JPH0615853B2 - Exhaust gas recirculation control device for internal combustion engine - Google Patents

Exhaust gas recirculation control device for internal combustion engine

Info

Publication number
JPH0615853B2
JPH0615853B2 JP61288425A JP28842586A JPH0615853B2 JP H0615853 B2 JPH0615853 B2 JP H0615853B2 JP 61288425 A JP61288425 A JP 61288425A JP 28842586 A JP28842586 A JP 28842586A JP H0615853 B2 JPH0615853 B2 JP H0615853B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
oxygen concentration
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61288425A
Other languages
Japanese (ja)
Other versions
JPS63140859A (en
Inventor
稔 西田
知之 井上
嘉明 浅山
尋善 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61288425A priority Critical patent/JPH0615853B2/en
Publication of JPS63140859A publication Critical patent/JPS63140859A/en
Publication of JPH0615853B2 publication Critical patent/JPH0615853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排気ガスの還流量(再循環量)を制御する内
燃機関の排気ガス還流制御装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an exhaust gas recirculation control device for an internal combustion engine, which controls a recirculation amount (recirculation amount) of exhaust gas.

〔従来の技術〕[Conventional technology]

内燃機関の排気ガス中の有害成分である窒素酸化物を減
少させるために、排気ガスの一部を機関の吸気側に混入
させる、いわゆる排気ガスの再循環が行われることは衆
知の通りである。そして、この再循環される排気ガスの
還流量は、窒素酸化物の減少以外に機関の性能,燃費等
に影響を与えるので、この排気ガス還流量は機関の運転
状態に応じて精度よく制御されることが望まれる。
It is well known that so-called exhaust gas recirculation is performed by mixing a part of the exhaust gas into the intake side of the engine in order to reduce nitrogen oxides which are harmful components in the exhaust gas of the internal combustion engine. . The recirculation amount of the recirculated exhaust gas affects the performance of the engine, fuel consumption, etc. in addition to the reduction of nitrogen oxides, so the exhaust gas recirculation amount is accurately controlled according to the operating state of the engine. Is desired.

第6図は、例えば特開昭55−93950 号公報等に示された
従来の排気ガス還流制御装置の概略構成図である。同図
において、(1)はエンジン本体、(2)は吸気マニホール
ド、(3)は排気マニホールド、(4)は吸気マニホールド
(2)に配設された燃料供給装置、(5)はスロットバルブ、
(6)は吸気ダクト、(7)はエアクリーナ、(8)はエンジン
回転数検出器、(9)は負圧導入通路、(10)は負圧導入通
路(9)を通じて吸気マニホールド(2)の圧力を検出する吸
気負圧検出器、(11)は排気マニホールド(3)と吸気マニ
ホールド(2)とを連通する排気ガス還流(以下、EGR
と略す)通路、(12)は圧力ダイアフラムで動くEGR制
御弁、(13)はEGR制御弁(12)の開度検出器、(14)はE
GR制御回路、(15)は大気圧導入通路、(16)はEGR制
御回路(14)の送出する出力信号により、EGR制御弁(1
2)の開閉度合を制御する制御負圧を吸気負圧と大気圧と
により調圧する制御負圧発生器である。
FIG. 6 is a schematic configuration diagram of a conventional exhaust gas recirculation control device shown in, for example, Japanese Patent Application Laid-Open No. 55-93950. In the figure, (1) is the engine body, (2) is the intake manifold, (3) is the exhaust manifold, and (4) is the intake manifold.
A fuel supply device arranged in (2), (5) a slot valve,
(6) is an intake duct, (7) is an air cleaner, (8) is an engine speed detector, (9) is a negative pressure introducing passage, and (10) is a negative pressure introducing passage (9) through the intake manifold (2). An intake negative pressure detector for detecting pressure, (11) is an exhaust gas recirculation (hereinafter, referred to as EGR) that connects the exhaust manifold (3) and the intake manifold (2).
(12) is an EGR control valve operated by a pressure diaphragm, (13) is an opening detector of the EGR control valve (12), and (14) is E
The GR control circuit, (15) is the atmospheric pressure introducing passage, and (16) is the output signal sent from the EGR control circuit (14).
It is a control negative pressure generator that regulates the control negative pressure that controls the opening and closing degree of 2) by the intake negative pressure and the atmospheric pressure.

このように構成されたEGR制御装置においては、エン
ジンの運転状態を示すエンジン回転数と吸気負圧とが、
エンジン回転数検出器(8)と吸気負圧検出器(10)とで検
出され、EGR制御回路(14)に入力される。EGR制御
回路(14)には、エンジンの運転状態に応じて定まるEG
R制御弁(12)の目標開度が設定されており、この目標開
度と開度検出器(13)を介して入力される実測開度との比
較偏差を零とすべく制御負圧発生器(16)に出力信号を送
出する。すなわち、EGR制御回路(14)の送出する出力
信号に基づき、制御負圧発生器(16)に出力負圧を吸気負
圧および大気圧により調圧して、EGR制御弁(12)の開
度を制御し、前記比較偏差を零とする排気ガスの還流量
(以下、EGR量と呼ぶ)を決定している。つまり、E
GR制御弁(12)の開度を開度検出器(13)の出力を用いて
フィードバック制御することにより、エンジンの運転状
態に応じたEGR量を得ている。
In the EGR control device configured as described above, the engine speed and the intake negative pressure, which indicate the operating state of the engine, are
It is detected by the engine speed detector (8) and the intake negative pressure detector (10) and input to the EGR control circuit (14). The EGR control circuit (14) has an EG that is determined according to the operating state of the engine.
The target opening of the R control valve (12) is set, and the control negative pressure is generated so that the comparison deviation between this target opening and the actually measured opening input via the opening detector (13) becomes zero. The output signal is sent to the container (16). That is, based on the output signal sent from the EGR control circuit (14), the output negative pressure is adjusted to the control negative pressure generator (16) by the intake negative pressure and the atmospheric pressure, and the opening degree of the EGR control valve (12) is adjusted. The exhaust gas recirculation amount (hereinafter referred to as the EGR amount) is controlled to determine the comparison deviation to be zero. That is, E
By performing feedback control of the opening of the GR control valve (12) using the output of the opening detector (13), the EGR amount according to the operating state of the engine is obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このような従来のEGR制御装置による
と、EGR制御弁(12)の長時間の使用により、排気ガス
中に含まれているカーボン等がこの弁に多量付着し、E
GR制御弁(12)の開閉度に対応した初期のEGR量が変
化し、精度のよい制御ができなくなる問題があった。
However, according to such a conventional EGR control device, due to long-term use of the EGR control valve (12), a large amount of carbon and the like contained in the exhaust gas adheres to this valve, and E
There is a problem that the initial EGR amount corresponding to the opening / closing degree of the GR control valve (12) changes, and accurate control cannot be performed.

この問題に対し、本出願人は、EGR制御弁(12)よりも
下流の吸入空気中の酸素濃度を酸素センサを用いて検知
するようになす一方、エンジンの運転状態に応じて目標
EGR率を決定し、この目標EGR率に応じて目標酸素
濃度を決定し、この決定した目標酸素濃度と酸素センサ
の検知酸素濃度との偏差を零とすべく、EGR制御弁(1
2)を制御する制御方式を考えている。この制御方式によ
れば、排気ガスの混入率に比例する酸素濃度によってE
GR量が制御されるため、EGR制御弁(12)の開閉度に
対応した初期のEGR量が変化しても、精度のよい制御
を行うことが可能である。
To address this problem, the present applicant uses an oxygen sensor to detect the oxygen concentration in the intake air downstream of the EGR control valve (12), while the target EGR rate is set according to the operating state of the engine. The target oxygen concentration is determined in accordance with the target EGR rate, and the EGR control valve (1 is set in order to make the deviation between the determined target oxygen concentration and the oxygen concentration detected by the oxygen sensor zero.
We are considering a control method to control 2). According to this control method, E is controlled by the oxygen concentration proportional to the mixing ratio of exhaust gas.
Since the GR amount is controlled, accurate control can be performed even if the initial EGR amount corresponding to the opening / closing degree of the EGR control valve (12) changes.

しかしながら、この制御方式を採用した場合、酸素セン
サの個体間のバラツキにより酸素センサのセンサ出力と
検知酸素濃度との対応関係が微妙に異なり、また酸素セ
ンサ自身の経年変化により酸素センサのセンサ出力と検
知酸素濃度との対応関係が変動し、高精度の還流制御を
阻害するという新たな問題が生じる。
However, when this control method is adopted, the correspondence between the sensor output of the oxygen sensor and the detected oxygen concentration is subtly different due to the variation among the oxygen sensors, and the sensor output of the oxygen sensor may change due to the secular change of the oxygen sensor itself. Correspondence with the detected oxygen concentration fluctuates, and a new problem arises that impedes highly accurate reflux control.

本発明はこのような問題点に鑑みてなされたもので、酸
素センサに個体間のバラツキがあっても、また酸素セン
サ自身に経年変化が生じても、高精度の還流制御を阻害
することのない内燃機間の排気ガス還流制御装置を提供
することにある。
The present invention has been made in view of such a problem, and even if there are variations in the oxygen sensor among individuals, or even if the oxygen sensor itself changes over time, it is possible to prevent highly accurate reflux control. An object of the present invention is to provide an exhaust gas recirculation control device for internal combustion engines.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内燃機関の排気ガス還流制御装置は、内
燃機関の排気系と吸気系を連通した排気ガス還流通路に
設けられた排気ガス還流制御弁と、上記吸気系の排気ガ
ス還流通路開口部より下流に設けられ吸入空気中の酸素
濃度を検知する酸素センサと可燃性ガスを含む気体を上
記機関に吸入されるべく、上記吸気系に接続された可燃
性ガス通路と、この可燃性ガス通路を電気信号によって
開閉する開閉弁と、上記内燃機関の運転状態に応じて目
標排気ガス還流率を決定する目標排気ガス還流率決定手
段と、この目標排気ガス還流率決定手段により決定され
た目標排気ガス還流率に応じて目標酸素濃度を決定する
目標酸素濃度決定手段と、この目標酸素濃度決定手段に
より決定された目標酸素濃度と上記酸素センサの検知酸
素濃度とを比較しこれらの比較偏差を零とすべく上記排
気ガス還流制御弁の開度を制御する制御手段とを備える
内燃機関の排気ガス還流制御装置であって、上記排気ガ
ス還流率の零状態の上記内燃機関の特定運転状態として
検知する特定運転状態検知手段と、この特定運転状態時
に上記開閉弁を全閉とし、その時の上記酸素センサの検
知酸素濃度に基づき、この検知酸素濃度と大気の標準酸
素濃度に合致させるべく、上記酸素センサのセンサ出力
と検知酸素濃度との対応関係を補正する補正手段とを具
備してなるものである。
An exhaust gas recirculation control device for an internal combustion engine according to the present invention includes an exhaust gas recirculation control valve provided in an exhaust gas recirculation passage communicating between an exhaust system and an intake system of the internal combustion engine, and an exhaust gas recirculation passage opening portion of the intake system. A combustible gas passage connected to the intake system so that a gas containing a combustible gas and an oxygen sensor for detecting the oxygen concentration in the intake air, which is provided further downstream, and the combustible gas passage are connected to the intake system. An opening / closing valve that opens and closes by an electric signal, a target exhaust gas recirculation rate determining unit that determines a target exhaust gas recirculation rate according to the operating state of the internal combustion engine, and a target exhaust gas that is determined by this target exhaust gas recirculation rate determining unit. The target oxygen concentration determining means for determining the target oxygen concentration according to the gas recirculation rate is compared with the target oxygen concentration determined by the target oxygen concentration determining means and the oxygen concentration detected by the oxygen sensor. An exhaust gas recirculation control device for an internal combustion engine, comprising: a control means for controlling the opening degree of the exhaust gas recirculation control valve so as to make these comparison deviations zero. A specific operating state detection means for detecting the specific operating state of the engine, and the on-off valve is fully closed during this specific operating state, and based on the oxygen concentration detected by the oxygen sensor at that time, the detected oxygen concentration and the standard oxygen concentration of the atmosphere In order to meet the above condition, a correction means for correcting the correspondence between the sensor output of the oxygen sensor and the detected oxygen concentration is provided.

〔作用〕[Action]

したがってこの発明によれば、排気ガス還流制御弁の開
度を吸入空気中の酸素濃度によって制御し、運転状態に
応じた所望の排気ガス還流量を得ているので、排気ガス
還流制御弁の長時間の使用により排気ガス中の含まれる
カーボン等がこの弁に多量付着したとしても、初期の排
気ガス還流制御特性が損なわれることはない。さらに、
この発明によれば、内燃機関の特定運転状態(EGR率
が零である状態)が検知されると、この特定運転状態に
おける酸素センサの検知酸素濃度が大気の標準酸素濃度
に合致するように、酸素センサの出力と検知酸素濃度と
の対応関係を補正する補正手段を有するので、経年変化
のないようなより高精度な還流制御が可能となる。ま
た、酸素センサの固体間のバラツキも許容できる。
Therefore, according to the present invention, the opening degree of the exhaust gas recirculation control valve is controlled by the oxygen concentration in the intake air to obtain the desired exhaust gas recirculation amount according to the operating state. Even if a large amount of carbon or the like contained in the exhaust gas adheres to this valve due to the use of time, the initial exhaust gas recirculation control characteristic will not be impaired. further,
According to the present invention, when the specific operating state of the internal combustion engine (the state in which the EGR rate is zero) is detected, the oxygen concentration detected by the oxygen sensor in the specific operating state matches the standard oxygen concentration of the atmosphere, Since the correction means for correcting the correspondence between the output of the oxygen sensor and the detected oxygen concentration is provided, it is possible to perform more accurate reflux control that does not change over time. In addition, variations between oxygen sensor solids can be tolerated.

〔実施例〕〔Example〕

以下、本発明に係る内燃機関の排気ガス還流制御装置を
詳細に説明する。第1図はこの装置の一実施例を示すE
GR制御装置の概略構成図である。同図において、第6
図と同一符号は同一機能要素を示しその説明は省略す
る。同図において、(17)は吸気マニホールド(2)のEG
R通路(11)への開口部よりも下流(エンジン本体(1)
側)内にそのセンサ部を配置して装着された酸素センサ
であり、例えば特開昭58−153155号公報等で提案されて
いる固体電解質酸素ポンプ式の酸素センサの如く、酸素
濃度に比例した電流出力(mA)を発生する酸素センサ
である。第2図は、この酸素センサ(17)の送出するセン
サ出力Iと酸素濃度C2との関係を示す特性図であ
る。酸素センサ(17)の送出するセンサ出力IはEGR
制御回路(18)に入力されるようになっており、このEG
R制御回路(18)において対応する酸素濃度が算出される
ようになっている。また、このEGR制御回路(18)に
は、エンジ回転数検出器(8)を介して入力されるエンジ
ン回転数N(rpm)と吸気負圧検出器(10)を介して
入力される吸気圧力P(mmHg)とに対応した目標
EGR率K(%)が記憶されており(第3図)、かかる
目標目標EGR率Kより第4図に示す特性にしたがっ
て目標酸素濃度CO2が読み出されるようになっている。
そして、EGR制御回路(18)は、上記エンジンの運転状
態に応じて定まる目標酸素濃度CO2と酸素センサ(17)の
送出するセンサ出力Iに応じて求まる検出酸素濃度C
2とを比較し、これらの比較偏差を零とするような出
力信号を制御負圧発生器(16)に送出し、EGR制御弁(1
2)の開閉度合を制御するようになっている。(19)はエン
ジン本体(1)に装着され該エンジンを冷却する冷却水の
温度を検知する温度センサである。温度センサ(19)の検
知するエンジン本体(1)の冷却水温Tは、遂時EGR
制御回路(18)に入力されるようになっており、この冷却
水温T,あるいはエンジン回転数検出器(8)および吸
気圧力検出器(10)からの信号により、EGR率の零状態
がEGR制御回路(18)において検知されるようになって
いる。すなわち、エンジン本体(1)が始動されて間がな
くエンジン本体(1)の冷却水温TEが所定温度よりも低い
場合や、冷却水温が十分高い場合でもアイドル状態にあ
るとき等の特定運転状態においては、EGR制御弁(12)
が全閉状態を維持し、EGR率は零となる。つまり、温
度センサ(19)からの冷却水温T,あるいはエンジン回
転数検出器(8)および吸気圧力検出器(10)からの信号に
よって、EGR率の零状態がEGR制御回路(18)におい
て把握されるようになっている。(20)は動弁室であり、
図示しないクランク室と通路(21)を介して連通してい
る。動弁室(20)はブローバイガス通路(22)によって吸気
管(2)に設けられたポート(23)に連通接続されている。
ポート(23)はスロットル弁(5)より吸気流でみて下流
側、すなわち酸素センサ(17)よりも上流側に設けれてい
る。また動弁室(20)はブローバイガス通路(24)によって
エアクリーナ(7)の下流直後に連通接続されている。ブ
ローバイガス通路(22)の途中には、ブローバイガス流量
制御弁(PCV弁)(25)が動弁室の側に設けられ、さら
に開閉弁(26)が設けられている。ブローバイガス流量制
御弁(25)は従来より高知のもので、エンジンの負荷状態
に応じたブローバイガス量を吸気系に還元するためのも
のである。開閉弁(26)はEGR制御回路(18)の指令に応
じて電気的に開閉する弁である。EGR率の零状態が、
EGR制御回路(18)内で検出された場合、EGR制御回
路(18)から前記開閉弁(26)には全閉の指令が電気信号と
して出力される。そして所定時間経過した後の検出酸素
濃度C2が特定運転状態(EGR率が零である状態)
における検出酸素濃度として大気の標準酸素濃度C020
と比較され、その比較結果により第2図に示したI
2特性が補正されるようになっている。すなわち、
EGR率の零状態が特定運転状態として検知され、この
特定運転状態における検出酸素濃度C2を大気の標準
酸素濃度C020 に合致させるべく、酸素センサ(17)のセ
ンサ出力Iと検出酸素濃度C2との対応関係が補正
させるようになっており、この補正の具体例としては、
例えば検出酸素濃度C2に対して酸素センサ(17)のセ
ンサ出力Iがオフセットをもった比例関係である場合
には、第5図(a)に示すようにそのオフセット値のみを
変更するような補正、あるいは検出酸素濃度C2が零
の時のセンサ出力Iを一定値に保つように比例定数を
変更するような補正(第5図(b))が考えられる。
Hereinafter, the exhaust gas recirculation control device for an internal combustion engine according to the present invention will be described in detail. FIG. 1 shows an embodiment of this device E
It is a schematic block diagram of a GR control device. In the figure, the sixth
The same reference numerals as those in the figure indicate the same functional elements, and the description thereof is omitted. In the figure, (17) is the EG of the intake manifold (2).
Downstream of the opening to the R passage (11) (engine body (1)
The oxygen sensor is mounted by disposing the sensor part in the side), and is proportional to the oxygen concentration, as in the solid electrolyte oxygen pump type oxygen sensor proposed in, for example, Japanese Patent Laid-Open No. 58-153155. An oxygen sensor that produces a current output (mA). FIG. 2 is a characteristic diagram showing the relationship between the sensor output I F sent by the oxygen sensor (17) and the oxygen concentration C 2 . The sensor output I P sent by the oxygen sensor (17) is EGR.
It is designed to be input to the control circuit (18).
The corresponding oxygen concentration is calculated in the R control circuit (18). In addition, the EGR control circuit (18) receives the engine speed N E (rpm) input via the engine speed detector (8) and the intake air pressure input via the intake negative pressure detector (10). The target EGR rate K O (%) corresponding to the pressure P B (mmHg) is stored (FIG. 3), and the target oxygen concentration C O2 is calculated from the target EGR rate K O according to the characteristics shown in FIG. Is read.
Then, the EGR control circuit (18) detects the target oxygen concentration C O2 determined according to the operating state of the engine and the detected oxygen concentration C determined according to the sensor output I P delivered by the oxygen sensor (17).
2 is compared with each other, and an output signal that makes these comparison deviations zero is sent to the control negative pressure generator (16), and the EGR control valve (1
The degree of opening and closing of 2) is controlled. (19) is a temperature sensor mounted on the engine body (1) for detecting the temperature of cooling water for cooling the engine. The cooling water temperature T E of the engine body (1) detected by the temperature sensor (19) is EGR at the time.
The control circuit (18) is adapted to input the cooling water temperature T E or the signals from the engine speed detector (8) and the intake pressure detector (10) so that the zero state of the EGR rate is EGR. It is designed to be detected by the control circuit (18). That is, when the engine body (1) has just started and the cooling water temperature TE of the engine body (1) is lower than a predetermined temperature, or even when the cooling water temperature is sufficiently high, in a specific operating state such as in an idle state. Is an EGR control valve (12)
Keeps the fully closed state, and the EGR rate becomes zero. That is, the zero state of the EGR rate is grasped in the EGR control circuit (18) by the cooling water temperature T E from the temperature sensor (19) or the signals from the engine speed detector (8) and the intake pressure detector (10). It is supposed to be done. (20) is the valve operating chamber,
It communicates with a crank chamber (not shown) through a passage (21). The valve operating chamber (20) is communicatively connected to a port (23) provided in the intake pipe (2) by a blow-by gas passage (22).
The port (23) is provided downstream of the throttle valve (5) in the intake flow, that is, upstream of the oxygen sensor (17). The valve operating chamber (20) is connected by a blow-by gas passage (24) immediately downstream of the air cleaner (7). A blow-by gas flow rate control valve (PCV valve) (25) is provided on the valve operating chamber side in the middle of the blow-by gas passage (22), and an on-off valve (26) is further provided. The blow-by gas flow control valve (25) is a conventional one, and is for reducing the amount of blow-by gas according to the load state of the engine to the intake system. The on-off valve (26) is a valve that electrically opens and closes in response to a command from the EGR control circuit (18). The zero state of the EGR rate is
When it is detected in the EGR control circuit (18), the EGR control circuit (18) outputs a command to fully close the on-off valve (26) as an electric signal. Then, the detected oxygen concentration C 2 after the lapse of a predetermined time is in a specific operation state (a state in which the EGR rate is zero).
Standard oxygen concentration C 020 as the detected oxygen concentration in
2 and the comparison result shows that IP − shown in FIG.
The C 2 characteristic is adapted to be corrected. That is,
Zero-state EGR rate is detected as a specific operation state, the detected oxygen concentration C 2 in this particular operating condition in order to conform to the standard oxygen concentration C 020 of air, the sensor output I P and the detection of oxygen concentration of the oxygen sensor (17) The correspondence with C 2 is adapted to be corrected. As a concrete example of this correction,
For example, when the sensor output I P of the oxygen sensor to the detection of oxygen concentration C 2 (17) is a proportional relationship with a offset, FIG. 5 (a) are shown so as to change only the offset value It is conceivable that the correction is performed or that the proportional constant is changed so as to keep the sensor output IP at a constant value when the detected oxygen concentration C 2 is zero (FIG. 5 (b)).

以上の説明より明らかなように、この例によれば目標排
気ガス還流率決定手段、目標酸素濃度決定手段、制御手
段、特定運転状態検知手段、および補正手段はEGR制
御回路(18)により実現されている。
As is clear from the above description, according to this example, the target exhaust gas recirculation rate determining means, the target oxygen concentration determining means, the control means, the specific operation state detecting means, and the correcting means are realized by the EGR control circuit (18). ing.

次に、このように構成されたEGR制御装置の動作につ
いて説明する。すなわち、エンジン本体(1)が始動され
ると、エンジンの運転状態を示すエンジン回転数N
よび吸気圧力Pがエンジン回転数検出器(8)および吸
気圧力検出器(10)を介してEGR制御回路(18)に入力さ
れる。EGR制御回路(18)は、入力されるエンジン回転
数Nおよび吸気圧力Pの値に応じて、予め記憶され
ている目標EGR率Kより、例えば目標EGR率Koi
(第3図)を選択する。そして、この選択した目標EG
R率KOiにより、第4図にしたがって目標酸素濃度C
O2iを読みだす。一方、吸気管(2)中の排気ガスが混入し
た空気の酸素濃度は、このとき酸素サンサ(17)の送出す
るセンサ出力Iより第2図にしたがって算出され、算
出された酸素濃度C2j と上述により読みだされた目
標酸素濃度Co2i とが比較される。そして、このC
2j とC2i との比較偏差が零となるように制御負圧
発生器(16)に出力信号が送出され、制御負圧発生器(16)
はその出力負圧を負圧導入通路(9)および大気圧導入通
路(15)の圧力を用いて調圧し、EGR制御弁(12)の開閉
度合を制御し、検出酸素濃度を目標酸素濃度に近づけ
る。このとき、EGR制御弁(12)が開く方向に動けば、
EGR量が大となって酸素センサ(17)のセンサ出力I
に対応する酸素濃度C2J は低下し、閉じる方向に動
けば酸素濃度C2J は増大する。このように、本実施
例によれば、EGR制御弁(12)の開度を吸入空気中の酸
素濃度によって制御し、運転状態に応じた所望のEGR
量を得ているので、EGR制御弁(12)の長時間の使用に
より排気ガス中に含まれているカーボン等がこの弁に多
量付着したとしても、初期のEGR制御特性が損なわれ
ることはない。
Next, the operation of the EGR control device configured as described above will be described. That is, when the engine body (1) is started, the engine speed N E and the intake pressure P B indicating the operating state of the engine are transferred to the EGR via the engine speed detector (8) and the intake pressure detector (10). It is input to the control circuit (18). EGR control circuit (18), depending on the value of the engine speed N E and the intake pressure P B is input, from the target EGR rate K O stored in advance, for example, the target EGR ratio K oi
Select (Fig. 3). And this selected target EG
Based on the R rate K Oi , the target oxygen concentration C according to FIG.
Read O2i . On the other hand, the oxygen concentration of the air exhaust gas in the intake pipe (2) is mixed in, this time is calculated in accordance with Figure 2 than the sensor output I P for delivering oxygen Sansa (17), the calculated oxygen concentration C 2j And the target oxygen concentration Co2i read out as described above are compared. And this C
An output signal is sent to the control negative pressure generator (16) so that the comparison deviation between 2j and C 2i becomes zero, and the control negative pressure generator (16)
Regulates the output negative pressure using the pressure in the negative pressure introduction passage (9) and the atmospheric pressure introduction passage (15), controls the opening and closing degree of the EGR control valve (12), and sets the detected oxygen concentration to the target oxygen concentration. Get closer. At this time, if the EGR control valve (12) moves in the opening direction,
Sensor output I P of the oxygen sensor (17) EGR amount becomes large
The oxygen concentration C 2J corresponding to the above decreases, and the oxygen concentration C 2J increases when moving in the closing direction. As described above, according to the present embodiment, the opening degree of the EGR control valve (12) is controlled by the oxygen concentration in the intake air to obtain the desired EGR according to the operating state.
Since the amount is obtained, even if a large amount of carbon or the like contained in the exhaust gas adheres to the EGR control valve (12) for a long period of time, the initial EGR control characteristics will not be impaired. .

以上は、EGR制御弁(12)の制御動作について述べた
が、EGR制御弁(12)が閉じた状態にある場合、即ちE
GR制御率が零となった場合、本発明の特徴的な動作が
EGR制御回路(18)の内部において行なわれる。すなわ
ち、エンジン本体(1)が始動されて間がなくエンジ本体
(1)の冷却水温Tが所定温度よりも低い場合や、冷却
水温が十分高い場合でもアイドル状態にあるとき等の特
定運転状態においては、 EGR制御弁(12)が全閉状
態を維持し、EGR率は零となる。したがって、温度セ
ンサ(19)からの冷却水温T,あるいはエンジン回転数
検出器(8)および吸気圧力検出器(10)からの信号によ
り、EGR制御回路(18)においてEGR率が零であるこ
とが検出されると、直ちに、ブローバイガス通路(22)途
中の開閉弁(26)を全閉する指令を出して、全閉動作させ
る。別のブローバイ通路(24)については、上記のような
EGR率が零になる状態には、ブローバイガスの吸気系
への吸入が無いため開閉弁は不要である。以上の動作が
完了して所定時間経過した後に、その時の検出酸素濃度
がC2と大気の標準酸素濃度CO2O とが比較され、C
2をCO2O に合致させるべく酸素センサ(17)のセンサ
出力Iと検出酸素濃度C2との対応関係が補正され
る。すなわち、EGP率の零状態においては、酸素セン
サ(17)の検出する吸入空気の酸素濃度は大気の酸素濃度
と等しく、このとき検出される酸素濃度C2を標準酸
素濃度CO2O に合致させるべくそ対応関係を補正するこ
とにより、この制御システム組み込む酸素センサの固体
間のバラツキを大幅に許容することができ、且つ酸素セ
ンサの電気化学的な経年変化をも補正することができ
る。
The control operation of the EGR control valve (12) has been described above, but when the EGR control valve (12) is in the closed state, that is, E
When the GR control rate becomes zero, the characteristic operation of the present invention is performed inside the EGR control circuit (18). In other words, the engine body (1) will be started soon after the engine body is started.
(1) When the cooling water temperature T E is lower than the predetermined temperature or, in certain operating conditions, such as when the coolant temperature is in the idle state even if sufficiently high, EGR control valve (12) maintains the fully closed state , The EGR rate becomes zero. Therefore, the EGR rate should be zero in the EGR control circuit (18) due to the cooling water temperature T E from the temperature sensor (19) or the signals from the engine speed detector (8) and the intake pressure detector (10). When is detected, immediately, a command to fully close the on-off valve (26) in the middle of the blow-by gas passage (22) is issued to fully close the valve. Regarding the other blow-by passage (24), in the state where the EGR rate becomes zero as described above, there is no intake of blow-by gas into the intake system, so an on-off valve is not necessary. After a predetermined time has elapsed operation is completed above, the detection of oxygen concentration at that time is and the standard oxygen concentration C O2O of C 2 and the atmosphere is compared, C
The correspondence between the sensor output I P of the oxygen sensor (17) and the detected oxygen concentration C 2 is corrected so as to match 2 with C O2O . That is, when the EGP rate is zero, the oxygen concentration of the intake air detected by the oxygen sensor (17) is equal to the oxygen concentration of the atmosphere, and the oxygen concentration C 2 detected at this time should match the standard oxygen concentration C O2O. By correcting the correspondence relationship, it is possible to largely allow the variation between the individual oxygen sensors incorporated in the control system, and also to correct the electrochemical secular change of the oxygen sensor.

次に、EGR率が零である特定運転状態時に可燃性ガス
通路(22)の開閉弁(26)を全閉とすることの技術的意義お
よびその作用・効果について説明する。可燃性ガス(炭
化水素成分を多量に含むガス)が酸素センサ(17)の検出
部位に混入してくると、センサ検出部が高温(800 ℃〜
900 ℃)であるため、可燃成分が燃焼酸化反応を起こ
す。このため、検出部付近にある酸素が、水蒸気や二酸
化炭素等に変化し、実質的に酸素センサ(17)で検出され
る酸素濃度は、実際の吸気管(2)中の酸素濃度よりも低
くなる。目標EGR率が零で、吸気管(2)中の酸素濃度
が大気の標準酸素濃度になっているような特定運転状態
時に酸素センサ(17)出力が上記のようなエラーを発生す
ると、センサ出力と検出酸素濃度との対応関係の正しい
補正は不可能となる。このようなエラー発生を防止する
ために可燃性ガス通路(22)に電気的に開閉する開閉弁(2
6)を設けて、開閉制御を行なう。なお、特定運転状態時
はガスが大量に入って来るためこの影響を受けやすい
が、特定運転状態以外では吸気管(2)内は空気量(酸素
量)が多く、逆に可燃性ガスの吸入が少ないため、可燃
性ガスの影響を受けにくい。
Next, the technical significance of fully closing the open / close valve (26) of the combustible gas passage (22) and the operation / effect thereof in a specific operating state where the EGR rate is zero will be described. When flammable gas (gas containing a large amount of hydrocarbon components) enters the detection part of the oxygen sensor (17), the sensor detection part will reach a high temperature (800 ℃ ~
Since it is 900 ℃), flammable components cause combustion and oxidation reaction. Therefore, the oxygen in the vicinity of the detection part changes to water vapor, carbon dioxide, etc., and the oxygen concentration substantially detected by the oxygen sensor (17) is lower than the oxygen concentration in the actual intake pipe (2). Become. If the target EGR rate is zero and the oxygen sensor (17) output produces the above error in a specific operating state where the oxygen concentration in the intake pipe (2) is the standard oxygen concentration in the atmosphere, the sensor output Correct correction of the correspondence between the detected oxygen concentration and the detected oxygen concentration becomes impossible. In order to prevent such an error from occurring, an on-off valve (2
6) is provided to control opening / closing. Note that a large amount of gas enters during a specific operating condition, which is easily affected by this, but in other than the specific operating condition, the intake pipe (2) has a large amount of air (oxygen amount), and conversely the intake of combustible gas. Is less likely to be affected by flammable gas.

尚、本実施例において、EGR制御弁(12)は圧力ダイア
フラムを介して負圧によって動作する例を示したが、ス
テッピングモータや直流モータとギヤの組み合わせによ
るものでもよい。
In this embodiment, the EGR control valve (12) is operated by negative pressure through the pressure diaphragm, but it may be a stepping motor or a combination of a DC motor and gears.

また、本実施例では、ブローバイガス通路(22)に開閉弁
を設けた例を示したが、これ以外に可燃性ガスを含む気
体の通路で吸気管に接続されている通路としては、内燃
機関の燃料系から発生するガスを吸着するキャニスタ
(吸着器)をパージするために上記機関に設置されるパ
ージガス通路があり、これについても上記実施例と同様
の構成,動作により本発明の目的は達せられる。
Further, in the present embodiment, an example in which the blow-by gas passage (22) is provided with an on-off valve, but other than this, a passage for a gas containing a combustible gas, which is connected to the intake pipe, is an internal combustion engine. There is a purge gas passage installed in the engine for purging the canister (adsorber) that adsorbs the gas generated from the fuel system, and the object of the present invention can be achieved by the same configuration and operation as the above embodiment. To be

また、第1図の実施例ではブローバイガス通路(22)の吸
気管(2)への開口ポートをEGRガス通路の開口部より
上流側に設けた図が記されているが、この開口ポートの
位置はここに限定するものではなく、EGRガス通路の
開口部よりも下流、さらに酸素サンサよりも下流でもよ
い。
Further, in the embodiment of FIG. 1, a drawing in which the opening port of the blow-by gas passage (22) to the intake pipe (2) is provided on the upstream side of the opening of the EGR gas passage is shown. The position is not limited to this, and the position may be downstream of the opening of the EGR gas passage, and further downstream of the oxygen sensor.

さらに、上記実施例では目標EGR率をエンジン回転数
と吸圧力Pとにより求めた場合について説明した
が、これに限定するものではなく、例えばエンジン回転
数Nと吸気流量とで求めても良く上記実施例と同様の
効果が得られる。
Further, in the above-described embodiment, the case where the target EGR rate is obtained by the engine speed N E and the suction pressure P B has been described, but the present invention is not limited to this. For example, it is obtained by the engine speed N E and the intake air flow rate. However, the same effect as that of the above-described embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明による内燃機関の排気ガス
還流制御装置によると、排気ガスの混入率に比例する酸
素濃度によってEGR量が制御される一方、機関の特定
運転状態(EGR率が零である状態)が検知されると、
可燃性ガス通路途中に設けた開閉弁を全閉とし、この特
定運転状態における酸素センサの検知酸素濃度が大気の
標準酸素濃度に合致するように、酸素センサのセンサ出
力と検知酸素濃度との対応関係が補正されるものとな
り、酸素センサに個体間のバラツキがあっても、また酸
素センサ自身に経年変化が生じても、高精度の還流制御
が阻害されることがないという優れた効果を奏する。
As described above, according to the exhaust gas recirculation control device for an internal combustion engine of the present invention, the EGR amount is controlled by the oxygen concentration proportional to the mixing ratio of the exhaust gas, while the engine is in a specific operating state (when the EGR ratio is zero. When a certain condition is detected,
Correspondence between the sensor output of the oxygen sensor and the detected oxygen concentration so that the on-off valve installed in the middle of the flammable gas passage is fully closed and the oxygen concentration detected by the oxygen sensor in this specific operating condition matches the standard oxygen concentration of the atmosphere. The relationship is corrected, and even if there are variations among the oxygen sensors, or even if the oxygen sensors themselves change over time, highly accurate reflux control is not hindered. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による内燃機関の排気ガス還
流制御装置を示す概略構成図、第2図はこのEGR制御
装置に用いる酸素センサの送出するセンサ出力Iと検
出酸素濃度C2との関係を示す特性図、第3図はこの
装置EGR制御回路に入力されるエンジン回転数N
吸気圧力Pとに対応する目標EGR率Kを示す特性
図、第4図は目標EGR率Kに対応づけた目標酸素濃
度CO2を示す特性図、第5図は検出酸素濃度C2と酸
素センサ出力Iとの初期および補正後の対応関係を示
す図、第6図は従来のEGR制御装置の概略構成図であ
る。 (1)……エンジン本体、(2)……吸気管、(3)……排気
管、(8)……エンジン回転数検出器、(10)……吸気圧力
検出器、(11)……排気ガス還流通路、(12)……排気ガス
還流制御弁、(13)……開度検出器、(16)……制御負圧発
生器、(17)……酸素センサ、(14)(18)……排気ガス還流
制御回路、(19)……温度センサ、(22)(24)……ブローバ
イガス通路、(25)……ブローバイガス流量制御弁、(26)
……開閉弁。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a schematic configuration diagram showing an exhaust gas recirculation control device for an internal combustion engine according to an embodiment of the present invention, and FIG. 2 is a sensor output I P sent by an oxygen sensor used in this EGR control device and a detected oxygen concentration C 2 And FIG. 3 is a characteristic diagram showing a target EGR rate K O corresponding to the engine speed N E and the intake pressure P B input to the device EGR control circuit, and FIG. 4 is a target diagram. FIG. 5 is a characteristic diagram showing a target oxygen concentration C O2 associated with the EGR rate K O , FIG. 5 is a diagram showing a correspondence relation between the detected oxygen concentration C 2 and the oxygen sensor output I P after initial and correction, and FIG. It is a schematic block diagram of the conventional EGR control apparatus. (1) …… Engine body, (2) …… Intake pipe, (3) …… Exhaust pipe, (8) …… Engine speed detector, (10) …… Intake pressure detector, (11) …… Exhaust gas recirculation passage, (12) …… Exhaust gas recirculation control valve, (13) …… Opening position detector, (16) …… Control negative pressure generator, (17) …… Oxygen sensor, (14) (18 ) ... Exhaust gas recirculation control circuit, (19) ... Temperature sensor, (22) (24) ... Blow-by gas passage, (25) ... Blow-by gas flow control valve, (26)
...... Open / close valve. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 尋善 兵庫県姫路市千代田町840番地 三菱電機 株式会社姫路製作所内 (56)参考文献 特開 昭60−138264(JP,A) 特開 昭60−11664(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyoshi Suzuki, 840 Chiyoda-cho, Himeji City, Hyogo Prefecture Mitsubishi Electric Corporation Himeji Manufacturing Co., Ltd. (56) References JP-A-60-138264 (JP, A) JP-A-60 -11664 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気系と吸気系を連通した排気
ガス還流通路に設けられた排気ガス還流制御弁と、上記
吸気系の排気ガス還流通路開口部より下流に設けられ吸
入空気中の酸素濃度を検知する酸素センサと、可燃性ガ
スを含む気体を上記機関に吸入されるべく、上記吸気系
に接続された可燃性ガス通路と、この可燃性ガス通路を
電気信号によって開閉する開閉弁と、上記内燃機関の運
転状態に応じて目標排気ガス還流率を決定する目標排気
ガス還流率決定手段と、この目標排気ガス還流率決定手
段により決定された目標排気ガス還流率に応じて目標酸
素濃度を決定する目標酸素濃度決定手段と、この目標酸
素濃度決定手段により決定された目標酸素濃度と上記酸
素センサの検知酸素濃度とを比較しこれらの比較偏差を
零とすべく上記排気ガス還流制御弁の開度を制御する制
御手段とを備える内燃機関の排気ガス還流制御装置であ
って、上記排気ガス還流率の零状態を上記内燃機関の特
定運転状態として検知する特定運転状態検知手段と、こ
の特定運転状態時に上記開閉弁を全閉とし、その時の上
記酸素センサの検知酸素濃度に基づき、この検知酸素濃
度を大気の標準酸素濃度に合致させるべく、上記酸素セ
ンサのセンサ出力と検知酸素濃度との対応関係を補正す
る補正手段とを具備してなることを特徴とする内燃機関
の排気ガス還流制御装置。
1. An exhaust gas recirculation control valve provided in an exhaust gas recirculation passage communicating between an exhaust system and an intake system of an internal combustion engine, and an exhaust gas recirculation control valve provided downstream of an opening portion of the exhaust gas recirculation passage of the intake system in intake air. An oxygen sensor for detecting the oxygen concentration, a combustible gas passage connected to the intake system for inhaling a gas containing a combustible gas into the engine, and an on-off valve for opening and closing the combustible gas passage by an electric signal. And a target exhaust gas recirculation rate determining means for determining a target exhaust gas recirculation rate according to the operating state of the internal combustion engine, and a target oxygen according to the target exhaust gas recirculation rate determined by the target exhaust gas recirculation rate determining means. The target oxygen concentration determining means for determining the concentration is compared with the target oxygen concentration determined by the target oxygen concentration determining means and the oxygen concentration detected by the oxygen sensor, and the above-mentioned exhaust is set in order to make the comparison deviation between them zero. An exhaust gas recirculation control device for an internal combustion engine, comprising: a control means for controlling an opening degree of a gas recirculation control valve, wherein a specific operating state detection for detecting a zero state of the exhaust gas recirculation rate as a specific operating state of the internal combustion engine. And means for fully closing the on-off valve during this specific operation state, and based on the detected oxygen concentration of the oxygen sensor at that time, in order to match the detected oxygen concentration with the standard oxygen concentration of the atmosphere, the sensor output of the oxygen sensor and An exhaust gas recirculation control device for an internal combustion engine, comprising: a correction unit that corrects a correspondence relationship with a detected oxygen concentration.
【請求項2】可燃性ガス通路は内燃機関のブローバイガ
ス通路である特許請求の範囲第1項または第2項記載の
内燃機関の排気ガス還流制御装置。
2. The exhaust gas recirculation control device for an internal combustion engine according to claim 1, wherein the combustible gas passage is a blow-by gas passage of the internal combustion engine.
【請求項3】可燃性ガス通路は内燃機関の燃料系から発
生するガスを吸着するキャニスタをパージするために上
記機関に設置されるパージガス通路である特許請求の範
囲第1項または第2項記載の内燃機関の排気ガス還流制
御装置。
3. The combustible gas passage is a purge gas passage installed in the engine for purging a canister that adsorbs gas generated from a fuel system of an internal combustion engine. Exhaust gas recirculation control device for internal combustion engine.
JP61288425A 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine Expired - Lifetime JPH0615853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288425A JPH0615853B2 (en) 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288425A JPH0615853B2 (en) 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63140859A JPS63140859A (en) 1988-06-13
JPH0615853B2 true JPH0615853B2 (en) 1994-03-02

Family

ID=17730052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288425A Expired - Lifetime JPH0615853B2 (en) 1986-12-02 1986-12-02 Exhaust gas recirculation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0615853B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146317A1 (en) * 2001-09-20 2003-04-10 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
JP4525587B2 (en) * 2005-12-22 2010-08-18 株式会社デンソー Engine control device
JP5817997B2 (en) * 2011-11-24 2015-11-18 三菱自動車工業株式会社 Intake system structure of internal combustion engine
US9441564B2 (en) 2014-04-14 2016-09-13 Ford Global Technologies, Llc Methods and systems for adjusting EGR based on an impact of PCV hydrocarbons on an intake oxygen sensor
JP6459461B2 (en) * 2014-12-11 2019-01-30 日産自動車株式会社 EGR estimation apparatus for internal combustion engine and EGR estimation method for internal combustion engine
CN114233486B (en) * 2021-11-12 2023-08-18 潍柴动力股份有限公司 Control method and device for EGR valve and ECU

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011664A (en) * 1983-06-30 1985-01-21 Honda Motor Co Ltd Full-close referential position detecting method of egr valve in internal-combustion engine
JPS60138264A (en) * 1983-12-27 1985-07-22 Mitsubishi Electric Corp Exhaust gas recirculation mechanism for engine

Also Published As

Publication number Publication date
JPS63140859A (en) 1988-06-13

Similar Documents

Publication Publication Date Title
US4790286A (en) EGR control device for internal combustion engine
JPH0615854B2 (en) Exhaust gas recirculation control device for internal combustion engine
US6789523B2 (en) Failure diagnosis apparatus for evaporative fuel processing system
US6550318B2 (en) Abnormality diagnosis apparatus for evaporative fuel processing system
US4705009A (en) Exhaust gas recirculation control system for an engine
US5977525A (en) Control device for a heater for an air fuel ratio sensor in an intake passage
JPH0615853B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS6229631B2 (en)
US4334513A (en) Electronic fuel injection system for internal combustion engine
JPH06146948A (en) Air/fuel ratio control device of internal combustion engine provided with evaporated fuel processing device
JPS6318023B2 (en)
JP2663072B2 (en) Apparatus for detecting fuel concentration in blow-by gas
KR100401547B1 (en) Method for correcting purge density of canister use in a vehicle
JP2002364427A (en) Air-fuel ratio controller for engine
US4768491A (en) Fuel supply control system for an internal combustion engine
JP2592432B2 (en) Evaporative fuel control system for internal combustion engine
JP3024448B2 (en) Evaporative fuel control system for internal combustion engine
JPS6345499B2 (en)
JPS62284950A (en) Exhaust gas reflux controller for internal combustion engine
JP2003148235A (en) Air-fuel ratio detecting device for engine
JP2621032B2 (en) Fuel injection control device
JPH11229975A (en) Evaporative fuel purge quantity estimating device and fuel injection controller for engine using it
JP2006329086A (en) Evaporated-fuel treatment device
JPS6095150A (en) Air-fuel ratio control device for internal-combustion engine
JP2003013792A (en) Diagnostic device of oxygen sensor