JPS6347894B2 - - Google Patents

Info

Publication number
JPS6347894B2
JPS6347894B2 JP54162072A JP16207279A JPS6347894B2 JP S6347894 B2 JPS6347894 B2 JP S6347894B2 JP 54162072 A JP54162072 A JP 54162072A JP 16207279 A JP16207279 A JP 16207279A JP S6347894 B2 JPS6347894 B2 JP S6347894B2
Authority
JP
Japan
Prior art keywords
circuit
air
proportional
fuel ratio
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54162072A
Other languages
Japanese (ja)
Other versions
JPS5685540A (en
Inventor
Tatsuji Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Fuji Jukogyo KK filed Critical Nissan Motor Co Ltd
Priority to JP16207279A priority Critical patent/JPS5685540A/en
Priority to US06/214,605 priority patent/US4399790A/en
Priority to GB8039734A priority patent/GB2065932B/en
Priority to DE19803047076 priority patent/DE3047076A1/en
Priority to FR8026583A priority patent/FR2485097B1/en
Publication of JPS5685540A publication Critical patent/JPS5685540A/en
Publication of JPS6347894B2 publication Critical patent/JPS6347894B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、エンジンの排気系に排気ガス浄化用
三元触媒を具備するものにおいて、吸入混合気の
空燃比を三元触媒が最も有効に働く理論空燃比付
近に常に保つように制御する空燃比制御装置に関
し、特に、加速、減速時においてそのスロツトル
開度変化に応じた最適空燃比に制御することがで
きる空燃比制御装置に関するものである。
The present invention provides an air-fuel ratio that controls the air-fuel ratio of an intake air-fuel mixture to always be maintained near the stoichiometric air-fuel ratio at which the three-way catalyst works most effectively, in an engine equipped with a three-way catalyst for purifying exhaust gas in the exhaust system of an engine. The present invention relates to a control device, and particularly to an air-fuel ratio control device that can control the air-fuel ratio to an optimum air-fuel ratio according to changes in throttle opening during acceleration and deceleration.

【従来の技術と問題点】[Conventional technology and problems]

従来この種の空燃比制御装置は、排気系にO2
センサを設けてこれにより排気ガス中の酸素濃度
を検出して空燃比を知り、このO2センサからの
信号により空燃比が理論空燃比に対して濃いか薄
いかを判定して電磁弁を開閉し、気化器に所定の
空気量を補給してフイードバツク制御するもの
で、非線形リレー制御系であつた。このフイード
バツク制御において、制御回路は比例回路と積分
回路を内蔵し比例、積分制御を行つているが、こ
の比例定数、積分定数は三元触媒の浄化効率、運
転性などから決定する。その場合に定常走行時の
ようにエンジン入口の空燃比レベルが一定の場合
と、加速、減速時のようにエンジン入口の空燃比
レベルが変動する場合とでは、比例定数、積分定
数の最適値が異なるものである。一般的傾向から
は、加速、減速時には定常走行時よりも比例、積
分定数が大きい方が良く、加速度、減速度が大き
い程比例、積分定数を大きくした方が良好であ
る。 なお、特開昭52−77933号公報において、スロ
ツトルが閉状態から開状態に移つた時に、所定時
間、制御回路の制御利得を開状態時における値よ
りさらに大きくすることが示されている。すなわ
ちアイドリング状態から加速する時に、加速の度
合に関係なく一定時間、比例定数、積分定数の回
路抵抗、コンデンサで設定される所定の大きさに
するので、実際の加速変化に応じた制御が行なわ
れず、さらに加速後の理輪空燃比への収束がおそ
いという問題点がある。 また、特開昭52−53141号公報において、スロ
ツトルが全開状態になつた時点から所定時間経過
後に比例定数および積分定数のいずれか一方また
は両方を変化させることが示されている。すなわ
ち減速状態にあるにもかかわらずアイドリング状
態に移行してから比例定数および積分定数を変化
させるので、減速変化に応じた制御が行なわれな
いので、やはり理論空燃比への収束性がおそいと
いう問題点がある。 本発明は、上述の点に鑑み、制御回路内にスロ
ツトル開度の変動を微分する微分回路を設け、微
分回路の微分出力を比例回路と積分回路に入力
し、微分値に比例して比例定数、積分定数を補正
し、加速、減速時に最適な空燃比制御が可能な空
燃比制御装置を提供するものである。
Conventionally, this type of air-fuel ratio control device uses O 2 in the exhaust system.
A sensor is installed to detect the oxygen concentration in the exhaust gas to determine the air-fuel ratio, and the signal from this O2 sensor determines whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio and opens and closes the solenoid valve. However, it was a nonlinear relay control system that replenished the carburetor with a predetermined amount of air to perform feedback control. In this feedback control, the control circuit has a built-in proportional circuit and an integral circuit to perform proportional and integral control, and the proportional constant and integral constant are determined based on the purification efficiency, operability, etc. of the three-way catalyst. In this case, the optimal values of the proportionality constant and integral constant are determined depending on whether the air-fuel ratio level at the engine inlet is constant, such as during steady driving, or when the air-fuel ratio level at the engine inlet fluctuates, such as during acceleration or deceleration. They are different. From the general tendency, it is better to have larger proportional and integral constants during acceleration and deceleration than during steady running, and the larger the acceleration and deceleration, the better the proportional and integral constants are larger. Note that Japanese Patent Application Laid-Open No. 52-77933 discloses that when the throttle shifts from the closed state to the open state, the control gain of the control circuit is made larger than the value in the open state for a predetermined period of time. In other words, when accelerating from an idling state, regardless of the degree of acceleration, the constant time is set to a predetermined value set by the proportional constant, integral constant circuit resistance, and capacitor, so control according to actual acceleration changes is not performed. Furthermore, there is a problem in that the convergence to the ideal air-fuel ratio after acceleration is slow. Furthermore, Japanese Patent Application Laid-Open No. 52-53141 discloses that either or both of the proportionality constant and the integral constant are changed after a predetermined period of time has elapsed since the throttle became fully open. In other words, since the proportional constant and integral constant are changed after transitioning to the idling state even though the engine is in the deceleration state, control according to changes in deceleration is not performed, so the problem is that convergence to the stoichiometric air-fuel ratio is slow. There is a point. In view of the above-mentioned points, the present invention provides a differentiation circuit for differentiating fluctuations in throttle opening in the control circuit, inputs the differential output of the differentiation circuit to a proportional circuit and an integral circuit, and calculates a proportional constant in proportion to the differential value. The present invention provides an air-fuel ratio control device that corrects an integral constant and is capable of optimal air-fuel ratio control during acceleration and deceleration.

【問題点を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明は、排気ガス
中の酸素濃度により空燃比を検出するO2センサ、
スロツトル弁の開度状態を検出するスロツトルセ
ンサ、上記各センサからの信号を入力して制御信
号を出力する制御回路、気化器の空気補正通路に
設けられて上記制御回路からの信号により開閉す
る電磁弁を備え、上記制御回路に上記O2センサ
からの出力と設定値とを比較する偏差検出回路、
上記偏差検出回路の出力を比例あるいは積分する
比例回路と積分回路、上記比例回路と上記積分回
路の両出力信号を加算する加算回路を備えてなる
空燃比制御装置において、上記制御回路に、上記
スロツトル弁の開度変化による加減速時に上記ス
ロツトルセンサからのスロツトル弁開度信号を微
分する微分回路を備え、上記微分回路からの微分
値出力を上記積分回路と上記比例回路とへ入力
し、加減速時における積分定数と比例定数とを変
動させ、加減速時における空燃比制御の制御信号
を補正するように構成されている。
In order to achieve the above object, the present invention provides an O 2 sensor that detects the air-fuel ratio based on the oxygen concentration in exhaust gas,
A throttle sensor that detects the opening state of the throttle valve, a control circuit that inputs signals from the above sensors and outputs control signals, and is installed in the air correction passage of the carburetor and opens and closes according to the signals from the control circuit. A deviation detection circuit that is equipped with a solenoid valve and that compares the output from the O 2 sensor with a set value in the control circuit;
In the air-fuel ratio control device, the control circuit includes a proportional circuit and an integral circuit that proportionally or integrally integrate the output of the deviation detection circuit, and an adder circuit that adds the output signals of both the proportional circuit and the integral circuit. A differentiation circuit is provided for differentiating the throttle valve opening signal from the throttle sensor during acceleration/deceleration due to changes in the opening of the valve, and the differential value output from the differentiation circuit is input to the integration circuit and the proportional circuit to perform acceleration. It is configured to vary the integral constant and proportional constant during deceleration to correct the control signal for air-fuel ratio control during acceleration and deceleration.

【実施例】【Example】

以下、図面を参照して本発明の一実施例を具体
的に説明する。 第1図において本発明の装置の概略を説明する
と、符号1はエンジン本体2の上流側に連設され
る気化器であり、この気化器1のフロートチヤン
バ3からベンチユリー4のノズル5に至るメイン
燃料通路6の途中のエアブリード7に空気補正通
路8が連通している。また、メイン燃料通路6か
ら分岐してスロツトル弁9の付近に開口するスロ
ーポート10に至るスロー燃料通路11の途中の
エアブリード12にも空気補正通路13が連通し
ている。そしてこれらの各空気補正通路8,13
に開閉用の電磁弁14,15が設けられ、この電
磁弁14,15の吸入側がエアクリーナ16を介
して大気に連通している。次いでエンジン本体2
下流側の排気管17には排気ガス浄化用三元触媒
のコンバータ18が介設され、それよりエンジン
本体2側にO2センサ19が排気ガス中の酸素濃
度により空燃比を検出すべく設けられている。 一方、スロツトル弁9にはその弁開度を検出す
るスロツトルセンサ20が設けられ、これらのセ
ンサ19,20の信号が制御回路21に入力さ
れ、この制御回路21から出力する信号で電磁弁
14,15をあるデユーテイ比で開閉すること
で、空気補正通路8,13、エアブリード7,1
2を介して燃料系に多量の空気を補給して混合気
の空燃比をリーンにしたり、その空気補給量を減
じて空燃比をリツチにするようになつている。 制御回路21の内部は第2図に示される構成を
しており、O2センサ19と設定値22のそれぞ
れの出力は偏差検出回路23に入力しており、偏
差検出回路23による偏差出力は積分回路24と
比例回路25に入力している。積分回路24と比
例回路25の両出力は加算回路26によつて加算
されており、加算回路26の出力は駆動回路27
に入力している。駆動回路27の制御出力は制御
回路21の外部にある電磁弁14,15に入力し
ている。また、制御回路21内には微分回路28
が設けてあり、この微分回路28の微分値出力は
積分回路24と比例回路25にそれぞれ入力して
おり、この微分回路28には前記スロツトルセン
サ20の出力が入力している。 次に、本実施例の作用を第2図とともに説明す
る。 排気系に設けられたO2センサ19は排気ガス
中に含まれる酸素濃度を電気信号に変換して検出
し、この検出信号を偏差検出回路23に出力す
る。偏差検出回路23には理論空燃比である設定
値22からの設定信号が入力しており、偏差検出
回路23では設定値22とO2センサ19からの
信号を比較してO2センサ19の信号が設定値2
2より高いか低いかを判断し、その偏差出力を積
分回路24と比例回路25に出力している。積分
回路24と比例回路25はこの偏差信号を分析し
て偏差信号に応じた出力をし、その出力信号は加
算回路26に入力されて合成される。このとき、
積分回路24、比例回路25は予め設定されてい
る積分定数、比例定数で作動している。加算回路
26により合成された比例、積分の両制御信号は
駆動回路27に入力し、制御信号に応じて電磁弁
14,15を駆動させ、気化器1の吸入される補
正空気量を調節し、空燃比を理論空燃比に収束さ
せるように作動する。上述の動作はエンジンの回
転数が変動しない定常走行やアイドリングなどの
場合である。 次に、スロツトル弁9を急激に動作させて加速
或いは減速させた場合について説明する。 スロツトル弁9を動作させると、スロツトル弁
9の開角度はスロツトルセンサ20によつて検知
され、制御回路21中の微分回路28に入力す
る。今、スロツトル弁9を動作させ、加速と減速
を行つた場合、スロツトル弁9の開度θの変化は
第3図中Aのように示される。この開度θの変動
は微分回路28に入力することでその変動した時
にのみ微分され、微分回路28の微分値出力は第
3図Bで示す変化になる。この微分回路28の微
分値出力は積分回路24と比例回路25に伝えら
れ、積分回路24における積分定数を減少させ、
比例回路25における比例定数を増加させる。 この定数を変化させる手断として、積分回路2
4および比例回路25には、発光ダイオードとホ
トトランジスタとが組込まれ、微分回路28の出
力信号が各発光ダイオードへ出力するように構成
されている。かかる発光ダイオードとホトトラン
ジスタとの組合せは従来公知である。そして微分
回路28からの微分値出力の変化に応じてホトト
ランジスタの抵抗が変化することにより、積分定
数と比例定数が変化する。したがつて、各定数の
変化量は微分回路28からの微分信号Bに比例し
て変化する。この比例定数と積分定数の変動によ
る加算回路26の出力は第3図Cで示す波形とな
る。すなわち、加減速時の出力信号はDで示すよ
うに比例制御信号部分の幅は大きく、積分制御信
号部分の傾斜角度は鋭くなつており、Eで示す定
常走行時と比べて比例定数は大きくなり積分定数
は小さくなつている。このとき、D,E部分の周
期は同一であり、定常走行時、加減速時のいずれ
においても電磁弁14,15を駆動させる周期は
定常的に行われる。しかし、加減速時における比
例定数、積分定数は微分値に基づいて定常走行時
に比べ比例定数は大きくなり積分定数は小さくな
つており、しかも徐々に小さくなるので、空燃比
の収束性は速くなり、エンジンの空燃比レベルが
大きく変動しても速く理論空燃比に収束させるこ
とになる。 なお、第3図のA,B,Cそれぞれの波形は、
第2図の構成図でA,B,Cの符号で表わした個
所に対応するものである。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. To explain the outline of the apparatus of the present invention in FIG. 1, reference numeral 1 denotes a carburetor connected to the upstream side of the engine main body 2, and a float chamber 3 of this carburetor 1 is connected to a nozzle 5 of a ventilate 4. An air correction passage 8 communicates with an air bleed 7 in the middle of the main fuel passage 6. Further, an air correction passage 13 also communicates with an air bleed 12 in the middle of a slow fuel passage 11 that branches from the main fuel passage 6 and reaches a slow port 10 that opens near the throttle valve 9. And each of these air correction passages 8, 13
Electromagnetic valves 14 and 15 for opening and closing are provided in the air conditioner, and the suction sides of the electromagnetic valves 14 and 15 communicate with the atmosphere via an air cleaner 16. Next, the engine body 2
A three-way catalyst converter 18 for exhaust gas purification is interposed in the exhaust pipe 17 on the downstream side, and an O 2 sensor 19 is provided on the side of the engine body 2 to detect the air-fuel ratio based on the oxygen concentration in the exhaust gas. ing. On the other hand, the throttle valve 9 is provided with a throttle sensor 20 that detects the opening degree of the valve. Signals from these sensors 19 and 20 are input to a control circuit 21, and a signal output from the control circuit 21 is used to control the solenoid valve 14. , 15 at a certain duty ratio, the air correction passages 8, 13 and the air bleeds 7, 1
2, a large amount of air is supplied to the fuel system to make the air-fuel ratio of the air-fuel mixture lean, or the amount of air supplied is reduced to make the air-fuel ratio rich. The inside of the control circuit 21 has the configuration shown in FIG. 2, and the respective outputs of the O 2 sensor 19 and the set value 22 are input to the deviation detection circuit 23, and the deviation output from the deviation detection circuit 23 is integrated. It is input to the circuit 24 and the proportional circuit 25. Both outputs of the integrating circuit 24 and the proportional circuit 25 are added by an adding circuit 26, and the output of the adding circuit 26 is added to the driving circuit 27.
is being entered. The control output of the drive circuit 27 is input to solenoid valves 14 and 15 located outside the control circuit 21. Also, a differentiation circuit 28 is included in the control circuit 21.
The differential value output of this differentiating circuit 28 is input to an integrating circuit 24 and a proportional circuit 25, respectively, and the output of the throttle sensor 20 is input to this differentiating circuit 28. Next, the operation of this embodiment will be explained with reference to FIG. 2. An O 2 sensor 19 provided in the exhaust system detects the oxygen concentration contained in the exhaust gas by converting it into an electrical signal, and outputs this detection signal to the deviation detection circuit 23 . A setting signal from a set value 22 which is the stoichiometric air-fuel ratio is input to the deviation detection circuit 23, and the deviation detection circuit 23 compares the set value 22 with the signal from the O 2 sensor 19 and determines the signal from the O 2 sensor 19. is the setting value 2
It judges whether it is higher or lower than 2 and outputs the deviation output to the integrating circuit 24 and the proportional circuit 25. The integrating circuit 24 and the proportional circuit 25 analyze this deviation signal and output an output according to the deviation signal, and the output signals are inputted to an adding circuit 26 and synthesized. At this time,
The integral circuit 24 and the proportional circuit 25 operate with preset integral constants and proportional constants. Both the proportional and integral control signals synthesized by the adder circuit 26 are input to the drive circuit 27, which drives the solenoid valves 14 and 15 in accordance with the control signals to adjust the correction air amount taken into the carburetor 1. It operates to converge the air-fuel ratio to the stoichiometric air-fuel ratio. The above-mentioned operation occurs when the engine is running at steady speed or idling, where the engine speed does not fluctuate. Next, a case will be described in which the throttle valve 9 is suddenly operated to accelerate or decelerate. When the throttle valve 9 is operated, the opening angle of the throttle valve 9 is detected by the throttle sensor 20 and input to the differential circuit 28 in the control circuit 21. Now, when the throttle valve 9 is operated to perform acceleration and deceleration, the change in the opening degree θ of the throttle valve 9 is shown as A in FIG. 3. This variation in the opening degree θ is input to the differentiating circuit 28 so that it is differentiated only when the variation occurs, and the differential value output of the differentiating circuit 28 changes as shown in FIG. 3B. The differential value output of the differentiating circuit 28 is transmitted to the integrating circuit 24 and the proportional circuit 25, reducing the integral constant in the integrating circuit 24,
The proportional constant in the proportional circuit 25 is increased. As a measure to change this constant, the integration circuit 2
4 and the proportional circuit 25 incorporate a light emitting diode and a phototransistor, and are configured so that the output signal of the differentiating circuit 28 is output to each light emitting diode. Such combinations of light emitting diodes and phototransistors are known in the art. Then, as the resistance of the phototransistor changes in accordance with the change in the differential value output from the differentiating circuit 28, the integral constant and the proportionality constant change. Therefore, the amount of change in each constant changes in proportion to the differential signal B from the differentiating circuit 28. The output of the adder circuit 26 due to the variation of the proportional constant and the integral constant has a waveform shown in FIG. 3C. In other words, in the output signal during acceleration/deceleration, the width of the proportional control signal part is large, as shown by D, and the slope angle of the integral control signal part is sharp, and the proportional constant is larger than that during steady running, shown as E. The constant of integration is getting smaller. At this time, the cycles of portions D and E are the same, and the cycle of driving the electromagnetic valves 14 and 15 is constant during both steady running and acceleration/deceleration. However, the proportional constant and integral constant during acceleration and deceleration are based on differential values, and the proportional constant is larger and the integral constant is smaller than during steady driving.As they gradually become smaller, the convergence of the air-fuel ratio becomes faster. Even if the air-fuel ratio level of the engine fluctuates greatly, it can quickly converge to the stoichiometric air-fuel ratio. The waveforms of A, B, and C in Figure 3 are as follows:
This corresponds to the parts indicated by the symbols A, B, and C in the configuration diagram of FIG.

【発明の効果】【Effect of the invention】

本発明は、以上のように構成したので、 制御回路に、スロツトル弁の開閉変化による加
減速時にスロツトルセンサからのスロツトル弁開
度変動信号を微分する微分回路を備えたので、微
分値に比例した定数補正を行なうことができ、ス
ロツトル弁の開度変化、すなわち加減速の大きさ
に応じた制御が可能となる。 さらに、微分回路からの微分値出力を積分回路
と比例回路とへ入力し、加減速時における積分定
数と比例定数とを変動させ、加減速時における空
燃比制御の制御信号を補正するようにしたので、
加減速時には、微分値出力に基づいて積分定数は
小さくなり、比例定数は大きくなり、その後微分
値出力に対応して徐々に積分定数は大きくなり、
比例定数は小さくなつて理論空燃比に速く収束す
ることができる。 さらにまた、理論空燃比への収束性が速いの
で、三元触媒のコンバータを効率よく動作させる
ことができ、排気浄化が向上する。
Since the present invention is configured as described above, the control circuit is equipped with a differentiation circuit that differentiates the throttle valve opening fluctuation signal from the throttle sensor during acceleration/deceleration due to changes in the opening and closing of the throttle valve. Therefore, it is possible to perform constant correction according to the degree of opening of the throttle valve, that is, control according to the magnitude of acceleration and deceleration. Furthermore, the differential value output from the differential circuit is input to the integral circuit and the proportional circuit to vary the integral constant and proportional constant during acceleration/deceleration, thereby correcting the control signal for air-fuel ratio control during acceleration/deceleration. So,
During acceleration/deceleration, the integral constant becomes smaller and the proportional constant increases based on the differential value output, and then the integral constant gradually increases in response to the differential value output.
The proportionality constant becomes smaller and can quickly converge to the stoichiometric air-fuel ratio. Furthermore, since the air-fuel ratio converges quickly to the stoichiometric air-fuel ratio, the three-way catalyst converter can be operated efficiently, improving exhaust purification.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の概略を示す構成
図、第2図は制御回路のブロツク線図、第3図は
各部の動作を示す波形図である。 1……気化器、2……エンジン本体、3……フ
ロートチヤンバ、4……ベンチユリー、5……ノ
ズル、6……メイン燃料通路、7,12……エア
ブリード、8,13……空気補正通路、9……ス
ロツトル弁、10……スローポート、11……ス
ロー燃料通路、14,15……電磁弁、16……
エアクリーナ、17……排気管、18……コンバ
ータ、19……O2センサ、20……スロツトル
センサ、21……制御回路、22……設定値、2
3……偏差検出回路、24……積分回路、25…
…比例回路、26……加算回路、27……駆動回
路。
FIG. 1 is a block diagram showing an outline of the apparatus according to the present invention, FIG. 2 is a block diagram of a control circuit, and FIG. 3 is a waveform diagram showing the operation of each part. 1... Carburetor, 2... Engine body, 3... Float chamber, 4... Ventilation, 5... Nozzle, 6... Main fuel passage, 7, 12... Air bleed, 8, 13... Air Correction passage, 9... Throttle valve, 10... Slow port, 11... Slow fuel passage, 14, 15... Solenoid valve, 16...
Air cleaner, 17... Exhaust pipe, 18... Converter, 19... O 2 sensor, 20... Throttle sensor, 21... Control circuit, 22... Setting value, 2
3... Deviation detection circuit, 24... Integrating circuit, 25...
...Proportional circuit, 26... Addition circuit, 27... Drive circuit.

Claims (1)

【特許請求の範囲】 1 排気ガス中の酸素濃度により空燃比を検出す
るO2センサ、スロツトル弁の開度状態を検出す
るスロツトルセンサ、上記各センサからの信号を
入力して制御信号を出力する制御回路、気化器の
空気補正通路に設けられて上記制御回路からの信
号により開閉する電磁弁を備え、上記制御回路に
上記O2センサからの出力と設定値とを比較する
偏差検出回路、上記偏差検出回路の出力を比例あ
るいは積分する比例回路と積分回路、上記比例回
路と上記積分回路の両出力信号を加算する加算回
路を備えてなる空燃比制御装置において、 上記制御回路に、上記スロツトル弁の開度変化
による加減速時に上記スロツトルセンサからのス
ロツトル弁開度信号を微分する微分回路を備え、
上記微分回路からの微分値出力を上記積分回路と
上記比例回路とへ入力し、加減速時における積分
定数と比例定数とを変動させ、加減速時における
空燃比制御の制御信号を補正するようにしたこと
を特徴とする空燃比制御装置。
[Claims] 1. An O 2 sensor that detects the air-fuel ratio based on the oxygen concentration in exhaust gas, a throttle sensor that detects the opening state of the throttle valve, and outputs control signals by inputting signals from each of the above sensors. a control circuit that includes a solenoid valve that is installed in the air correction passage of the carburetor and is opened and closed by a signal from the control circuit, and a deviation detection circuit that compares the output from the O 2 sensor and a set value in the control circuit; An air-fuel ratio control device comprising a proportional circuit and an integral circuit that proportional or integrate the output of the deviation detection circuit, and an addition circuit that adds both output signals of the proportional circuit and the integral circuit, Equipped with a differentiation circuit that differentiates the throttle valve opening signal from the throttle sensor during acceleration/deceleration due to changes in valve opening,
The differential value output from the differential circuit is input to the integral circuit and the proportional circuit to vary an integral constant and a proportional constant during acceleration/deceleration, thereby correcting a control signal for air-fuel ratio control during acceleration/deceleration. An air-fuel ratio control device characterized by:
JP16207279A 1979-12-13 1979-12-13 Air-fuel ratio controlling device Granted JPS5685540A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16207279A JPS5685540A (en) 1979-12-13 1979-12-13 Air-fuel ratio controlling device
US06/214,605 US4399790A (en) 1979-12-13 1980-12-09 Air-fuel ratio control system
GB8039734A GB2065932B (en) 1979-12-13 1980-12-11 Automatic control of air fuel ration in ic engines
DE19803047076 DE3047076A1 (en) 1979-12-13 1980-12-13 ARRANGEMENT FOR REGULATING THE AIR FUEL RATIO OF AN INTERNAL COMBUSTION ENGINE
FR8026583A FR2485097B1 (en) 1979-12-13 1980-12-15 DEVICE FOR CONTROLLING THE AIR-TO-FUEL RATIO OF AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16207279A JPS5685540A (en) 1979-12-13 1979-12-13 Air-fuel ratio controlling device

Publications (2)

Publication Number Publication Date
JPS5685540A JPS5685540A (en) 1981-07-11
JPS6347894B2 true JPS6347894B2 (en) 1988-09-26

Family

ID=15747553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16207279A Granted JPS5685540A (en) 1979-12-13 1979-12-13 Air-fuel ratio controlling device

Country Status (5)

Country Link
US (1) US4399790A (en)
JP (1) JPS5685540A (en)
DE (1) DE3047076A1 (en)
FR (1) FR2485097B1 (en)
GB (1) GB2065932B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146842U (en) * 1982-03-29 1983-10-03 愛三工業株式会社 Air-fuel ratio control circuit for internal combustion engines
JPS58176651A (en) * 1982-04-09 1983-10-17 Canon Inc Copying apparatus
US4512320A (en) * 1983-03-28 1985-04-23 Toyota Jidosha Kabushiki Kaisha Method of and device for controlling fuel injection in internal combustion engine
US4508086A (en) * 1983-05-09 1985-04-02 Toyota Jidosha Kabushiki Kaisha Method of electronically controlling fuel injection for internal combustion engine
JPS6143238A (en) * 1984-08-07 1986-03-01 Toyota Motor Corp Fuel injection control device of internal-combustion engine
JPS61101642A (en) * 1984-10-22 1986-05-20 Fuji Heavy Ind Ltd Air-fuel ratio controlling apparatus
GB2167883A (en) * 1984-11-30 1986-06-04 Suzuki Motor Co Apparatus for controlling an air-fuel ratio in an internal combustion engine
GB8525435D0 (en) * 1985-10-16 1985-11-20 Lucas Elect Electron Syst Electronic control system
JPS62183045U (en) * 1986-05-14 1987-11-20
JP2902646B2 (en) * 1988-01-11 1999-06-07 富士重工業株式会社 Engine air-fuel ratio control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253141A (en) * 1975-10-27 1977-04-28 Nissan Motor Co Ltd Air/fuel ratio controller
JPS5277933A (en) * 1975-12-25 1977-06-30 Nissan Motor Co Ltd Air-fuel ratio controller

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801366A (en) * 1971-02-16 1974-04-02 J Lemelson Method of making an electrical circuit
DE7108846U (en) * 1971-03-09 1973-08-02 Bosch R Gmbh Accelerometer for a fuel injection system
GB1524361A (en) * 1974-10-21 1978-09-13 Nissan Motor Apparatus for controlling the air-fuel mixture ratio of internal combustion engine
JPS51124738A (en) * 1975-04-23 1976-10-30 Nissan Motor Co Ltd Air fuel ratio control apparatus
US4173952A (en) * 1975-04-24 1979-11-13 Nissan Motor Company, Limited Closed-loop mixture control system for an internal combustion engine with improved response characteristic to idling condition
US4111162A (en) * 1975-06-10 1978-09-05 Nippondenso Co., Ltd. Method and system for controlling the mixture air-to-fuel ratio
US4131091A (en) * 1975-10-27 1978-12-26 Nissan Motor Company, Ltd. Variable gain closed-loop control apparatus for internal combustion engines
JPS5840010B2 (en) * 1975-12-27 1983-09-02 日産自動車株式会社 Kuunenpiseigiyosouchi
JPS52135923A (en) * 1976-05-08 1977-11-14 Nissan Motor Co Ltd Air fuel ratio control equipment
JPS5311234A (en) * 1976-07-13 1978-02-01 Nissan Motor Co Ltd Air fuel ratio controlling apparatus
JPS53127930A (en) * 1977-04-15 1978-11-08 Nissan Motor Co Ltd Air fuel ratio control equipment
JPS54108125A (en) * 1978-02-15 1979-08-24 Toyota Motor Corp Air fuel ratio controller for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253141A (en) * 1975-10-27 1977-04-28 Nissan Motor Co Ltd Air/fuel ratio controller
JPS5277933A (en) * 1975-12-25 1977-06-30 Nissan Motor Co Ltd Air-fuel ratio controller

Also Published As

Publication number Publication date
US4399790A (en) 1983-08-23
FR2485097A1 (en) 1981-12-24
DE3047076A1 (en) 1981-09-10
GB2065932B (en) 1983-12-21
JPS5685540A (en) 1981-07-11
FR2485097B1 (en) 1986-10-17
GB2065932A (en) 1981-07-01

Similar Documents

Publication Publication Date Title
US4763634A (en) Air-fuel ratio control system for automotive engines
JPS5917259B2 (en) Air fuel ratio control device
US4103654A (en) Method and apparatus to control air/fuel ratio of the mixture applied to an internal combustion engine
JPH0146698B2 (en)
JPS6339783B2 (en)
JPS6347894B2 (en)
US4402293A (en) Air-fuel ratio control system
US4483296A (en) System for controlling an air-fuel ratio
US4348996A (en) System for controlling air-fuel ratio
JPS6321019B2 (en)
US4365603A (en) System for controlling air-fuel ratio
JPS6321017B2 (en)
CA2134583C (en) Air/fuel ratio controller for large internal combustion engines
US4430979A (en) Air-fuel ratio control system
US4419975A (en) Air-fuel ratio control system
US4385608A (en) System for controlling air-fuel ratio
JPS6318023B2 (en)
US4361124A (en) System for controlling air-fuel ratio
US4677959A (en) Air intake side secondary air supply system for an internal combustion engine
JPH0123664B2 (en)
US4651695A (en) Air-fuel ratio control system
JPH0228699B2 (en)
JPS6321018B2 (en)
JPH0674764B2 (en) Air-fuel ratio controller for vehicle engine
JPS6254991B2 (en)