JPS63552A - Fiber reinforced cementicious member - Google Patents
Fiber reinforced cementicious memberInfo
- Publication number
- JPS63552A JPS63552A JP14454886A JP14454886A JPS63552A JP S63552 A JPS63552 A JP S63552A JP 14454886 A JP14454886 A JP 14454886A JP 14454886 A JP14454886 A JP 14454886A JP S63552 A JPS63552 A JP S63552A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- fiber
- neutral axis
- tensile
- tensile strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims description 126
- 230000007935 neutral effect Effects 0.000 claims description 44
- 238000005452 bending Methods 0.000 claims description 42
- 239000004568 cement Substances 0.000 claims description 40
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 7
- 239000004917 carbon fiber Substances 0.000 claims description 7
- 239000003365 glass fiber Substances 0.000 claims description 4
- 229920002978 Vinylon Polymers 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 3
- 239000004760 aramid Substances 0.000 claims description 3
- 229920006231 aramid fiber Polymers 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 230000003014 reinforcing effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920006253 high performance fiber Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011294 coal tar pitch Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000221035 Santalaceae Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011396 hydraulic cement Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Rod-Shaped Construction Members (AREA)
- Reinforcement Elements For Buildings (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は空維補強材をセメント系マトリックス中に配列
、埋設してなる伊維補強セメント系部材に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fiber-reinforced cement-based member in which air-fiber reinforcing materials are arranged and embedded in a cement-based matrix.
〈従来技術〉
一般に、繊維補強セメント系部材は板、筒、中窒板、ブ
ロックなどの形状で土木・建築用部材として広く用いら
れる。<Prior Art> Generally, fiber-reinforced cement-based members are widely used as members for civil engineering and construction in the form of plates, cylinders, hollow plates, blocks, and the like.
従来繊維補強セメント系部材としてはいわゆる石綿スレ
ートが代表的な例であったが、最近では石綿による環境
公害防止の観点から、各種の有機、無機、金属(ρ維が
補強低給として用いられるようになって来た。Traditionally, so-called asbestos slate was a typical example of fiber-reinforced cement-based members, but recently, from the perspective of preventing environmental pollution caused by asbestos, various organic, inorganic, and metal (rho fibers) are being used as reinforcement material. It has become.
〈発明が解決しようとする問題点〉
しかしながら、これらのほとんどは勿9キ1トを−次元
又は3次元ランダムにセメント系マトリックス中に分散
させる方法にて製造されるため、高強度高靭性成形体を
得るには大量の繊維を要し、無駄が多い。<Problems to be Solved by the Invention> However, most of these materials are manufactured by a method of dispersing 9-dimensionally or 3-dimensionally randomly into a cement matrix, so that high-strength and high-toughness molded products cannot be obtained. It takes a large amount of fiber to obtain this, and there is a lot of waste.
特に高性能繊維を用いる場合には、繊維の強度や弾性が
十分に引き出せずコスト高になシやずいという欠点があ
った。Particularly when using high-performance fibers, there is a drawback that the strength and elasticity of the fibers cannot be fully exploited, leading to high costs and problems.
このため長繊維を予め直線状又は格子状に成形し、セメ
ント系マトリックス断面に一次元又は二次元に重点的に
配向させて成形体の物性を改善させる方法が考えられて
いる。For this reason, a method has been considered in which the long fibers are formed in advance into a linear or lattice shape, and the fibers are oriented one-dimensionally or two-dimensionally in the cross section of the cement matrix to improve the physical properties of the molded product.
この方法によれば、繊維が二次元又は三次元ランダム配
向の成形体に比べて同−曲げ又は引張強度を得るのに少
量ですみ、材料設計ができるうえ、高性能繊維になるほ
どその力学的性能を有効に利用できるという利点がある
。According to this method, a smaller amount of fibers is required to obtain the same bending or tensile strength than a molded article with two-dimensional or three-dimensional random orientation, and it is possible to design the material, and the higher the performance of the fiber, the higher its mechanical performance. It has the advantage that it can be used effectively.
−方、炭素繊維、アラミド繊維、耐アルカリガラス繊維
、高強度ビニロン繊維などの高特性線、維は引張強度が
セメント系材料自体に較べ著しく大きいことから、これ
らの繊維を配設したセメント系部材の引張或いは曲げの
最大応力度が高められる効果がある。- On the other hand, high-quality wires and fibers such as carbon fiber, aramid fiber, alkali-resistant glass fiber, and high-strength vinylon fiber have significantly higher tensile strength than cement-based materials themselves, so cement-based components equipped with these fibers This has the effect of increasing the maximum tensile or bending stress.
ところが、これらの高特性繊維は引張強度が大きいこと
に加え、引張破断伸びがわずか数チ以下程度の引張弾性
率が大きい繊維である。However, in addition to having high tensile strength, these high-performance fibers have a high tensile modulus with a tensile elongation at break of only a few inches or less.
なかでもセメントのアルカリ性による劣化の問題がなく
耐久性に優れ、該部材製造時の高温蒸気養生にも耐える
などの利点を有する炭素繊維は引張破断伸びが一チ以下
程度の引張弾性率が極めて大きい繊維である。Among these, carbon fiber has the advantage of being highly durable without the problem of deterioration caused by the alkalinity of cement, and can withstand high-temperature steam curing during the manufacture of the component. Carbon fiber has an extremely high tensile modulus of elasticity with a tensile elongation at break of about 1 inch or less. It is a fiber.
従って、これらの引張破断伸びの小さな高特性繊維を用
いた*、m補強セメント系部材では、引張或いは曲げの
最大応力度に達した時点で繊維が破断してしまい、引張
歪み或いは曲げたわみが小さな変形能や靭性に乏しいと
いう欠点を有している。Therefore, in *, m-reinforced cement-based members using these high-performance fibers with small tensile elongation at break, the fibers will break when the maximum tensile or bending stress is reached, resulting in small tensile strain or bending deflection. It has the disadvantage of poor deformability and toughness.
そこで、かかる応力度や靭性を改良しようとする従来技
術としては、
■ 板厚下半部の繊維量を上半部より多量とし、板厚下
半部の骨材iを上半部よシ少量とし九伊維補強セメント
板(特開昭5≠−/504t、20号公報)、
■ 繊維を多量に混合した下層の檀絣補強層と、必要に
応じて繊維を少を混合した上層とが一体化され、下層の
厚さが、上下層の総計厚さに対して0.≠〜0.7倍と
されている繊維補強セメント板(特開昭j弘−1032
弘号公報)、
■ 表面からJf+I!n以内の表層部に集中して繊維
ヲ分散配向せしめたl#維強化セメント硬化体(特開昭
j7−//r&/号公報)、あるいは
■ スチールメツシュを応力材として攪層配ツシュを介
装してなる高靭性フェロセメント板(特開昭60−/、
2!606号公報)等が知られている。Therefore, conventional techniques to improve such stress and toughness are as follows: ■ The amount of fiber in the lower half of the plate thickness is larger than that in the upper half, and the amount of aggregate i in the lower half of the plate thickness is smaller than that in the upper half. Toshi Kui fiber reinforced cement board (Japanese Unexamined Patent Publication No. 5≠-/504t, No. 20), ■ A lower layer of reinforcing sandalwood with a large amount of fibers mixed in, and an upper layer with a small amount of fibers mixed as needed. The thickness of the lower layer is 0.0% relative to the total thickness of the upper and lower layers. Fiber-reinforced cement board that is said to be ≠~0.7 times
(Hiroshi Publication), ■ Jf+I from the surface! l# fiber-reinforced cement hardened material in which the fibers are dispersed and oriented in the surface layer within n (Japanese Unexamined Patent Publication No. 7-//r&/), or ■ Stir layered mesh using steel mesh as a stress material. High-toughness ferrocement board formed by interposition (Japanese Patent Application Laid-Open No. 1983-1999-/,
2!606), etc. are known.
しかし力から、これらの従来技術にも未だつぎのような
問題点がある。However, due to their power, these conventional techniques still have the following problems.
即ち■〜■の場合においては、曲げ部材の引張応力が作
用する領域に繊維補強層を配設することKより曲げ応力
度を高める効果はあるものの、最大曲げ応力度に達し、
繊維が破断すると急激に応力度も低下し、最大曲げ応力
度を越える曲げたわみの範囲において、なお充分に大き
な応力度を保持するような優れた靭性のある部材は得が
九い問題がある。That is, in the cases of ■ to ■, although providing a fiber reinforcing layer in the area of the bending member where tensile stress acts has the effect of increasing the bending stress, the maximum bending stress is reached;
When the fibers break, the stress level decreases rapidly, and it is difficult to create a member with excellent toughness that can maintain a sufficiently large stress level in the range of bending deflection that exceeds the maximum bending stress level.
又■の場合においては、配筋するスチールメツシュが苛
酷な使用条件或いは長期間経過などにより腐食し、耐久
性が悪くなるという欠点を有している。In the case of (2), the steel mesh used for reinforcing corrodes under severe usage conditions or over a long period of time, resulting in poor durability.
〈問題点を解決するための手段〉
そこで本発明者らはかかる問題点に鑑み鋭意検討した結
果、長繊維をセメント系曲げ部材の引張応力が作用する
領域に少なくとも二層以上配設するに際し、引張強力の
異なる長繊維を用い、かつよυ引張強力の大きな長繊維
を該部材の曲げ中立軸に近い位置に配設することにより
、これら問題点が解決出来ることを見い出し、本発明に
到達した。<Means for Solving the Problems> Therefore, the inventors of the present invention have conducted extensive studies in view of the above problems, and have found that when arranging at least two layers of long fibers in the area where tensile stress acts on a cement-based bending member, We have discovered that these problems can be solved by using long fibers with different tensile strengths and by arranging long fibers with a high tensile strength at a position close to the neutral bending axis of the member, and have arrived at the present invention. .
すなわち、本発明の目的は補強繊維を少量でかつ補強効
果が優れるように配設する工夫によp1高強度かつ高靭
性の繊維補強セメント系部材を提供することにある。That is, an object of the present invention is to provide a fiber-reinforced cement-based member with high strength and toughness by arranging reinforcing fibers in a small amount and with an excellent reinforcing effect.
そして、その目的は曲げ応力を受ける繊維補強セメント
系部材であって、該部材の曲げ応力の中立軸に対し、引
張応力が作用する領竣に引張強力の異なる長依維を該部
材の引張応力を負担するように少なくとも実質的に二層
以上配設し、かつ引張強力のより大きな長繊維を長使、
維配設位置のうち中立軸により近い位置に配設したこと
により容易に達成される。The purpose is to create a fiber-reinforced cement-based member that is subjected to bending stress, and the tensile stress of the member is such that long fibers with different tensile strengths are placed in the area where the tensile stress acts with respect to the neutral axis of the bending stress of the member. At least two or more layers are arranged so as to bear the burden, and long fibers with greater tensile strength are used,
This can be easily achieved by arranging the fibers closer to the neutral axis.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明に用いるセメントは、普通ポルトランドセメント
、早強ポルトランドセメント、高炉セメント、アルミナ
セメントのほか、セメント製品を通常製造するのに用い
るような水硬性セメントであれば特に限定するものでは
ない。The cement used in the present invention is not particularly limited as long as it is a hydraulic cement that is normally used for manufacturing cement products, as well as ordinary Portland cement, early strength Portland cement, blast furnace cement, and alumina cement.
用いる長繊維は、有機、無機等いかなる材質のものでも
よいが、特に炭素繊維、アラミド繊維、耐アルカリガラ
ス繊維、高強度ビニロン繊維などの高特性繊維が好ブし
い。The long fibers used may be of any material, such as organic or inorganic, but high-performance fibers such as carbon fibers, aramid fibers, alkali-resistant glass fibers, and high-strength vinylon fibers are particularly preferred.
本発明におけるセメントマトリックス中への長繊維の配
設方法の一例を第1図に示す。An example of a method for disposing long fibers in a cement matrix according to the present invention is shown in FIG.
第1図中/は中央−点載荷曲げ試験により曲げ応力を受
ける繊維補強セメント系部材である。In FIG. 1, / is a fiber-reinforced cementitious member subjected to bending stress by a center-point loading bending test.
コは該部材の曲げ応力の中立軸(第1図中のNyl線)
に対し、引張応力が作用する領域(第1図中のN −N
’線より下方部分)に、部材の引張応力を負相出来るよ
うに配列し、かつ中立軸に対し、より近くの位置(第1
図中の中立軸からの距*T−1で表わされる)に配設さ
れ次、よυ引張強力の大きな長繊維である。ko is the neutral axis of bending stress of the member (Nyl line in Figure 1)
, the area where tensile stress acts (N - N in Figure 1)
' line below) so that the tensile stress of the member can be made negative, and at a position closer to the neutral axis (the first
The long fibers are arranged at a distance from the neutral axis (represented by *T-1 in the figure) and have a large tensile strength.
ここで長繊維の長手方向が部材の引張応力の方向と同じ
方向である場合が最も引張応力の負担効果がすぐ凡てい
るので好ましい。しかし長繊維の長手方向が部材の引張
応力の方向と全く同じ方向でなくても実質的に引張応力
を負担出来る場合には多少夫々の方向が異なっていても
よい。Here, it is preferable that the longitudinal direction of the long fibers is the same as the direction of the tensile stress of the member, since the effect of bearing the tensile stress is most easily achieved. However, even if the longitudinal direction of the long fibers is not exactly the same as the direction of the tensile stress of the member, the directions may be slightly different as long as the tensile stress can be substantially borne.
3はより引張強力が小さくかつ、中立軸に対しより遠く
に位置(第1図中の中立軸からの距離L2で表わされる
)する以外Fiコと同じ長手方向に配列し、配設された
長繊維である。3 has a smaller tensile strength and is arranged in the same longitudinal direction as Fico except that it is located further away from the neutral axis (represented by the distance L2 from the neutral axis in Fig. 1), and has an arranged length. It is a fiber.
ここで、本発明で云う繊維の引張強力は用いるり横紐の
単位断面積当りの引張強度とセメントマトリックス中に
配設される該線維の断面積との情の値として表わされる
。Here, the tensile strength of the fibers as referred to in the present invention is expressed as a value between the tensile strength per unit cross-sectional area of the transverse cord used and the cross-sectional area of the fibers disposed in the cement matrix.
そして、引張強度及び断面積は例えば炭翠低給の場合は
、TI8規格R760/の方法により測定することが出
来、その他の繊維の場合も同方法に準じて測定すること
が出来る。The tensile strength and cross-sectional area can be measured by the method of TI8 standard R760/, for example, in the case of low-feeding charcoal, and can be measured in accordance with the same method in the case of other fibers.
本発明で重要なのは、セメントマトリックス中に!、繊
維を二層以上配設し、かつ部材の引張応力の中立軸に近
い位置に配設される長繊Fの引張強力が中立軸に遠い位
置に配設される多繊維の引張強力よシも犬きくなるよう
配設することである。本発明のように長伊維を配設した
繊維補強セメント系部材の曲げにおける荷重−たわみ曲
線を第2図已に示す。What is important in this invention is in the cement matrix! , where two or more layers of fibers are arranged, and the tensile strength of the long fibers F arranged near the neutral axis of the tensile stress of the member is higher than that of the multi-fibers arranged far from the neutral axis. It is also important to arrange the area so that it is easy for dogs to listen to it. FIG. 2 shows a load-deflection curve during bending of a fiber-reinforced cement-based member provided with long fibers as in the present invention.
すなわち、たわみが増すと中立軸からよフ遠い位置にあ
る、よシ大きな引張歪みを受ける引張強力の小さな多繊
維がまず破断じ、荷重が一旦若干低下するが、中立軸に
より近い位置にある、少さな引張歪みを受けている未だ
破断していない引張強力の大きな4m維の補強能力によ
り、再び荷重が増大する。そして最終的には、引張強力
の大きな是繊紺自体が破断し、荷重が漸減し零となる。In other words, as the deflection increases, the multi-fibers with low tensile strength, which are located far from the neutral axis and are subjected to large tensile strain, break first, and the load decreases slightly, but the fibers are located closer to the neutral axis. The load increases again due to the reinforcing capacity of the 4 m fibers, which are still unbroken and have a high tensile strength and are subjected to a small tensile strain. Eventually, the fibers themselves, which have a high tensile strength, break and the load gradually decreases to zero.
これに対して、中立軸から遠い位置と近い位置とに同じ
引張強力の長仲惟を配設した場合には、第2図すのよう
に遠い位置の長続゛維が破断した時点の荷重ばaの場合
よυも大きいものの、近い位置の繊維の強力がaの場合
に較べ小さいため、荷重の落ち込みが太きく、さらに之
わみを加えると大した荷重増大もなく、全路的に近い位
置の繊維も破断し、そのたわみgばaの場合よりも小さ
くなる。On the other hand, if long fibers with the same tensile strength are placed at positions far from the neutral axis and near the neutral axis, the load at the time when the long fiber at the far position breaks is as shown in Figure 2. Although υ is larger than in case a, the strength of the fibers at nearby positions is smaller than in case a, so the drop in load is large, and when further deflection is added, there is no large increase in load, and it is Fibers at nearby locations also break, and their deflection g is smaller than in the case of a.
プらに、巳の場合とは逆に、遠い位置に配役する長繊維
の方が引張強力が大きい場合には第一図Cのように遠い
位置の繊維が破断し次時点の荷重は最も大きいが、近い
位置の繊維の強力が小さいため荷重の落ち込みが最も大
きく、さらにたわみを加えると、殆んど荷重増大なしに
近い位置の繊維が破断し、たわみ量はaの場合より小さ
くなる。In addition, contrary to the case of Snake, if the long fibers placed in the far position have a higher tensile strength, the fiber in the far position breaks as shown in Figure 1 C, and the load at the next point is the largest. However, since the strength of the fibers in the nearby positions is low, the drop in load is greatest, and when further deflection is applied, the fibers in the nearby positions break with almost no increase in load, and the amount of deflection becomes smaller than in case a.
このように、3つの引張強力が異なる場合の比較から最
大曲げ応力度を越えて、たわみを加えた場合に、なお充
分に大きな応力度を保持し靭性の優れた曲げ部材を得る
Kは、本発明のようにより引張強力の大きな繊##全中
立軸によp近く位置するように配設するのが好ましいこ
とが明らかである。In this way, from the comparison of the three different tensile strengths, K, which maintains a sufficiently large stress level and produces a bending member with excellent toughness when deflection is applied beyond the maximum bending stress level, is the original value. It is clear that it is preferable to arrange the fiber ## having a higher tensile strength as in the invention so as to be located close to the total neutral axis.
本発明において、具体的に配設位置に応じて長繊維の引
張強力をちがえて配設する方法としては、同種の引張強
度の長繊維を用い、中立軸により近い位置に量的に多く
配設することにより、断面積を多くし、引張強度と断面
積との積として求められる引張強力を大きくするか、あ
るいは二種類以上の引張強度の異なる繊維を用い、中立
軸から近い位置及び遠い位置の夫々に配設する9、維の
引張強度と断面積との積として、夫々の引張強力を求め
、中立軸に近い位置の繊維強力が大きくなるように配設
する、などの方法がある。さらにくわしくは、夫々の繊
維強力の値は用いる繊維の引張強度と配設断面積、中立
軸からの夫々の繊維の配設位置の距離及び繊維補強曲げ
部材の寸法などの要因に応じて、該部材に必要とされる
曲げ応力度やたわみ量が得られるように、適宜設定すれ
ば良く、中立軸に近い位置の繊維強力が遠い位置のR#
#強力の7、コ倍以上、好ましくは7.5〜4c倍、さ
らに好ましくは、2〜3.5倍になるように配設する。In the present invention, the method of arranging the long fibers with different tensile strength depending on the arrangement position is to use long fibers with the same type of tensile strength, and to arrange a large amount of the long fibers at a position closer to the neutral axis. By increasing the cross-sectional area and increasing the tensile strength obtained as the product of tensile strength and cross-sectional area, or by using two or more types of fibers with different tensile strengths, There is a method in which the tensile strength of each fiber is determined as the product of the tensile strength and the cross-sectional area of the fibers, and the fibers are arranged so that the fiber strength at a position close to the neutral axis is large. More specifically, the value of each fiber strength depends on factors such as the tensile strength and cross-sectional area of the fibers used, the distance of each fiber from the neutral axis, and the dimensions of the fiber-reinforced bending member. It can be set appropriately to obtain the bending stress and deflection required for the member, and the fiber strength at a position close to the neutral axis is equal to
# It is arranged so that it is 7 times or more stronger than the strength, preferably 7.5 to 4c times, more preferably 2 to 3.5 times.
また1本発明でより優れる曲げ靭性を得るためKは、用
いる長繊維の破断伸びが異なるものを、2種類以上組合
せて使用するのが好ましい。Further, in order to obtain better bending toughness in the present invention, it is preferable to use a combination of two or more types of K having long fibers with different elongations at break.
例えば、破断伸びが異なる。2v4類の繊維を用い、本
発明の如く配設した場合には、#2維補強部材の曲げに
おける荷重−次わみ曲線は第3図aに示すようにたわみ
が増すと中立軸から遠い位置にある破断伸びの小さな繊
維がまず破断し、荷重が若干低下し、ついで近い位置に
ある破断伸びの小さな繊維が破断し、さらに中立軸に遠
い位置にある破断伸びの大きな$1!雄が破断し、最終
的に近い位置ある破断伸びの大きな伊維が破断するとの
曲げモードとなる。For example, the elongation at break is different. When 2v4 class fibers are used and arranged as in the present invention, the load-deflection curve of the #2 fiber reinforcing member in bending will shift to a position farther from the neutral axis as the deflection increases, as shown in Figure 3a. The fiber with a small elongation at break breaks first, and the load decreases slightly, then the fiber with a small elongation at break near it breaks, and then the fiber with a large elongation at break, which is further away from the neutral axis, breaks! The bending mode is such that the male fiber breaks, and finally the fiber with a large breakage elongation near the end breaks.
これに対して、第3図すは破断伸びが同じ一種類の#1
!mを用い、本発明の如く配設した場合である。両者の
比較から判るように、破断伸びが異なる繊維を組合せて
使用することにより、たわみ途中での荷重低下がすくな
く、大きな荷重を維持しつつ、たわみも大きく出来、靭
性の大きな極めて優れた部材が得られる。In contrast, Figure 3 shows one type of #1 with the same elongation at break.
! This is the case where m is used and arranged as in the present invention. As can be seen from the comparison of the two, by using a combination of fibers with different elongations at break, the load drop during deflection is small, and while maintaining a large load, it is possible to increase deflection, resulting in an extremely superior member with high toughness. can get.
このような2種類の破断伸びが異なる繊維を用いる場合
の曲げモードからして、さらに多くの種類の破断伸びが
異方る繊維を組合せて使用すれば、大きな荷重を維持し
つつ、よシ大きなたわみが実現出来、より靭性の優れる
部材を得られる。Judging from the bending mode when using two types of fibers with different elongations at break, if more types of fibers with different elongations at break are used in combination, it is possible to maintain a large load while achieving a larger bending mode. Flexibility can be achieved and a member with superior toughness can be obtained.
さらに本発明において、大きな曲げ応力度を得るには、
用いる繊維の引張弾性率が異なるものを2種類以上組合
せ、しかも引張弾性率の大きい#32維を中立軸からよ
シ遠い位置に配設するのが好ましい。例えば、引張弾性
率の大きな繊維を中立軸から遠い位置に、弾性率の小さ
な繊Mを近い位置に配設しfc場合の荷重−たわみ曲線
は第≠図aに示すように、同じ弾性率の繊維のみを二層
に配設した第弘図すの曲線に較べ、同じたわみ景での荷
重が犬きく、高曲げ強度の部材が得られ好ましい。Furthermore, in the present invention, in order to obtain a large degree of bending stress,
It is preferable to use a combination of two or more types of fibers with different tensile moduli, and to arrange #32 fibers having a high tensile modulus at a position far from the neutral axis. For example, if fibers with a large tensile modulus are placed far from the neutral axis and fibers M with a small modulus are placed close to the neutral axis, the load-deflection curve will be as shown in Figure a. Compared to the curve of No. 1 Hirozu, in which only fibers are arranged in two layers, the load at the same deflection is much greater, and a member with high bending strength can be obtained, which is preferable.
尚、本発明において、長繊維は少なくとも実質的に二層
以上配設されるが、ここで実質的KJd状に配設すると
は、部材の引張応力の中立軸に対してほぼ同様の引張応
力が加わる領域に中立軸からの距離がほぼ同様となるよ
う配設することを意味するものである。層状に配設され
る長繊維の数は特に限定されるものではなく、部材に付
加したい袖強効果に応じて適宜決定されるものである。In the present invention, the long fibers are arranged in at least two or more layers. Here, "arranging them in a substantially KJd shape" means that the long fibers are arranged in a substantially KJd shape when almost the same tensile stress is applied to the neutral axis of the tensile stress of the member. This means that the distances from the neutral axis are approximately the same in the regions to which they are applied. The number of long fibers arranged in a layered manner is not particularly limited, and is determined as appropriate depending on the strength effect desired to be imparted to the member.
つぎに1本発明においては、長繊維は通常直径が数ミク
ロン乃至数十ミクロンの単糸が数百本乃至数百本束状に
なったものを用いる。Next, in the present invention, the long fibers used are usually a bundle of several hundred to several hundred single yarns having a diameter of several microns to several tens of microns.
そしてセメントマトリックス中に配設する際の束として
の引張強度を確保し、取扱時の損傷を防ぐなどのため、
各種の高分子物質を含浸し、付着させ単糸どうしを結着
して用いるのが好ましい。In order to ensure the tensile strength of the bundle when placed in the cement matrix and to prevent damage during handling,
It is preferable to use the yarn by impregnating and adhering various polymeric substances to bind the single yarns together.
具体的な高分子物質としてはエポキシ樹脂、ウレタン樹
脂、フェノール樹脂、ポリビニルアルコールなどが用い
られる。As specific polymeric substances, epoxy resin, urethane resin, phenol resin, polyvinyl alcohol, etc. are used.
又、セメントマトリックスとの接着性を高めるために、
該繊維は表面酸化処理などの表面処理をしたり、付着す
る高分子物質として軟化点が4AO℃以上の未硬化状態
のエポキシ樹脂や、エポキシ樹脂層の上にさらに、カル
ボキシル変性ゴムポリマー全付着させる方法々どを用い
てもよい。In addition, in order to improve the adhesion with the cement matrix,
The fibers are subjected to surface treatment such as surface oxidation treatment, or an uncured epoxy resin with a softening point of 4 AO°C or higher is used as the polymer substance to be attached, or a carboxyl-modified rubber polymer is completely attached on top of the epoxy resin layer. Any method may be used.
セメントマトリックスとの付着をさらに向上させるため
には、高分子物質を含浸付着させた表面にさらに樹脂に
て細砂などを付着し、セメントマトリックスへの投錨効
果を持たせてもよい。In order to further improve the adhesion to the cement matrix, fine sand or the like may be further attached using a resin to the surface impregnated with the polymeric substance to provide an anchoring effect to the cement matrix.
これまでの説明では引張強力の異なる。2種類の繊維を
中立軸に対して位置を変えて配設する方法を述べて来た
が、本発明においては、引張強力がコf−II類以上異
なる檀維であれば、それ以上の多種類を使用するのに伺
ら支障なく、その際にはより引張強力の大きな繊維量よ
り中立軸に近く位置するよう配設すれば良い。In the explanation so far, the tensile strengths are different. The method of arranging two types of fibers by changing their positions with respect to the neutral axis has been described, but in the present invention, as long as the tensile strength is different from Co f-II class or more, a larger number of fibers can be used. There is no problem in using different types of fibers, and in that case, it is sufficient to arrange them so that they are located closer to the neutral axis than the amount of fibers with higher tensile strength.
又、本発明で用いる長紗Wの形状としては直線状の一次
元のみならず、格子状、網状或いは織物状にして、二次
元的に積層配設することも出来る。特に網状の場合に、
それが絡み織シにて構成され、絡み繊維が本発明で云う
債Q(Iの長手方向に配置されていると、より高強度、
高靭性の繊組補強部材が得られ好ましい。Further, the shape of the long gauze W used in the present invention is not limited to a linear one-dimensional shape, but can also be formed into a lattice shape, a net shape, or a woven shape, and can be laminated two-dimensionally. Especially in the case of reticular
If the fibers are arranged in the longitudinal direction of the bond Q (I) referred to in the present invention, the strength will be higher.
This is preferable because a fiber reinforced member with high toughness can be obtained.
本発明の長偉維のセメントマトリックスへのt6t= 埋込みは常法によって行えjよい。t6t= Embedding can be done using conventional methods.
例えば従来のM層・埋股沫によってもよいし、予め立体
的に型枠内に組込んだ後、マトリックス材料を注入して
硬化させてもよい。For example, the conventional M layer/embedding layer may be used, or the matrix material may be injected and cured after being three-dimensionally assembled in a mold.
この際、ハ議ズレ−ター等により振動をかけて脱i2し
てやれば、セメントマトリックスと補強用+a 4M集
合体との付着はさらに緊密になり、良好な機械的物性を
得ることができる。At this time, if the i2 is removed by applying vibration using a sintering device or the like, the adhesion between the cement matrix and the reinforcing +a 4M aggregate becomes even tighter, and good mechanical properties can be obtained.
また、本発明の部材は板状、筒状、あるいは中空板、ブ
ロック等の曲げ部材であればよく、その形状は特に限定
されるものではない。Further, the member of the present invention may be a bent member such as a plate, a cylinder, a hollow plate, or a block, and its shape is not particularly limited.
〈発明の効果〉
以上のように本発明によれば、神強却維の配設位置に応
じて、その引張強力tX節すると云う極めて簡易な方法
により、少量の繊維量で効果的かつ合理的な補強性能が
発揮出来、曲げ靭性及び強度のすぐれたセメント系部材
を得ることが出来る。<Effects of the Invention> As described above, according to the present invention, an extremely simple method of adjusting the tensile strength tX according to the placement position of the fibers is effective and rational with a small amount of fibers. It is possible to obtain a cement-based member that exhibits excellent reinforcing performance and has excellent bending toughness and strength.
又、鉄筋コンクリート構造と同じように、用途や荷重や
件に応じた断面設計が効果的かつ容易に可能となり、実
用性にも富む。Also, like reinforced concrete structures, cross-sectional designs can be effectively and easily tailored to the application, load, and conditions, making it highly practical.
以下、本発明を実施例により具体的に説明するが、本発
明はその要旨をこえない限り下記の実施例に限定される
ものではない。EXAMPLES Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.
実施例/
コールタールピッチから作られたメソフェーズ系高伸度
炭素繊維(直径約77ミクロンの単糸約4cooo本か
ら成る)をアセトンで希釈した硬化剤を含むエポキシ樹
脂溶液にて含浸し、加熱硬化して、樹脂含有率IA7%
の直線状長繊維を得、その物性を第1表中に示した。Example / Mesophase high elongation carbon fiber made from coal tar pitch (consisting of about 4 cooo single filaments with a diameter of about 77 microns) was impregnated with an epoxy resin solution containing a curing agent diluted with acetone and cured by heating. and resin content IA7%
A linear long fiber was obtained, and its physical properties are shown in Table 1.
この8NNl2をその張子方向にエポキシ系接着剤で接
合し7束にしたものを、幅;弘O×高さ:、20X長さ
;J20fMnのセメント系曲げ部材の曲げ中立軸から
ツーの距離(第1図中駒で表わす)に、核繊維の長手方
向が引張応力方向と同じになるようにして、5束を等間
隔に配設した。These 8NNl2 were bonded in the papier-mâché direction with epoxy adhesive and made into 7 bundles. 1), five bundles were arranged at equal intervals so that the longitudinal direction of the core fibers was the same as the tensile stress direction.
5束を合計した掃絹断面櫃及び引張強力を第1表中に示
した。Table 1 shows the total cross-section and tensile strength of the five bundles.
一方、同じ長轢維各/本を同じく中立軸から7℃の距離
(第1図中L2で表わす)に、その長手方向が該部材の
引張応力方向と同じになるようにして、5本を等間隔に
配設し、その断面積及び引張強力を第1表中に示した。On the other hand, five of the same long fibers were placed at a distance of 7°C from the neutral axis (represented by L2 in Figure 1) so that the longitudinal direction was the same as the tensile stress direction of the member. They were arranged at equal intervals, and their cross-sectional areas and tensile strengths are shown in Table 1.
セメントは早強ポルトランドセメント、骨材は川砂(最
大2.j trar+粒径)を用い、水/セメント比は
θ、4L/ハ骨材/セメント比はθ、47// とし
た。The cement used was early-strength Portland cement, the aggregate used river sand (maximum 2.j tra + grain size), the water/cement ratio was θ, and the 4L/c aggregate/cement ratio was θ, 47//.
/週間養生後の繊維補強セメント系供試体をスパン7!
t Otvnで中央−点載荷曲げ試験し、得られた曲げ
応力度−たわみ曲線を第j図已に示した。尚、繊維補強
のないセメント系単味の供試体の曲げ強度は? / k
V/adであった。Span 7 of the fiber-reinforced cement-based specimen after curing for /week!
A center-point loading bending test was conducted at t Otvn, and the resulting bending stress-deflection curve is shown in Figure J. Furthermore, what is the bending strength of a single cement-based specimen without fiber reinforcement? /k
It was V/ad.
比較例/
実施例/と同じ長繊維−本を同じく接合して7束にした
ものを、実施例/と同じくして中立軸から2能の距離と
2闘の距離とに、夫々5束ずつを配設した。Comparative Example/The same long fibers as in Example/ were spliced into 7 bundles in the same way as in Example/, and 5 bundles each were placed at a distance of 2 and 5 from the neutral axis. was installed.
これらの断面積及び引張強力を第1表中に示し、得られ
た曲げ応力度−たわみ曲線を第5図すに示した。Their cross-sectional areas and tensile strengths are shown in Table 1, and the resulting bending stress-deflection curves are shown in Figure 5.
比較例コ
実施例/と同じ長9維j本を中立軸からコサの距離に、
同じ長繊維3本を7束に接合した5束を中立軸から7m
の距離に配設した。Comparative example / Same 9 long fibers as Example / were placed at a distance of Kosa from the neutral axis,
5 bundles made by joining 7 bundles of 3 same long fibers 7 m from the neutral axis
placed at a distance of
これらの断面積及び引張強力を第1表中に示し、得られ
た曲げ応力度−たわみ曲M4を第j図Cに示した。Their cross-sectional areas and tensile strengths are shown in Table 1, and the obtained bending stress-deflection curve M4 is shown in Figure J, C.
実施例λ
コールタールピッチから作られたメソフェーズ系低伸度
炭素繊維(直径約70ミクロンの単糸約−2000本か
ら成る)を用い実施例/と同様にして、樹脂含有率弘!
矛の直線状長繊維を得、その物性を第1表中に示した。Example λ A mesophase low elongation carbon fiber made from coal tar pitch (consisting of about -2000 single filaments with a diameter of about 70 microns) was used in the same manner as in Example 1, and the resin content was increased.
Straight long fibers were obtained and their physical properties are shown in Table 1.
この低伸度長繊#3本を接合し7束にしたものを2束と
実施例/の高伸度長繊維3束とを、中立軸から5ttr
tnの距離に等間隔に配設した。Two bundles of these #3 low elongation long fibers joined to form 7 bundles and 3 bundles of high elongation long fibers of Example/are 5ttr from the neutral axis.
They were arranged at equal intervals at a distance of tn.
−方中立軸から2配の距離に実施例/の高伸度長線#≠
本と上記の低伸度長繊帷/本との計j本を等間隔に配設
した。-High elongation long line #≠ of Example/at a distance of 2 points from the neutral axis
A total of j books and the above-mentioned low elongation long fiber cloth/books were arranged at equal intervals.
これらの断面積及び引張強力を第1表中に示し、得られ
た曲げ応力度−次わみ曲線を第6図に示した。Their cross-sectional areas and tensile strengths are shown in Table 1, and the resulting bending stress-deflection curves are shown in FIG.
「アルファイバーJ ARR21AO’0TF3 )を
用い、実施例/と同様にして直線状長繊維を得、その物
性を第1表中に示した。Using "Alfiber J ARR21AO'0TF3", linear long fibers were obtained in the same manner as in Example, and the physical properties are shown in Table 1.
このガラス長R1?維2本を接合し7束にしたものを3
束と、実施例/の高伸度炭素長線#λ本を接合し7束に
したものコ束−と金、中立軸から参朋の距離に等間隔に
配設した。Is this glass length R1? Two fibers joined together to form seven bundles are called 3
The bundle and the high elongation carbon long wire #λ of Example were joined to form seven bundles, which were arranged at equal intervals at a distance from the neutral axis.
一方、中立軸から71anの距離に同じガラス長#!維
/本と高伸度炭素長繊維2本とを等間隔に配設した。On the other hand, the same glass length # at a distance of 71 an from the neutral axis! One fiber and two high elongation carbon long fibers were arranged at equal intervals.
これらの断面積及び引張強力を第1表中に示し、得られ
た曲げ応力度−たわみ曲線を第7図に示した。Their cross-sectional areas and tensile strengths are shown in Table 1, and the resulting bending stress-deflection curves are shown in FIG.
実施例弘
ミ
アラlドLv維(米国デュポン社製、商標「ケブラー≠
2」/弘、20デニール)を用い、実施例/と同様にし
て直線状長繊維を得、その物性を第1表中に示した。Example Hiromiara Lv fiber (manufactured by DuPont, USA, trademark "Kevlar≠")
2"/Hiroshi, 20 denier), linear long fibers were obtained in the same manner as in Example/, and the physical properties thereof are shown in Table 1.
このア、7ξド長ma1本を接合し7束にしたものを弘
束と、実施例3で用い之ガラヌ長生維λ本とを、中立軸
から3配の距離に等間隔に配設した。A. One 7ξ length ma was spliced into seven bundles, and the long fibers λ used in Example 3 were arranged at equal intervals at three distances from the neutral axis.
一方、中立軸から2門の距離に同様のアラミド長繊維≠
本と、ガラス長繊維7本とを等間隔に配設した。On the other hand, similar aramid long fibers at a distance of two gates from the neutral axis≠
The books and seven long glass fibers were arranged at equal intervals.
これらの断面積及び引張強力を第1表中に示し、得られ
た曲げ応力度−たわみ曲線を第2図に示した。Their cross-sectional areas and tensile strengths are shown in Table 1, and the resulting bending stress-deflection curves are shown in FIG.
第1図はliR,補強強セメント系部材の平面図及びそ
の断面。
第2〜を図は本発明における繊維補強セメント系部材の
曲げ試験における荷重−たわみ曲線を説明するための図
。
第j−1図は本発明の実施例及び比較例における繊維補
強セメント系部材の曲げ試験時の曲げ応力度−たわみ曲
線を表わす。
/ 繊維補強セメント系部材
2 引張強力のより大きな長縁、維
3 引張強力のよシ小さな長繊維
Ll 引張強力のよシ大きな長繊維の中立軸からの距
離
L2 引張強力のよシ小さな長繊維の中立軸からの距
離
出 願 人 三菱化成工業株式会社
代 理 人 弁理士 要否用 −N斉一〜l/+
)
昂1 図
第2回
天 3 巳
t−旬と
第4図
たり呼
遁す図
曲け゛友B力皮(k5/cm)Figure 1 is a plan view and cross section of liR, a reinforced cement-based member. Figures 2 to 2 are diagrams for explaining load-deflection curves in bending tests of fiber-reinforced cement-based members in the present invention. FIG. J-1 shows bending stress-deflection curves during bending tests of fiber-reinforced cement-based members in Examples and Comparative Examples of the present invention. / Fiber-reinforced cement-based member 2 Long edges with higher tensile strength, fibers 3 Long fibers with lower tensile strength Ll Distance from the neutral axis of long fibers with higher tensile strength L2 Long fibers with lower tensile strength Distance from neutral axis Applicant Mitsubishi Chemical Industries, Ltd. agent Patent attorney Necessity -N uniform ~ l/+
) Ko 1 Figure 2nd Heaven 3 Snake T-Shun and Figure 4 Tariyuki Kurezu Tomo B Rikihide (k5/cm)
Claims (4)
て、該部材の曲げ応力の中立軸に対し、引張応力が作用
する領域に、引張強力の異なる長繊維を該部材の引張応
力を負担するよう少なくとも実質的に二層以上配設し、
かつ引張強力のより大きな長繊維を、長繊維配設位置の
うち中立軸により近い位置に配設したことを特徴とする
繊維補強セメント系部材。(1) A fiber-reinforced cement-based member that is subjected to bending stress, in which long fibers with different tensile strength are used to bear the tensile stress of the member in the region where tensile stress acts with respect to the neutral axis of the bending stress of the member. At least substantially two or more layers are arranged so that
A fiber-reinforced cement-based member characterized in that long fibers with greater tensile strength are arranged at a position closer to the neutral axis among the long fiber arrangement positions.
維の引張強力が該中立軸により遠い位置に配設される長
繊維の引張強力の1.2倍以上であることを特徴とした
特許請求の範囲第1項の部材。(2) The tensile strength of the long fibers arranged closer to the neutral axis of the member is 1.2 times or more the tensile strength of the long fibers arranged further away from the neutral axis. The member according to claim 1.
請求の範囲第1項もしくは第2項の部材。(3) The member according to claim 1 or 2, wherein the long fibers have different elongations at break.
ラス繊維またはビニロン繊維であることを特徴とする特
許請求の範囲第1項記載の部材。(4) The member according to claim 1, wherein the long fibers are carbon fibers, aramid fibers, alkali-resistant glass fibers, or vinylon fibers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14454886A JPH0768740B2 (en) | 1986-06-20 | 1986-06-20 | Fiber reinforced cement-based material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14454886A JPH0768740B2 (en) | 1986-06-20 | 1986-06-20 | Fiber reinforced cement-based material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63552A true JPS63552A (en) | 1988-01-05 |
JPH0768740B2 JPH0768740B2 (en) | 1995-07-26 |
Family
ID=15364853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14454886A Expired - Lifetime JPH0768740B2 (en) | 1986-06-20 | 1986-06-20 | Fiber reinforced cement-based material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0768740B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0396554A (en) * | 1989-09-08 | 1991-04-22 | Oriental Kensetsu Kk | Non-corrosive reinforcing member embedding prestressed concrete member |
JP2016186132A (en) * | 2015-03-27 | 2016-10-27 | 東レ・デュポン株式会社 | Polyparaphenylene terephthalamide fiber composite body |
-
1986
- 1986-06-20 JP JP14454886A patent/JPH0768740B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0396554A (en) * | 1989-09-08 | 1991-04-22 | Oriental Kensetsu Kk | Non-corrosive reinforcing member embedding prestressed concrete member |
JP2016186132A (en) * | 2015-03-27 | 2016-10-27 | 東レ・デュポン株式会社 | Polyparaphenylene terephthalamide fiber composite body |
Also Published As
Publication number | Publication date |
---|---|
JPH0768740B2 (en) | 1995-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4684567A (en) | Reinforced structural material and reinforced fibrous inorganic structure reinforced therewith | |
US5613334A (en) | Laminated composite reinforcing bar and method of manufacture | |
EP2641882A2 (en) | Inorganic matrix-fabric system and method | |
JPS62176950A (en) | Synthetic material reinforcing element for reinforced concrete, reinforced concrete and manufacture | |
US4810552A (en) | Tension chord made of hydraulically setting masses | |
Li et al. | Potential use of strain hardening ECC in permanent formwork with small scale flexural beams | |
US11542197B2 (en) | Textile-reinforced cement composite for suppressing occurrence of slipping and crack and method of manufacturing the same | |
Esmaeili et al. | Effect of different matrix compositions and micro steel fibers on tensile behavior of textile reinforced concrete | |
JPS63552A (en) | Fiber reinforced cementicious member | |
JPS63551A (en) | Long fiber reinforced cementicious member | |
WO2019162390A1 (en) | Strand in glass and/or basalt fibers for prestressed concrete | |
KR101686894B1 (en) | A concrete structures methode using reinforcing fibers | |
EP3517515B1 (en) | Fiber bundle for reinforcement of a cementitious matrix, its uses and method of obtention | |
JPS6312785A (en) | Rod material | |
KR101016004B1 (en) | Polyamide fiber for reinforcing concrete | |
IL104317A (en) | Metal fiber mat reinforced composites | |
JP2020124918A (en) | Concrete reinforcement material, concrete structure having concrete reinforcement material, and method for producing the same | |
Naaman et al. | Ferrocement with fiber reinforced plastic meshes: preliminary investigation | |
JPS60119848A (en) | Fiber reinforced concrete and its constructin | |
JPS63151749A (en) | Long fiber reinforced composite member | |
JPH0520537B2 (en) | ||
JPH0726343Y2 (en) | Carbon fiber reinforced inorganic board | |
JP2872282B2 (en) | Carbon fiber reinforcing material, method for producing the same, and hydraulic composite material using the same | |
JPS62241861A (en) | Manufacture of inorganic product | |
Okazaki | Properties and applications of vinylon FRP rod (CLATEC ROD) |