JPS63140859A - Exhaust gas reflux controller for internal combustion engine - Google Patents

Exhaust gas reflux controller for internal combustion engine

Info

Publication number
JPS63140859A
JPS63140859A JP61288425A JP28842586A JPS63140859A JP S63140859 A JPS63140859 A JP S63140859A JP 61288425 A JP61288425 A JP 61288425A JP 28842586 A JP28842586 A JP 28842586A JP S63140859 A JPS63140859 A JP S63140859A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
egr
oxygen concentration
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61288425A
Other languages
Japanese (ja)
Other versions
JPH0615853B2 (en
Inventor
Minoru Nishida
稔 西田
Tomoyuki Inoue
知之 井上
Yoshiaki Asayama
浅山 嘉明
Hiroyoshi Suzuki
鈴木 尋善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61288425A priority Critical patent/JPH0615853B2/en
Publication of JPS63140859A publication Critical patent/JPS63140859A/en
Publication of JPH0615853B2 publication Critical patent/JPH0615853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the extent of control accuracy, by calibrating an oxygen sensor at the time of an EGR valve being fully closed, with the detected value, in case of a device which controls a desired EGR rate for feedback on the basis of a detection value of the oxygen sensor installed at the downstream of an opening of an EGR passage in a suction system. CONSTITUTION:Each detection value out of an engine speed detector 8, a suction pipe pressure detector 10, the oxygen sensor 17 installed at the downstream of an opening of an EGR passage 11 in a suction pipe 2 and an opening detector 13 of an EGR control valve 12 is inputted into an EGR control circuit 18. This circuit 18 sets a desired EGR rate on the basis of suction air quantity and engine speed, and controls opening of the EGR control valve 12 for feedback so as to become the oxygen content conformed to this desired EGR rate. In the driving state that the EGR control valve 12 is fully closed such as idleness or the like, a blow-by gas passage 22 is fully closed, finding the detected value of the oxygen sensor 17 at that time, and calibration for the oxygen sensor 17 is carried out on the basis of this value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排気ガスの還流量(再循環量)を制御する内
燃機関の排気ガス還流制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust gas recirculation control device for an internal combustion engine that controls the recirculation amount (recirculation amount) of exhaust gas.

〔従来の技術〕[Conventional technology]

内燃機関の排気ガス中の有害成分である窒素酸化物を減
少させるために、排気ガスの一部を機関の吸気側に混入
させる、いわゆる排気ガスの再循環が行われることは衆
知の通りである。そして、この再循環される排気ガスの
還流量は、窒素酸化物の減少以外に機関の性能、燃費等
に影響を与えるので、この排気ガス還流量は機関の運転
状態に応じて精度よく制御されることが望まれる。
It is well known that in order to reduce nitrogen oxides, which are harmful components in the exhaust gas of internal combustion engines, a part of the exhaust gas is mixed into the intake side of the engine, which is called exhaust gas recirculation. . In addition to reducing nitrogen oxides, the amount of recirculated exhaust gas has an impact on engine performance, fuel efficiency, etc., so the amount of exhaust gas recirculated must be precisely controlled according to the operating condition of the engine. It is hoped that

第6図は、例えば特開昭55−93950号公報等に示
された従来の排気ガス還流制御装置の概略構成図である
。同図において、(1)はエンジン本体、(2)は吸気
マニホールド、(3)は排気マニホールド、(4)は吸
気マニホールド(2)に配設された燃料供給装置、(5
)はスロットルバルブ、(6)は吸気ダクト、(7)は
エアクリーナ、(8)はエンジン回転数検出器、(9)
は負圧導入通路、Qlは負圧導入通路(9)を通じて吸
気マニホールド(2)の圧力を検出する吸気負圧検出器
、0υは排気マニホールド(3)と吸気マニホールド(
2)とを連通ずる排気ガス還流(以下、EGRと略す)
通路、(2)は圧力ダイアフラムで動<EGRIII?
11弁、03はEGR制御制御弁開度検出器、0船はE
GR制御回路、0りは大気圧導入通路、O12はEGR
制御回路Oaの送出する出力信号により、EGR制御制
御弁開閉度合を制御する制御負圧を吸気負圧と大気圧と
により調圧する制御負圧発生器である。
FIG. 6 is a schematic diagram of a conventional exhaust gas recirculation control device disclosed in, for example, Japanese Unexamined Patent Publication No. 55-93950. In the figure, (1) is the engine body, (2) is the intake manifold, (3) is the exhaust manifold, (4) is the fuel supply device disposed in the intake manifold (2), and (5) is the exhaust manifold.
) is the throttle valve, (6) is the intake duct, (7) is the air cleaner, (8) is the engine speed detector, (9)
is a negative pressure introduction passage, Ql is an intake negative pressure detector that detects the pressure of the intake manifold (2) through the negative pressure introduction passage (9), and 0υ is the exhaust manifold (3) and intake manifold (
2) Exhaust gas recirculation (hereinafter abbreviated as EGR) that communicates with
The passage (2) is operated by a pressure diaphragm <EGRIII?
11 valve, 03 is EGR control valve opening detector, 0 ship is E
GR control circuit, 0 is atmospheric pressure introduction passage, O12 is EGR
This is a controlled negative pressure generator that adjusts the controlled negative pressure that controls the opening/closing degree of the EGR control valve based on the intake negative pressure and atmospheric pressure using the output signal sent from the control circuit Oa.

このように構成されたEGR制御装置においては、エン
ジンの運転状態を示すエンジン回転数と吸気負圧とが、
エンジン回転数検出器(8)と吸気負圧検出2SQlと
で検出され、EGR制御回路(141に入力される。E
GR制御回路Oaには、エンジンの運転状態に応じて定
まるEGR制御弁(2)の目標開度が設定されており、
この目標開度と開度検出器aSを介して入力される実測
開度との比較偏差を零とすべく制御負圧発生器α口に出
力信号を送出する。
In the EGR control device configured in this way, the engine speed and intake negative pressure, which indicate the operating state of the engine, are
Detected by the engine rotation speed detector (8) and intake negative pressure detection 2SQl, and input to the EGR control circuit (141).
A target opening degree of the EGR control valve (2) is set in the GR control circuit Oa, which is determined according to the operating state of the engine.
An output signal is sent to the control negative pressure generator α port in order to make the comparison deviation between the target opening degree and the measured opening input via the opening detector aS zero.

すなわち、EGR制御回路圓の送出する出力信号に基づ
き、制御負圧発生器Qlの出力負圧を吸気負圧および大
気圧により調圧して、EGR制御l弁叩の開度を制御し
、前記比較偏差を零とする排気ガスの還流量(以下、E
GR5lと呼ぶ)を決定している。つまり、EGR制御
制御弁開度を開度検出器O1の出力を用いてフィードバ
ック制御することにより、エンジンの運転状態に応じた
F、 G Rlを得ている。
That is, based on the output signal sent from the EGR control circuit, the output negative pressure of the control negative pressure generator Ql is regulated by the intake negative pressure and the atmospheric pressure, and the opening degree of the EGR control valve I is controlled. The amount of recirculation of exhaust gas that makes the deviation zero (hereinafter referred to as E
GR5l) has been determined. That is, by feedback controlling the EGR control valve opening using the output of the opening detector O1, F and G Rl are obtained in accordance with the operating state of the engine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来のEGRMW装置による
と、EGR制御井側の長時間の使用により、排気ガス中
に含まれているカーボン等がこの弁に多量付着し、EG
R制御制御弁開閉度に対応した初期のEGRNが変化し
、精度のよい制御ができな(なる問題があった。
However, with such conventional EGRMW devices, due to long-term use of the EGR control well, a large amount of carbon contained in the exhaust gas adheres to this valve, causing the EGR
There was a problem that the initial EGRN corresponding to the opening/closing degree of the R control control valve changed, making it impossible to perform accurate control.

本発明はこのような問題点に鑑みてなされたもので、そ
の目的とするところは、経年変化のない高精度な還流制
御を可能とする内燃機関の排気ガス還流側?11装置を
提供することにある。
The present invention has been made in view of these problems, and its purpose is to provide an exhaust gas recirculation side of an internal combustion engine that enables highly accurate recirculation control that does not change over time. 11 devices.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内燃機関の排気ガス還流制御装置は、内
燃機関の排気系と吸気系を連通した排気ガス還流通路に
設けられた排気ガス還流制御弁と、上記吸気系の排気ガ
ス還流通路開口部より下流に設けられ吸入空気中の酸素
濃度を検知する酸素センサと可燃性ガスを含む気体を上
記機関に吸入されるべく、上記吸気系に接続された可燃
性ガス通路と、この可燃性ガス通路を電気信号によって
開閉する開閉弁と、上記酸素センサの検知する酸素濃度
と機関の運転状態に応じて予め設定される排気ガス還流
率に対応する目標酸素濃度とを比較しこれらの比較偏差
を零とすべく上記排気ガス還流制御弁の開度を制御する
制御手段と、上記機関の特定運転状態時に上記開閉弁を
全閉とし、その時の上記酸素センサのセンサ出力に基づ
いてこのセンサ出力と検知酸素濃度との対応関係を補正
する補正手段とを具備してなるものである。
An exhaust gas recirculation control device for an internal combustion engine according to the present invention includes an exhaust gas recirculation control valve provided in an exhaust gas recirculation passage that communicates an exhaust system and an intake system of the internal combustion engine, and an exhaust gas recirculation passage opening in the intake system. an oxygen sensor provided further downstream to detect the oxygen concentration in intake air; a flammable gas passageway connected to the intake system for inhaling gas containing flammable gas into the engine; and the flammable gas passageway. The on-off valve, which is opened and closed by an electric signal, compares the oxygen concentration detected by the oxygen sensor with a target oxygen concentration corresponding to the exhaust gas recirculation rate, which is preset according to the engine operating condition, and eliminates the deviation from these comparisons. A control means for controlling the opening degree of the exhaust gas recirculation control valve, and a control means for fully closing the opening/closing valve during a specific operating state of the engine, and detecting the sensor output based on the sensor output of the oxygen sensor at that time. It is provided with a correction means for correcting the correspondence relationship with oxygen concentration.

〔作用〕[Effect]

したがってこの発明によれば、排気ガス還流制御弁の開
度を吸入空気中の酸素濃度によって制御し、運転状態に
応じた所望の排気ガス還流量を得ているので、排気ガス
還流制御弁の長時間の使用により排気ガス中に含まれる
カーボン等がこの弁に多量付着したとしても、初期の排
気ガス還流制御特性が損なわれることはない。さらに、
この発明によれば、酸素濃度を検出する酸素センサの出
力と検知酸素濃度との対応関係を補正する補正手段を有
するので、経年変化のないようなより高精度な還流制御
が可能となる。また、酸素センサの個体間のバラツキも
許容できる。
Therefore, according to this invention, the opening degree of the exhaust gas recirculation control valve is controlled by the oxygen concentration in the intake air to obtain the desired amount of exhaust gas recirculation depending on the operating condition. Even if a large amount of carbon contained in the exhaust gas adheres to this valve over time, the initial exhaust gas recirculation control characteristics will not be impaired. moreover,
According to the present invention, since the present invention includes a correction means for correcting the correspondence between the output of the oxygen sensor that detects the oxygen concentration and the detected oxygen concentration, more accurate reflux control that does not change over time becomes possible. Furthermore, variations among oxygen sensors can be tolerated.

〔実施例〕〔Example〕

以下、本発明に係る内燃機関の排気ガス還流制御装置を
詳細に説明する。第1図はこの装置の一実施例を示すE
GR制御装置の概略構成図である。
Hereinafter, the exhaust gas recirculation control device for an internal combustion engine according to the present invention will be explained in detail. FIG. 1 shows an embodiment of this device.
FIG. 2 is a schematic configuration diagram of a GR control device.

同図において、第6図と同一符号は同一機能要素を示し
その説明は省略する。同図において、αηは吸気マニホ
ールド(2)のEGR通路Qllへの開口部よりも下流
(エンジン本体(11側)内にそのセンサ部を配置して
装着された酸素センサであり、例えば特開昭58−15
3155号公報等で提案されている固体電解質酸素ポン
プ式の酸素センサの如く、酸素濃度に比例した電流出力
(mA)を発生する酸素センサである。第2図は、この
酸素センサαでの送出するセンサ出力I、と酸素濃度C
o□との関係を示す特性図である。ff!1素センサ顛
の送出するセンサ出力■、はEGRwI御回路a梼に入
力されるようになって声り、このEGRi!l1ff1
回路α呻において対回路α酸素濃度がゴγ出されるよう
になっている。また、このEGR制御回路amには、エ
ンジン回転数検出3 (8)を介して人力されるエンジ
ン回転数Nt(rpm)と吸気負圧検出器OIを介して
人力される吸気圧力p@  (mmHg)とに対応した
目標EGR率Ko(χ)が記憶されており(第3図)、
かかる目標EGR*KOより第4図に示す特性にしたが
って目標゛酸素濃度C08が読み出されるようになって
いる。そして、EGR1i11御回路0呻は、上記エン
ジンの運転状態に応じて定まる目IIA酸素淵度Cot
と酸素センサ0ηの送出するセンサ出力!、に応じて求
まる検出酸素濃度Ciとを比較し、これらの比較偏差を
零とするような出力信号を制御負圧発生器(至)に送出
し、E G R?tdl jWJ弁@の開閉度合を制御
するようになっている。 Qlはエンジン本体+11に
取着され該エンジンを冷却する冷却水の温度を検知する
温度センサである。温度センサalの検知するエンジン
本体(1)の冷却水温T。は、逐次EGR制御回路(1
mに入力されるようになっており、この冷却水温Tw、
あるいはエンジン回転数検出器(8)および吸気圧力検
出器α呻からの信号により、EGR率の零時点がEGR
III11回路α鴎において検知されるようになってい
る。すなわち、エンジン本体+11が始動されて間がな
(エンジン本体(11の冷却水’IA ’r tが所定
温度よりも低い場合や、冷却水温が十分高6v場合でも
アイドル状態にあるとき等においては、EGRm御弁@
が全閉状態を維持し、EGR率は零となる。つまり、温
度センサ(2)からの冷却水温Tt、あるいはエンジン
回転数検出器(8)および吸気圧力検出器α・からの信
号によって、EGR率の零時点がEGR9lj御回路α
睦において把握されるようになっている。(至)は動弁
室であり、図示しないクランク室と通路(21)を介し
て連通している。動弁室(至)はプローバイガス通路(
22)によって吸気管(2)に設けられたポー) (2
3)に連通接続されている。ボー) (23)はスロッ
トル弁(5)より吸気流でみて下流側、すなわち酸素セ
ンサanよりも上流側に設けられている。また動弁室(
至)はプローバイガス通路(24)によってエアクリー
ナ(7)の下流直後に連通接続されている。プローバイ
ガス通路(22)の途中には、プローバイガス流量制御
弁(PCM弁) (25)が動弁室の側に設けられ、さ
らに開閉弁(26)が設けられている。プローバイガス
流量制御弁(25)は従来より公知のもので、エンジン
の負荷状態に応じたプローバイガス量を吸気系に還元す
るためのものである。開閉弁(26)はEGR制御回路
O1の指令に応して電気的に開閉する弁である。EGR
率の零時点が、EGR制御制御回路内l内出された場合
、EGR制御回路amから前記開閉弁(26)には全閉
の指令が電気信号として出力される。そして所定時間経
過した後の検出酸素濃度C;8が大気の標準酸素濃度C
02゜と比較され、その比較結果により第2図に示した
rr −C;オ特性が補正されるようになっている。す
なわち、EGR率の零時点における検出酸素濃度C5゜
を大気の標準酸素濃度C,38゜に合致させるべく、酸
素センサanのセンサ出力■、と検出酸素濃度C−との
対応関係が補正されるようになっており、この補正の具
体例としては、例えば検出酸素濃度CFrtに対して酸
素センサ顛のセンサ出力■、がオフセントをもった比例
関係である場合には、第5図falに示すようにそのオ
フセット値のみを変更するような補正、あるいはヰ★出
酸素淵度Crzが零の時のセンサ出力I2を一定値に保
つように比例定数を変更するような補正(第5図山))
が考えられる。
In this figure, the same reference numerals as in FIG. 6 indicate the same functional elements, and the explanation thereof will be omitted. In the figure, αη is an oxygen sensor installed with its sensor part located downstream (inside the engine body (11 side)) of the opening of the intake manifold (2) to the EGR passage Qll. 58-15
This is an oxygen sensor that generates a current output (mA) proportional to the oxygen concentration, like the solid electrolyte oxygen pump type oxygen sensor proposed in Publication No. 3155 and the like. Figure 2 shows the sensor output I sent out by this oxygen sensor α, and the oxygen concentration C.
It is a characteristic diagram showing the relationship with o□. ff! The sensor output ■ sent out by the first sensor is input to the EGRwI control circuit a, and this EGRi! l1ff1
The oxygen concentration of the circuit α is output in the circuit α. The EGR control circuit am also includes the engine rotation speed Nt (rpm) manually inputted via the engine rotation speed detection 3 (8) and the intake pressure p @ (mmHg) manually inputted via the intake negative pressure detector OI. ) and the target EGR rate Ko(χ) is stored (Fig. 3),
The target oxygen concentration C08 is read out from the target EGR*KO according to the characteristics shown in FIG. And EGR1i11 control circuit 0 groan is determined according to the operating condition of the engine IIA oxygen depth Cot
and the sensor output sent out by the oxygen sensor 0η! , and the detected oxygen concentration Ci determined according to EGR? tdl j It is designed to control the degree of opening and closing of the WJ valve @. Ql is a temperature sensor that is attached to the engine body +11 and detects the temperature of the cooling water that cools the engine. Cooling water temperature T of the engine body (1) detected by temperature sensor al. is the sequential EGR control circuit (1
The cooling water temperature Tw,
Alternatively, signals from the engine speed detector (8) and intake pressure detector α indicate that the zero point of the EGR rate is EGR.
It is detected in the III11 circuit alpha gull. In other words, shortly after the engine main body +11 has been started (when the cooling water 'IA'r t of the engine main body (11) is lower than the predetermined temperature, or when the engine main body (11) is in an idling state even if the cooling water temperature is sufficiently high at 6V, etc.) , EGRm goben@
remains fully closed, and the EGR rate becomes zero. In other words, the zero point of the EGR rate is determined by the cooling water temperature Tt from the temperature sensor (2) or the signals from the engine speed detector (8) and intake pressure detector α.
It has come to be understood in Mutsumi. (to) is a valve operating chamber, which communicates with a crank chamber (not shown) via a passage (21). The valve train chamber (to) is connected to the proveby gas passage (
22) provided in the intake pipe (2) by
3). (23) is provided downstream from the throttle valve (5) in terms of intake flow, that is, upstream from the oxygen sensor an. Also, the valve train chamber (
(to) are connected directly downstream of the air cleaner (7) by a prove-by gas passage (24). In the middle of the prove-by gas passage (22), a prove-by gas flow control valve (PCM valve) (25) is provided on the valve operating chamber side, and an on-off valve (26) is further provided. The proveby gas flow rate control valve (25) is conventionally known and is for returning an amount of proveby gas to the intake system depending on the load condition of the engine. The on-off valve (26) is a valve that opens and closes electrically in response to commands from the EGR control circuit O1. EGR
When the zero point of the rate is output from the EGR control circuit 1, a fully close command is output from the EGR control circuit am to the on-off valve (26) as an electric signal. Then, the detected oxygen concentration C after a predetermined time has passed; 8 is the standard oxygen concentration C of the atmosphere.
02°, and the rr-C;O characteristic shown in FIG. 2 is corrected based on the comparison result. That is, the correspondence between the sensor output of the oxygen sensor an and the detected oxygen concentration C- is corrected in order to make the detected oxygen concentration C5° at the zero point of the EGR rate match the standard oxygen concentration C, 38° of the atmosphere. As a specific example of this correction, for example, when the sensor output of the oxygen sensor is proportional to the detected oxygen concentration CFrt with an offset, the correction is as shown in Figure 5 fal. (Figure 5)
is possible.

以上の説明より明らかなように、この例によれば制御手
段と補正手段とはEGR制御回路O1により実現されて
いる。
As is clear from the above explanation, according to this example, the control means and the correction means are realized by the EGR control circuit O1.

次に、このように構成されたEGR制御装置の動作につ
いて説明する。すなわち、エンジン本体+11が始動さ
れると、エンジンの運転状態を示すエンジン回転数N、
および吸気圧力P、がエンジン回転数検出器(8)およ
び吸気圧力検出器Qlを介してEGR制御回路aIIl
に入力される。EGR制御回路θ鴫は、入力されるエン
ジン回転数N、および吸気圧力Pgの値に応じて、予め
記憶されている目標EGR率に0より、例えば目標EG
R率Kot(第3図)を選択する。そして、この選択し
た目標EGR率に08より、第4図にしたがって目標酸
素濃度C,2,を読みだす、一方、吸気管(2)中の排
気ガスが混入した空気の酸素濃度は、このとき酸素サン
サaηの送出するセンサ出力■2より第2図にしたがっ
て算出され、算出された酸素濃度Co5jと上述により
読みだされた目標酸素濃度C02,とが比較される。そ
して、このC7; z j とC02!との比較偏差が
零となるように制御負圧発生器a19に出力信号が送出
され、制御負圧発生器θeはその出力負圧を負圧導入通
路(9)および大気圧導入通路Q9の圧力を用いて調圧
し、EGRI御弁@の開閉度合を制御し、検出酸素濃度
を目標酸素濃度に近づける。このとき、EGR制御制御
弁開く方向に動けば、EGRfftが大となって酸素セ
ンサ071のセンサ出力■、に対応する酸素濃度CM 
z J は低下し、閉じる方向に動けば酸素濃度CO!
Jは増大する。このように、本実施例によれば、EGR
制御弁(2)の開度を吸入空気中の酸素濃度によって制
御し、運転状態に応じた所望のEGR量を得ているので
、E G R11御井亜の長時間の使用により排気ガス
中に含まれているカーボン等がこの弁に多量付着したと
しても、初期のEGR@@特性が損なわれることはない
Next, the operation of the EGR control device configured as described above will be explained. That is, when the engine main body +11 is started, the engine rotation speed N, which indicates the operating state of the engine,
and the intake pressure P, are transmitted to the EGR control circuit aIIl via the engine speed detector (8) and the intake pressure detector Ql.
is input. The EGR control circuit θ is configured to change the target EGR rate from 0 to a pre-stored target EGR rate, for example, according to the input engine speed N and intake pressure Pg.
Select the R rate Kot (Figure 3). Then, based on this selected target EGR rate 08, the target oxygen concentration C,2, is read out according to Fig. 4. On the other hand, the oxygen concentration of the air mixed with exhaust gas in the intake pipe (2) is The oxygen concentration Co5j is calculated according to FIG. 2 from the sensor output ■2 sent out by the oxygen sensor aη, and the calculated oxygen concentration Co5j is compared with the target oxygen concentration C02 read out as described above. And this C7; z j and C02! An output signal is sent to the controlled negative pressure generator a19 so that the comparison deviation with respect to is used to adjust the pressure and control the opening/closing degree of the EGRI control valve @ to bring the detected oxygen concentration closer to the target oxygen concentration. At this time, if the EGR control valve moves in the direction of opening, EGRfft increases and the oxygen concentration CM corresponds to the sensor output ■ of the oxygen sensor 071.
If z J decreases and moves in the closing direction, the oxygen concentration CO!
J increases. In this way, according to this embodiment, EGR
The opening degree of the control valve (2) is controlled by the oxygen concentration in the intake air to obtain the desired amount of EGR according to the operating conditions, so that the amount of EGR contained in the exhaust gas due to long-term use of the EGR11 Miia is reduced. Even if a large amount of carbon or the like adheres to this valve, the initial EGR characteristics will not be impaired.

以上は、EGR111I御弁03の制御動作について述
べたが、EGR制御弁0りが閉じた状態にある場合、即
ちEGR制御率が零となった場合、本発明の特徴的な動
作がEGR制御回路Qglの内部において行なわれる。
The above has described the control operation of the EGR111I control valve 03. However, when the EGR control valve 0 is in a closed state, that is, when the EGR control rate is zero, the characteristic operation of the present invention is that the EGR control circuit This is done inside Qgl.

すなわち、エンジン本体illが始動されて間がなくエ
ンジン本体Filの冷却水温TEが所定温度よりも低い
場合や、冷却水温が十分高い場合でもアイドル状態にあ
るとき等においては、EGR制御井亜が全閉状態を維持
し、EGR率は零となる。したがって、温度センサα9
からの冷却水温Tz、あるいはエンジン回転数検出器(
8)および吸気圧力検出器OIからの信号により、EG
R制御回路θ鴨においてEGR率が零であることが検出
されると、直ちに、プローバイガス通路(22)途中の
開閉弁(26)を全閉する指令を出して、全閉動作させ
る。別のブローバイ通路(24)については、上記のよ
うなEGR率が零になる状態時には、プローバイガスの
吸気系への吸入が無いため開閉弁は不要である0以上の
動作が完了して所定時間経過した後に、その時の検出酸
素濃度C;、と大気の標準酸素濃度C02゜とが比較さ
れ、C70をC0t0に合致させるぺ(酸素センサαD
のセンサ出力■、と検出酸素濃度Cτ7との対応関係が
補正される。すなわち、EC,R率の零時点においては
、酸素センサ07+の検出する吸入空気の酸素濃度は大
気の酸素濃度と等しく、このとき検出される酸素濃度C
otを標Il?!酸素濃度C,,。に合致させるべくそ
の対応関係を補正することにより、この制御システムに
紺み込む酸素センサの固体間のバラツキを大幅に許容す
ることができ、且つ酸素センサの電気化学的な経年変化
をも補正することができる。
In other words, when the engine body ill has just been started and the cooling water temperature TE of the engine body Fil is lower than the predetermined temperature, or when the engine body Fil is in an idling state even if the cooling water temperature is sufficiently high, the EGR control well is not fully activated. The closed state is maintained and the EGR rate becomes zero. Therefore, temperature sensor α9
cooling water temperature Tz from the engine speed detector (
8) and the signal from the intake pressure detector OI, the EG
When it is detected that the EGR rate is zero in the R control circuit θ, a command is immediately issued to fully close the on-off valve (26) in the middle of the proveby gas passage (22), and the valve is fully closed. Regarding the other blow-by passage (24), when the EGR rate is zero as described above, there is no need for an on-off valve because no blow-by gas is drawn into the intake system. After that, the detected oxygen concentration C; is compared with the atmospheric standard oxygen concentration C02°, and C70 is matched with C0t0 (oxygen sensor αD).
The correspondence relationship between the sensor output ■ and the detected oxygen concentration Cτ7 is corrected. That is, at the time when the EC, R rate is zero, the oxygen concentration of the intake air detected by the oxygen sensor 07+ is equal to the oxygen concentration of the atmosphere, and the oxygen concentration C detected at this time is equal to the oxygen concentration of the atmosphere.
Mark ot? ! Oxygen concentration C,,. By correcting the correspondence to match the above, it is possible to largely tolerate variations between individual oxygen sensors that enter the control system, and also correct for electrochemical aging of the oxygen sensor. be able to.

尚、本実施例において、EGR制御制御弁圧力ダイアフ
ラムを介して負圧によって動作する例を示したが、ステ
ッピングモータや直流モータとギヤの組み合わせによる
ものでもよい。
In this embodiment, an example has been shown in which the EGR control valve is operated by negative pressure via a pressure diaphragm, but a combination of a stepping motor or a DC motor and a gear may also be used.

また、本実施例では、プローバイガス通路(22)に開
閉弁を設けた例を示したが、これ以外に可燃性ガスを含
む気体の通路で吸気管に接続されている通路としては、
内燃機関の燃料系から発生するガスを吸着するキャニス
タ(吸着器)をパージするために上記機関に設置される
パージガス通路があり、これについても上記実施例と同
様の構成。
Further, in this embodiment, an example was shown in which an on-off valve was provided in the prove-by gas passage (22), but other passages for gas containing flammable gas connected to the intake pipe include:
There is a purge gas passage installed in the engine for purging a canister (adsorber) that adsorbs gas generated from the fuel system of the internal combustion engine, and this also has the same configuration as the above embodiment.

動作により本発明の目的は達せられる。In operation, the objectives of the invention are achieved.

また、第1図の実施例ではプローバイガス通路(22)
の吸気管(2)への開口ポートをEGRガス通路の開口
部より上流側に設けた図が記されているが、この開口ポ
ートの位置はここに限定するものではなく、EGRガス
通路の開口部よりも下流、さらに酸素サンサよりも下流
でもよい。
In addition, in the embodiment shown in FIG.
Although the figure shows the opening port to the intake pipe (2) located upstream of the opening of the EGR gas passage, the position of this opening port is not limited to this, and the opening port of the EGR gas passage It may be downstream from the oxygen sensor or further downstream from the oxygen sensor.

さらに、上記実施例では目標EGR率をエンジン回転数
N、と吸圧力P、とにより求めた場合について説明した
が、これに限定するものではなく、例えばエンジン回転
数N!と吸気流量とで求めてもよく上記実施例と同様の
効果が得られる。
Further, in the above embodiment, the case where the target EGR rate is determined from the engine rotation speed N and the suction pressure P is explained, but the invention is not limited to this. For example, the target EGR rate is calculated from the engine rotation speed N! The same effect as in the above embodiment can be obtained by calculating the intake air flow rate and the intake air flow rate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による内燃機関の排気ガス
還流制御装置によると、排気ガス還流制御弁よりも下流
の吸入空気中の酸素濃度を酸素センサを用いて検出する
ようになし、この酸素センサの検知する酸素濃度と機関
の運転状態に応じて予め設定される目標酸素濃度とを比
較し、これらの比較偏差を零とすべく前記排気ガス還流
制御弁の開度を制御すると共に、前記機関の特定運転状
態時、吸気管に接続されているか、可燃性ガス通路途中
に設けた開閉弁を全閉とし、そのときの酸素センサのセ
ンサ出力に基づいてこのセンサ出力と検知酸素濃度との
対応関係を補正するようにしたので、排気ガス還流量が
排気ガスの混入率に比例する酸素濃度によって制御され
、経年変化のない高精度の還流制御が可能となる。また
、この装置に組み込む酸素センサに固体間のバラツキが
あったとしても、機関の特定運転状態時においてそのセ
ンサ出力1p と検出酸素濃度との対応関係の補正がな
されるので、かなりのバラツキが許容できる等の優れた
効果を奏する。
As explained above, according to the exhaust gas recirculation control device for an internal combustion engine according to the present invention, the oxygen concentration in the intake air downstream of the exhaust gas recirculation control valve is detected using an oxygen sensor. The oxygen concentration detected by the engine is compared with a target oxygen concentration that is preset according to the operating state of the engine, and the opening degree of the exhaust gas recirculation control valve is controlled in order to make the comparison deviation zero, and the engine During a specific operating state, the on-off valve connected to the intake pipe or installed in the middle of the flammable gas path is fully closed, and the correspondence between this sensor output and the detected oxygen concentration is determined based on the sensor output of the oxygen sensor at that time. Since the relationship is corrected, the amount of exhaust gas recirculation is controlled by the oxygen concentration that is proportional to the mixing rate of exhaust gas, and highly accurate recirculation control that does not change over time becomes possible. Furthermore, even if there are variations among the oxygen sensors built into this device, the correspondence between the sensor output 1p and the detected oxygen concentration is corrected during specific operating conditions of the engine, so a considerable variation is tolerated. It has excellent effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による内燃機関の排気ガス還
流制御装置を示す概略構成図、第2図はこのEGR11
]m装置に用いる酸素センサの送出するセンサ出力I 
P と検出酸素濃度C73,との関係を示す特性図、第
3図はこの装置のEGR1i11御回路に入力されるエ
ンジン回転数N1と吸気圧力Paとに対応する目標E 
G R741K Oを示す特性図、第4図は目標EGR
率に0に対応づけた目標酸素濃度CO□を示す特性図、
第5図は検出酸素濃度C78と酸素センサ出力!、との
初期および補正後の対応関係を示す図、第6図は従来の
EGR$l!御装置の概略構成図である。 +11・・・エンジン本体、(2)・・・吸気管、(3
)・・・排気管、(8)・・・エンジン回転数検出器、
aΦ・・・吸気圧力検出器、QD・・・排気ガス還流通
路、(2)・・・排気ガス還流制御弁、0口・・・開度
検出器、(至)・・・1iIIW1負圧発生器、aη・
・・酸素センサ、(ロ)a時・・・排気ガス還流制御回
路、O場・・・温度センサ、(22) (24)・・・
プローバイガス通路、(25)・・・プローバイガス流
量’fi1m弁、(26)開閉弁。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a schematic configuration diagram showing an exhaust gas recirculation control device for an internal combustion engine according to an embodiment of the present invention, and FIG.
]Sensor output I sent out by the oxygen sensor used in the m device
A characteristic diagram showing the relationship between P and the detected oxygen concentration C73, FIG. 3 shows the target E corresponding to the engine speed N1 and intake pressure Pa input to the EGR1i11 control circuit of this device.
Characteristic diagram showing G R741K O, Figure 4 is the target EGR
A characteristic diagram showing the target oxygen concentration CO□ corresponding to the rate of 0,
Figure 5 shows the detected oxygen concentration C78 and the oxygen sensor output! , and FIG. 6 is a diagram showing the initial and corrected correspondence with the conventional EGR $l! FIG. 2 is a schematic configuration diagram of a control device. +11...Engine body, (2)...Intake pipe, (3
)...Exhaust pipe, (8)...Engine speed detector,
aΦ...Intake pressure detector, QD...Exhaust gas recirculation passage, (2)...Exhaust gas recirculation control valve, 0 port...Opening degree detector, (To)...1iIIW1 Negative pressure generation vessel, aη・
...Oxygen sensor, (b) Time a...Exhaust gas recirculation control circuit, O field...Temperature sensor, (22) (24)...
Proby gas passage, (25)...Proby gas flow rate 'fi1m valve, (26) opening/closing valve. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)内燃機関の排気系と吸気系を連通した排気ガス還
流通路に設けられた排気ガス還流制御弁と、上記吸気系
の排気ガス還流通路開口部より下流に設けられ吸入空気
中の酸素濃度を検知する酸素センサと可燃性ガスを含む
気体を上記機関に吸入されるべく、上記吸気系に接続さ
れた可燃性ガス通路と、この可燃性ガス通路を電気信号
によって開閉する開閉弁と、上記酸素センサの検知する
酸素濃度と機関の運転状態に応じて予め設定される排気
ガス還流率に対応する目標酸素濃度とを比較しこれらの
比較偏差を零とすべく上記排気ガス還流制御弁の開度を
制御する制御手段と、上記機関の特定運転状態時に上記
開閉弁を全閉とし、その時の上記酸素センサのセンサ出
力に基づいてこのセンサ出力と検知酸素濃度との対応関
係を補正する補正手段とを具備してなる内燃機関の排気
ガス還流制御装置。
(1) An exhaust gas recirculation control valve provided in an exhaust gas recirculation passage that communicates the exhaust system and intake system of an internal combustion engine, and an exhaust gas recirculation control valve provided downstream of the exhaust gas recirculation passage opening of the intake system for oxygen concentration in the intake air. a combustible gas passage connected to the intake system for inhaling gas containing flammable gas into the engine; an on-off valve that opens and closes the flammable gas passage in response to an electrical signal; The oxygen concentration detected by the oxygen sensor is compared with the target oxygen concentration corresponding to the exhaust gas recirculation rate, which is preset according to the operating state of the engine, and the exhaust gas recirculation control valve is opened in order to reduce the comparison deviation to zero. a control means for controlling the oxygen concentration; and a correction means for fully closing the on-off valve during a specific operating state of the engine and correcting the correspondence between the sensor output and the detected oxygen concentration based on the sensor output of the oxygen sensor at that time. An exhaust gas recirculation control device for an internal combustion engine, comprising:
(2)特定運転状態時は排気ガス還流率が零の時である
特許請求の範囲第1項記載の内燃機関の排気ガス還流制
御装置。
(2) The exhaust gas recirculation control device for an internal combustion engine according to claim 1, wherein the exhaust gas recirculation rate is zero during the specific operating state.
(3)可燃性ガス通路は内燃機関のプローバイガス通路
である特許請求の範囲第1項または第2項記載の内燃機
関の排気ガス還流制御装置。
(3) The exhaust gas recirculation control device for an internal combustion engine according to claim 1 or 2, wherein the combustible gas passage is a prove-by gas passage of the internal combustion engine.
(4)可燃性ガス通路は内燃機関の燃料系から発生する
ガス吸着するキャニスタをパージするために上記機関に
設置されるパージガス通路である特許請求の範囲第1項
または第2項記載の内燃機関の排気ガス還流制御装置。
(4) The internal combustion engine according to claim 1 or 2, wherein the flammable gas passage is a purge gas passage installed in the engine to purge a canister that adsorbs gas generated from the fuel system of the internal combustion engine. Exhaust gas recirculation control device.
JP61288425A 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine Expired - Lifetime JPH0615853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288425A JPH0615853B2 (en) 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288425A JPH0615853B2 (en) 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63140859A true JPS63140859A (en) 1988-06-13
JPH0615853B2 JPH0615853B2 (en) 1994-03-02

Family

ID=17730052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288425A Expired - Lifetime JPH0615853B2 (en) 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0615853B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170297A (en) * 2005-12-22 2007-07-05 Denso Corp Control device for engine
EP1432904B1 (en) * 2001-09-20 2007-11-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
JP2013108482A (en) * 2011-11-24 2013-06-06 Mitsubishi Motors Corp Intake system structure of internal combustion engine
US20150292429A1 (en) * 2014-04-14 2015-10-15 Ford Global Technologies, Llc Methods and systems for adjusting egr based on an impact of pcv hydrocarbons on an intake oxygen sensor
JP2016113906A (en) * 2014-12-11 2016-06-23 日産自動車株式会社 Egr estimation device for internal combustion engine and egr estimation method for internal combustion engine
CN114233486A (en) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 Control method and device of EGR valve and ECU

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011664A (en) * 1983-06-30 1985-01-21 Honda Motor Co Ltd Full-close referential position detecting method of egr valve in internal-combustion engine
JPS60138264A (en) * 1983-12-27 1985-07-22 Mitsubishi Electric Corp Exhaust gas recirculation mechanism for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011664A (en) * 1983-06-30 1985-01-21 Honda Motor Co Ltd Full-close referential position detecting method of egr valve in internal-combustion engine
JPS60138264A (en) * 1983-12-27 1985-07-22 Mitsubishi Electric Corp Exhaust gas recirculation mechanism for engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1432904B1 (en) * 2001-09-20 2007-11-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
JP2007170297A (en) * 2005-12-22 2007-07-05 Denso Corp Control device for engine
JP4525587B2 (en) * 2005-12-22 2010-08-18 株式会社デンソー Engine control device
JP2013108482A (en) * 2011-11-24 2013-06-06 Mitsubishi Motors Corp Intake system structure of internal combustion engine
US20150292429A1 (en) * 2014-04-14 2015-10-15 Ford Global Technologies, Llc Methods and systems for adjusting egr based on an impact of pcv hydrocarbons on an intake oxygen sensor
US9441564B2 (en) * 2014-04-14 2016-09-13 Ford Global Technologies, Llc Methods and systems for adjusting EGR based on an impact of PCV hydrocarbons on an intake oxygen sensor
US9897027B2 (en) 2014-04-14 2018-02-20 Ford Global Technologies, Llc Methods and systems for adjusting EGR based on an impact of PCV hydrocarbons on an intake oxygen sensor
JP2016113906A (en) * 2014-12-11 2016-06-23 日産自動車株式会社 Egr estimation device for internal combustion engine and egr estimation method for internal combustion engine
CN114233486A (en) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 Control method and device of EGR valve and ECU
CN114233486B (en) * 2021-11-12 2023-08-18 潍柴动力股份有限公司 Control method and device for EGR valve and ECU

Also Published As

Publication number Publication date
JPH0615853B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US4790286A (en) EGR control device for internal combustion engine
JPS63227948A (en) Exhaust gas recirculation control device for internal combustion engine
JP4218702B2 (en) Exhaust gas recirculation device for internal combustion engine
US7389771B2 (en) Closed loop EGR control method and system using water content measurement
US6789523B2 (en) Failure diagnosis apparatus for evaporative fuel processing system
US6550318B2 (en) Abnormality diagnosis apparatus for evaporative fuel processing system
US4705009A (en) Exhaust gas recirculation control system for an engine
JP2001525941A (en) Method for stabilizing exhaust gas zero point and apparatus for implementing the method
JPS63140859A (en) Exhaust gas reflux controller for internal combustion engine
JP2001182574A (en) Egr system and method for controlling it
JPH06146948A (en) Air/fuel ratio control device of internal combustion engine provided with evaporated fuel processing device
US6708678B2 (en) Electronic control device for internal combustion engine and method of controlling the internal combustion engine
JP2592432B2 (en) Evaporative fuel control system for internal combustion engine
JPS62284950A (en) Exhaust gas reflux controller for internal combustion engine
JP2002364427A (en) Air-fuel ratio controller for engine
JPH11107796A (en) Fuel supply mechanism for gas engine and controlling method and device thereof
JPS63140860A (en) Exhaust gas reflux controller for internal combustion engine
JPS6095150A (en) Air-fuel ratio control device for internal-combustion engine
JPS6114459A (en) Air-fuel ratio controller for gas engine
JP2003138991A (en) Control device of internal combustion engine
JPS60198348A (en) Engine controller
JPS63140858A (en) Exhaust gas reflux controller for internal combustion engine
JPS6355356A (en) Exhaust gas recirculation controller for internal combustion engine
JPS614836A (en) Engine controller
JPS6355355A (en) Exhaust gas recirculation controller for internal combustion engine