けられた酸素濃度セン
サを備え、機関の運転状態に対応して予め定められた目
標排気ガス還流率となるように、該目標排気ガス還流率
に対応した演算量と前記酸素濃度センサの出力信号との
偏差に基づいて前記排気ガス還流制御弁の開度を制御す
る内燃機関の排気ガス還流制御装置において、前記偏差
を比例増幅する比例増幅回路と、前記偏差を積分処理す
る積分回路とを備え、前記比例増幅回路と積分回路との
出力信号の加算信号に応動して前記排気ガス還流制御弁
を開閉する制御回路を含んで構成され、前記比例増幅回
路の比例増幅度及び積分回路の積分時間が、前記機関の
吸気流量に応じて変化することを特徴とする内燃機関の
排気ガス還流制御装置。
It is equipped with an exhaust gas recirculation control valve installed in the exhaust gas recirculation passage that communicates the exhaust system and intake system of the internal combustion engine, and an oxygen concentration sensor installed downstream of the exhaust gas recirculation passage opening in the intake system. The exhaust gas recirculation control valve is operated based on the deviation between the calculation amount corresponding to the target exhaust gas recirculation rate and the output signal of the oxygen concentration sensor so that the target exhaust gas recirculation rate is set in advance in accordance with the state. An exhaust gas recirculation control device for an internal combustion engine that controls the opening degree of an internal combustion engine, comprising a proportional amplification circuit that proportionally amplifies the deviation, and an integration circuit that integrates the deviation, and that output signals from the proportional amplification circuit and the integration circuit. The exhaust gas recirculation control valve is configured to include a control circuit that opens and closes the exhaust gas recirculation control valve in response to an addition signal, and the proportional amplification degree of the proportional amplification circuit and the integration time of the integral circuit change depending on the intake flow rate of the engine. An exhaust gas recirculation control device for an internal combustion engine, characterized in that:
JP61200563A 1986-08-26 1986-08-26 Exhaust gas recirculation controller for internal combustion engine Pending JPS6355355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200563A JPS6355355A (en) 1986-08-26 1986-08-26 Exhaust gas recirculation controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200563A JPS6355355A (en) 1986-08-26 1986-08-26 Exhaust gas recirculation controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6355355A true JPS6355355A (en) 1988-03-09

Family

ID=16426398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200563A Pending JPS6355355A (en) 1986-08-26 1986-08-26 Exhaust gas recirculation controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6355355A (en)

Similar Documents

Publication Publication Date Title
US4790286A (en) EGR control device for internal combustion engine
US4023357A (en) System to control the ratio of air to fuel of the mixture delivered to an internal combustion engine
US4727849A (en) Exhaust gas recirculation control system for an internal combustion engine
JPH0363654B2 (en)
JPS5917259B2 (en) Air fuel ratio control device
KR920004491B1 (en) Engine controller
US4705009A (en) Exhaust gas recirculation control system for an engine
JPS5925111B2 (en) Engine idle speed control device
US4320730A (en) Air-fuel mixture ratio control device
US4391256A (en) Air-fuel ratio control apparatus
US4419975A (en) Air-fuel ratio control system
JPS5916095B2 (en) Kuunenhichiyouseisouchi
JPS6347894B2 (en)
JPS6355355A (en) Exhaust gas recirculation controller for internal combustion engine
US4306523A (en) Air-fuel ratio control apparatus of an internal combustion engine
JPS6318023B2 (en)
JPS6355356A (en) Exhaust gas recirculation controller for internal combustion engine
JPS62284950A (en) Exhaust gas reflux controller for internal combustion engine
JPS58172442A (en) Air fuel ratio control device
JPS6130136B2 (en)
JPS63140859A (en) Exhaust gas reflux controller for internal combustion engine
JPH10238414A (en) Control device for egr
US4380984A (en) Electronic controlled carburetor
JPH09126060A (en) Method and device for controlling exhaust gas reflux
JPS63140860A (en) Exhaust gas reflux controller for internal combustion engine