JPS6355182A - Glassy carbon coated body - Google Patents

Glassy carbon coated body

Info

Publication number
JPS6355182A
JPS6355182A JP61198061A JP19806186A JPS6355182A JP S6355182 A JPS6355182 A JP S6355182A JP 61198061 A JP61198061 A JP 61198061A JP 19806186 A JP19806186 A JP 19806186A JP S6355182 A JPS6355182 A JP S6355182A
Authority
JP
Japan
Prior art keywords
graphite
glassy carbon
base material
coating
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61198061A
Other languages
Japanese (ja)
Other versions
JPH0224794B2 (en
Inventor
寺崎 隆一
征彦 中島
和己 野澤
陽一 尾形
佐藤 新世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP61198061A priority Critical patent/JPS6355182A/en
Publication of JPS6355182A publication Critical patent/JPS6355182A/en
Publication of JPH0224794B2 publication Critical patent/JPH0224794B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体の製造工程におAて使用されるサセプタ
ー、黒鉛ヒーター等の半導体処理治具の構成材料として
用いられるガラス状炭素被覆体に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a glassy carbon coating used as a constituent material of semiconductor processing jigs such as susceptors and graphite heaters used in the semiconductor manufacturing process A. .

〔従来の技術〕[Conventional technology]

サセプター、黒鉛ヒーターなどはシリコンなどの半導体
を製造する際に欠くことのできなhものである。例えば
、サセプターは高純度のシリコン基板等の製品に接触す
る之め、その製品を汚染しないと云う特性が要求される
。又高温における塩化水素雰囲スての1酎エツチング性
、はぼ1200°Cまでの繰返し使用に術える耐熱衝掌
性も要求される。
Susceptors, graphite heaters, and the like are indispensable components when manufacturing semiconductors such as silicon. For example, since the susceptor comes into contact with a product such as a high-purity silicon substrate, it is required to have the property of not contaminating the product. It is also required to have etching properties in a hydrogen chloride atmosphere at high temperatures and heat impact resistance that can be used repeatedly up to 1200°C.

更に、チョクラルスキー法などで使用される黒鉛ヒータ
ーは、その加熱温度が1000°Cを包えるので、黒鉛
中に含まれる金属などの不純物が揮散し易く、シリコン
などの半導体製品を汚染する欠点があった。
Furthermore, since the graphite heater used in the Czochralski method has a heating temperature of 1000°C, impurities such as metals contained in the graphite easily volatilize, which has the disadvantage of contaminating semiconductor products such as silicon. was there.

この欠点を補うものとして、従来から炭素成形品、若く
はセラミックス成形品の上に化学気相蒸着(CVD )
法による炭化ケイ素を被覆した被覆体が使用されている
(g考文献;特開昭56−10921号公報)。
To compensate for this drawback, chemical vapor deposition (CVD) has traditionally been applied to carbon molded products, or even ceramic molded products.
A coated body coated with silicon carbide by a method is used (see Japanese Patent Application Laid-open No. 10921/1983).

しかし、炭化ケイ素被覆体は炭化ケイ素皮模と炭素若し
くはセラミックスとの熱膨張係数が異なっているため、
繰返し使用による熱サイクルにより皮膜にクラックが発
生し、そのクラックを通して炭素若しくけセラミックス
成型品から不純物が浸み出し、製品を汚染する欠点を有
していた。
However, silicon carbide coatings have different thermal expansion coefficients between the silicon carbide skin and carbon or ceramics.
Cracks occur in the coating due to thermal cycles caused by repeated use, and impurities seep out from the carbon or cage ceramic molded product through the cracks, contaminating the product.

これ等の欠点を克服する手段として、炭素又はセラミッ
クス成形品にガラス状炭素を被覆する提案がある(特公
昭52−39684号公報)。
As a means to overcome these drawbacks, there is a proposal to coat carbon or ceramic molded products with glassy carbon (Japanese Patent Publication No. 39684/1984).

この方法で得られるプラス状炭素被グ体は上記炭化ケイ
素被覆体と比較して皮膜の均一性が優れており、更に皮
膜の厚味が10μmと炭化ケイ素皮膜の約100μmと
比較して薄めため、熱サイクルによるクラック、剥離が
生じ堆いという数々の利点を有している。
The positive carbon coating obtained by this method has superior coating uniformity compared to the silicon carbide coating described above, and the coating has a thickness of 10 μm, which is thinner than the approximately 100 μm of the silicon carbide coating. It has a number of advantages, such as cracking and peeling caused by thermal cycling.

しかしながら、上記のガラス状炭素被覆体は膜厚が薄力
が故に、下地の黒鉛基材の影響を受は易く、黒鉛基材の
物性:直の、バラツキにより被覆が十分に行なわれず、
ピンホール等が発生し易い欠点があった。
However, because the above-mentioned glassy carbon coating is thin, it is easily affected by the underlying graphite base material, and due to variations in the physical properties of the graphite base material, the coating is not performed adequately.
There was a drawback that pinholes were likely to occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の欠点を解消し、ピンホールがきわめて少
ないガラス状炭素被覆体を提供することを目的としてい
る。
The object of the present invention is to eliminate the above-mentioned drawbacks and provide a glassy carbon coating with extremely few pinholes.

〔問題点を解決する之めの手段〕[Means for solving problems]

本発明者等は鋭童研究を重ねた結果、上記のピンホール
の有無と、黒鉛基材との間に明確な相関があることを把
握し、ピンホールの発生を抑えるには黒鉛基材を厳選す
れば良いことが判明し友。
As a result of repeated research, the present inventors have found that there is a clear correlation between the presence or absence of pinholes and the graphite base material. It turns out that you just have to be selective.

すなわち、本発明は黒鉛基材上知がラス状炭素を被覆し
てなるガラス状炭素被覆体において、前記黒鉛基材は、
かさ密度が1.6597cm3以上であり、黒鉛の粒径
が100μmlJ、下であフ、かつ、開気孔率と全気孔
率との比が0.1以上0.8以下であることを特徴とす
るガラス状炭素被覆体である0本発明のガラス状炭素被
覆体は有機重合体の不完全熱分解生成物(以下、PC物
質という)を溶剤に溶かしt溶液に、必要ならば無機質
粉末を配合してスラリーとし、該スラリーを黒鉛基材の
表面に塗布し焼成することにより得られる。
That is, the present invention provides a glassy carbon coated body in which a graphite base material is coated with carbon laths, the graphite base material comprising:
The bulk density is 1.6597 cm3 or more, the graphite particle size is 100 μmlJ or less, and the ratio of open porosity to total porosity is 0.1 or more and 0.8 or less. The glassy carbon coating of the present invention is a glassy carbon coating made by dissolving an incomplete thermal decomposition product of an organic polymer (hereinafter referred to as PC substance) in a solvent and adding an inorganic powder to the solution if necessary. It is obtained by applying the slurry to the surface of a graphite base material and firing it.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

この発明で用いる有機重合体は、塩化ビニル樹脂、ポリ
ビニルアルコール、油溶性フェノール樹脂、アルキルフ
ェノール樹脂、塩素化/マラフイン、塩素化ポリプロピ
レン、酢酸ビニル樹脂ま几はポリカーゴネート樹脂が好
適である。
The organic polymer used in this invention is preferably vinyl chloride resin, polyvinyl alcohol, oil-soluble phenol resin, alkylphenol resin, chlorinated/marafine, chlorinated polypropylene, vinyl acetate resin or polycargonate resin.

とくに不浸透性炭素被覆を施した物品の使途が半導体製
造用サセプターの場合には、不純物の面から上記のうち
塩化ビニル樹脂がとりわけ好ましい0 これら有機重合体の熱分解はその種類を問わず粒状品又
は粉末を、不活性雰囲気例えばアルゴンガス中で200
〜500”Cで30分以上加熱して行う。しかしながら
、完全に炭化させないほうが好ましAoこの加熱の望ま
しい温度・時間は加熱装置および有機重合体の種類によ
って異なるが、分解生成物の炭素原子と水素原子の重量
比(C/H比)が結果的に10〜25:1の範囲に入る
よう実験により定めればよい0 このようにして得られるピッチ状物質(以下、PC物質
という)に瘍剤を加えて磐かし、濃度200〜500 
ji/lのm液?作る。溶剤は溶解性の点から脂肪族塩
素系の溶剤が好ましい。不容解物が残ればろ過して不溶
解物を覗除くO上記溶液に配合する耐熱性無機質粉末(
ぽ下、骨材という)とは黒鉛、炭化珪素、アルミナなど
の物質であり、その形態は直径が50μm以下の球形ま
之は不定形でよく、ま念、長径500μm以下の棒状ま
之は繊維状でもよい。骨材として前記有機重合体を炭化
し之ものを用いると、最終的に被覆層内がほぼ均質とな
るtめ不浸遡性の点でとくに好ましい。その平均粒径は
20μm1g下になるよう出来るだけ細かく粉砕したほ
うが塗布層の表面状態の点で好ましい。このようにして
得られた溶液を黒鉛基材に塗布する。
In particular, when the article coated with impermeable carbon is used as a susceptor for semiconductor manufacturing, vinyl chloride resin is particularly preferred from the viewpoint of impurities. Regardless of the type, thermal decomposition of these organic polymers results in granular product or powder in an inert atmosphere, e.g. argon gas, for 200 min.
This is done by heating at ~500"C for 30 minutes or more. However, it is preferable not to completely carbonize. The desired temperature and time for this heating vary depending on the heating device and the type of organic polymer, but the carbon atoms of the decomposition products and The weight ratio of hydrogen atoms (C/H ratio) may be determined by experiment to fall within the range of 10 to 25:1. Add the agent and stir to a concentration of 200 to 500.
ji/l m liquid? make. The solvent is preferably an aliphatic chlorine solvent from the viewpoint of solubility. If any undissolved matter remains, filter it to remove it. Heat-resistant inorganic powder (
(also referred to as aggregate) is a substance such as graphite, silicon carbide, or alumina, and its form may be spherical or irregular with a diameter of 50 μm or less, and rod-shaped with a major diameter of 500 μm or less is fiber. It may be in the form of It is particularly preferable to use carbonized organic polymers as the aggregate, since the final coating layer will be substantially homogeneous and will not penetrate back into the coating layer. From the viewpoint of the surface condition of the coating layer, it is preferable to grind the particles as finely as possible so that the average particle size is less than 20 μm per gram. The solution thus obtained is applied to a graphite substrate.

このとき特に留意すべきことは黒鉛基材の選択である。At this time, particular attention should be paid to the selection of the graphite base material.

即ち、基材のかさ密度が1,659 /cr113を下
まわると、全体の気孔率が大きくなジすぎて、塗布が均
一には行なわれず、ピンホールが発生し易くなる。
That is, if the bulk density of the base material is less than 1,659/cr113, the overall porosity will be too large, and the coating will not be uniform, making pinholes likely to occur.

更に、黒鉛の粒径が100μmを越えると、友とえかさ
密度が1.6597cm3以上であったとしても、非常
に大きな径の開気孔が存在する確率が大きくなり、これ
もまた塗布が均一に行なわれない原因となる。
Furthermore, when the particle size of graphite exceeds 100 μm, even if the graphite density is 1.6597 cm3 or more, there is a high probability that open pores with a very large diameter will exist, which also prevents uniform coating. This will cause it not to be carried out.

又、上記の2つの特性を有していても開気孔率と、全気
孔率の比が0.1より小さいと、PC物質を塗布し焼成
した際に、黒鉛基材のアンカー効果が発現し雅く、ガラ
ス状炭素皮1@の剥離が生じて好ましくない。前記比が
0゜8を越える場合は、やはり、PC物質の塗布が困雉
となり、これもピンホールの原因となる。
In addition, even if it has the above two characteristics, if the ratio of open porosity to total porosity is smaller than 0.1, the anchoring effect of the graphite base material will appear when the PC material is applied and fired. Unfortunately, the glassy carbon skin 1@ peels off, which is undesirable. If the ratio exceeds 0.8, it will still be difficult to apply the PC material, which will also cause pinholes.

〔実施列〕[Implementation row]

以下、実施例および比較例により本発明を具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1〜7 表に示すように、かさ密度が1.65g/cm3以上で
あり、黒鉛の粒径が100μm以下であり、かつ、開気
孔率と全気孔率との比が0.1以上0.8以下である黒
鉛基材を用意し、これを10口×50cmx1cInの
板状に加工した。つぎに、塩化ビニル樹脂(を気化学工
業(抹)製5s−110)をアルデフ雰囲気下、380
℃の温度で40分間、不完全な熱分解を行なった。
Examples 1 to 7 As shown in the table, the bulk density is 1.65 g/cm3 or more, the graphite particle size is 100 μm or less, and the ratio of open porosity to total porosity is 0.1 or more. A graphite base material having a diameter of 0.8 or less was prepared and processed into a plate shape of 10 holes x 50 cm x 1 cIn. Next, vinyl chloride resin (5S-110 manufactured by Keikagaku Kogyo Co., Ltd.) was heated at 380° C. under an Aldef atmosphere.
Incomplete pyrolysis was carried out for 40 minutes at a temperature of .degree.

得られ九PC物質を200 g/lの割合でトリクンン
に溶解して答液とした。前記黒鉛基材をこの啓液に浸漬
することによって黒鉛基本上にPC物質の塗膜を設は之
The obtained nine PC substances were dissolved in Trikunun at a ratio of 200 g/l to prepare a solution. By immersing the graphite base material in this liquid, a coating film of the PC material is provided on the graphite base.

これを真空中で@度1200℃で45分間の焼成を行な
い、ガラス状炭素被覆体の試験片を得た。
This was fired in a vacuum at 1200°C for 45 minutes to obtain a test piece of a glassy carbon coated body.

これら試験片のガラス状炭素被嘆の1厚さはいずれも5
μmであつ之。
The thickness of each glassy carbon layer in each of these test pieces was 5
Atsuno in μm.

得られた試験片の表裏全回を100倍の光学顕微鏡で観
察することによりピンホールの数を算え友。その結果、
表に示すとおジビンホールは皆無であった。
The number of pinholes can be calculated by observing the front and back sides of the obtained test piece using a 100x optical microscope. the result,
As shown in the table, there were no large holes.

比較列1〜7 表に示すとおり、比f!2例1および6は黒鉛基材のか
さ密度が1.65.97cm3未満のものを用いた。
Comparison columns 1-7 As shown in the table, the ratio f! In Examples 1 and 6, a graphite base material having a bulk density of less than 1.65.97 cm3 was used.

比較例2.6および7は黒鉛基材中に粒径が100μm
を越える大きな黒鉛粒子分含むものを用いた。
Comparative Examples 2.6 and 7 have a particle size of 100 μm in the graphite base material.
A material containing large graphite particles exceeding .

比較例6は黒鉛基材の開気孔率と全気孔率の比が0.1
未嘴のものを用いた。比較例4および5は黒8基材の開
気孔率と全気孔率の比が0.8を越えるものを用いt。
In Comparative Example 6, the ratio of open porosity to total porosity of the graphite base material was 0.1.
I used one without a beak. Comparative Examples 4 and 5 used Black 8 base materials in which the ratio of open porosity to total porosity exceeded 0.8.

上記の外は実施列と違いはなく、実施例1〜7に準拠し
て行なった。その結果、表に示すとおり試験片1枚当9
1〜20個のピンホールが観察された。
Except for the above, there was no difference from the actual series, and the experiments were carried out in accordance with Examples 1 to 7. As a result, as shown in the table, 9
1 to 20 pinholes were observed.

なお、上記実権列および比較例におけるかさ密度、最大
粒径および開気孔率と全気孔率の比は下記の方法により
測定し九〇 かさ密度の測定法・・・まず前記黒鉛基材を温度110
±5℃の空気浴中で約2時間渫ち、これをデシケータ中
で室温まで冷却した後、ただちに、重さW C&)をは
かった。次に、黒鉛基材の寸法をはかり、体積V(cI
n3)を計算した。次にがさ密度=w7vの式からかさ
密度を計算した。
In addition, the bulk density, maximum particle diameter, and ratio of open porosity to total porosity in the above-mentioned actual series and comparative examples were measured by the following method.
After being incubated in an air bath at ±5° C. for about 2 hours and cooled to room temperature in a desiccator, the weight was immediately measured. Next, the dimensions of the graphite base material are measured, and the volume V (cI
n3) was calculated. Next, the bulk density was calculated from the formula: bulk density=w7v.

最大粒径の測定法・・・まず、黒鉛基材表面をバフ境面
研磨し友。久に100倍の偏光顕微暁により、表面を観
察し、無作為に選んだ20個の結晶粒の長軸と短軸の和
を2で割った直をそれぞれの粒径とした。この内、その
直が最大となるものを、最大粒径とした。
How to measure the maximum particle size: First, the surface of the graphite base material is buffed and polished. The surface was observed under a polarized light microscope at a magnification of 100 times, and the diameter of each grain was determined by dividing the sum of the long and short axes of 20 randomly selected crystal grains by 2. Among these, the one with the largest diameter was defined as the maximum particle size.

開気孔率と全気孔率との比の測定法・・・まず、黒鉛の
真比重を2.26と仮定。次に前記黒鉛材のかさ凹度を
上記の方法で求めfc後に、20±5℃の水中に5時間
以上保持し、これを直径1 mx以下の針金で水中につ
るしたまま重量を求め、針金の重量を差引いた飽水水中
重責(w2.9 )を求めた。
How to measure the ratio of open porosity to total porosity...First, assume that the true specific gravity of graphite is 2.26. Next, the bulk concavity of the graphite material was determined by the above method, and after fc, it was kept in water at 20 ± 5°C for 5 hours or more, and the weight was determined while it was suspended in water with a wire of 1 mx or less in diameter. The weight in saturated water (w2.9) was calculated by subtracting the weight of the sample.

つAで、黒鉛基材を水中から取出し、湿布で手早く表面
をぬぐい水滴を除去しt後、飽水型t (W3、りを求
めた。黒鉛基材の乾燥重量をWl (g)とすると水中
見掛比ji dWはdw = W1/ (W3− W2
 )となる。
At step A, the graphite substrate was taken out of the water, and the surface was quickly wiped with a compress to remove water droplets. After t, the saturated type t (W3, ri) was determined. Let the dry weight of the graphite substrate be Wl (g). The underwater apparent ratio ji dW is dw = W1/ (W3- W2
).

次に、開気孔率は、かさ比重をdとすると、(dw−d
)/aw x 100 (%)で与えられる。
Next, the open porosity is (dw-d
)/aw x 100 (%).

又、全気孔率はd/2.26X100(%)で与えられ
るから、開気孔率と、全気孔率の比はとなる。
Also, since the total porosity is given by d/2.26×100 (%), the ratio of the open porosity to the total porosity is as follows.

〔発明の効果〕〔Effect of the invention〕

本発明のガラス状炭素被覆体はピンホールがな−ので、
黒M1基材から不純物が浸み出してくるおそれがなく、
とくに半導体処理治具の構成材料として適している。
Since the glassy carbon coating of the present invention has no pinholes,
There is no risk of impurities seeping out from the black M1 base material,
It is particularly suitable as a constituent material for semiconductor processing jigs.

Claims (1)

【特許請求の範囲】[Claims] 黒鉛基材上にガラス状炭素を被覆してなるガラス状炭素
被覆体において、前記黒鉛基材は、かさ密度が1.65
g/cm^3以上であり、黒鉛の粒径が100μm以下
であり、かつ、開気孔率と全気孔率との比が0.1以上
0.8以下であることを特徴とするガラス状炭素被覆体
In the glassy carbon coated body formed by coating glassy carbon on a graphite base material, the graphite base material has a bulk density of 1.65.
g/cm^3 or more, the graphite particle size is 100 μm or less, and the ratio of open porosity to total porosity is 0.1 or more and 0.8 or less. Covering body.
JP61198061A 1986-08-26 1986-08-26 Glassy carbon coated body Granted JPS6355182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198061A JPS6355182A (en) 1986-08-26 1986-08-26 Glassy carbon coated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198061A JPS6355182A (en) 1986-08-26 1986-08-26 Glassy carbon coated body

Publications (2)

Publication Number Publication Date
JPS6355182A true JPS6355182A (en) 1988-03-09
JPH0224794B2 JPH0224794B2 (en) 1990-05-30

Family

ID=16384877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198061A Granted JPS6355182A (en) 1986-08-26 1986-08-26 Glassy carbon coated body

Country Status (1)

Country Link
JP (1) JPS6355182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450185A (en) * 1990-06-20 1992-02-19 Denki Kagaku Kogyo Kk Glassy carbon-coated product
JP2021508659A (en) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process for manufacturing silicon carbide coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450185A (en) * 1990-06-20 1992-02-19 Denki Kagaku Kogyo Kk Glassy carbon-coated product
JP2021508659A (en) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process for manufacturing silicon carbide coating

Also Published As

Publication number Publication date
JPH0224794B2 (en) 1990-05-30

Similar Documents

Publication Publication Date Title
WO2012102343A1 (en) Silicon melt contacting member and process for production thereof, and process for production of crystalline silicon
US4816338A (en) Glassy carbon-coated article
JPH1179846A (en) Silicon carbide formed product
EP1178132B1 (en) SiC material and method for manufacturing same
JP3930920B2 (en) Plasma-fluorine-alumina ceramic material with low particle generation and manufacturing method
JPS6355182A (en) Glassy carbon coated body
TWI665729B (en) Critical chamber component surface improvement to reduce chamber particles
JPS6241705A (en) Production of carbonaceous material coated with glassy carbon
JP2000302576A (en) Graphite material coated with silicon carbide
JPS6374995A (en) Graphite material for epitaxy
CN113912105B (en) Method for preparing and transferring ultrathin large-size lead iodide nanosheets
JPH0246550B2 (en)
JPH0723271B2 (en) Glassy carbon coated article
JPH0753635B2 (en) Glassy carbon coated susceptor and method for producing the same
JPH0666265B2 (en) Susceptor for semiconductor vapor phase growth
JP2527666B2 (en) Glassy carbon coated article
JPS6335478A (en) Glassy carbon coating material and manufacture
JP3262696B2 (en) Silica glass member having glassy carbon coating
JP2620075B2 (en) Graphite material for Ga compound single crystal pulling device
JPS62292611A (en) Production of glassy carbon film
JP3375593B2 (en) Method for diffusing impurities in semiconductor silicon substrate
JPH0154432B2 (en)
JPH0223510B2 (en)
JPS62202881A (en) Formation of impermeable carbon coating
JPH0455387A (en) Vitreous carbon-coated article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term