JPS6355131A - Apparatus for producing fluorine-containing glass - Google Patents

Apparatus for producing fluorine-containing glass

Info

Publication number
JPS6355131A
JPS6355131A JP19898086A JP19898086A JPS6355131A JP S6355131 A JPS6355131 A JP S6355131A JP 19898086 A JP19898086 A JP 19898086A JP 19898086 A JP19898086 A JP 19898086A JP S6355131 A JPS6355131 A JP S6355131A
Authority
JP
Japan
Prior art keywords
glass
fluorine
furnace
heating
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19898086A
Other languages
Japanese (ja)
Inventor
Yoichi Ishiguro
洋一 石黒
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19898086A priority Critical patent/JPS6355131A/en
Publication of JPS6355131A publication Critical patent/JPS6355131A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a fluorine-containing glass having controlled composition and free from bubbles, by heating and clarifying a porous glass at a high temperature in a fluorine-containing atmosphere using a furnace separately furnished with a furnace for fluorination and a furnace for clarification along the moving direction of the porous glass. CONSTITUTION:A porous glass 1 which is an aggregate of glass soot is attached to a rotatable and vertically movable shaft 2 and is lowered in a quartz core tube 6 in an electric furnace 3 under rotation while supplying a gaseous mixture of SiF4 and He through a gas inlet port 7 into the core tube 6. In the course of the lowering operation, the porous glass 1 is heated at about 1,300 deg.C with a heater 4 to effect the absorption of F into the porous glass and to form a bubble-free glass. The heat-treated glass is heated at about 1,650 deg.C with a heater 5 having a length of about 1/3 of the length of the heater 4 to clarify the F- doped glass. A glass composition having precisely controlled F-content suitable for optical fiber preform can be produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス微粒子が集合してなる多孔質ガラス体に
フッ素添加処理・透明化処理を施して、フッ素を含むガ
ラスを製造する装置に関する。本発明の装置で得られる
フッ素を含むガラスは高純度であり、かつ、フッ素の含
有′IKを精密に制御できるため、元ファイバ用のガラ
スとして使用するのに適している。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for manufacturing fluorine-containing glass by subjecting a porous glass body formed by aggregation of fine glass particles to fluorine addition and transparency treatment. The fluorine-containing glass obtained by the apparatus of the present invention has high purity and the fluorine content 'IK can be precisely controlled, so it is suitable for use as a glass for original fibers.

〔従来の技術〕[Conventional technology]

ガラス微粒子が集合してなる多孔質ガラス体にフッ素添
加処理・透明化処理を施してフッ素を含むガラスを製造
する装置としては、多孔質ガラス体の長さと同程度また
はそれ以上の均熱部分を持ち、その中に多孔質ガラス体
を入れ、温度をしだいに上昇させていくことによりフッ
素添加処理・透明化処理を行なういわゆる均熱炉、及び
−足温度に加熱した高温部の中を多孔質ガラス体を通過
させ、フッ素添加処理・透明化処理を行なういわゆるゾ
ーン炉が知られているO 〔発明が解決しようとする問題点〕 従来の装置のうち均熱炉は多孔質ガラス体全体を同時に
加熱処理するため、多孔質ガラス母材に短時間で均一に
フッ素を添加することができる。第2図は均熱炉を用い
て得られたフッ素添加ガラスの径方向フッ素含有it(
任意単位)を示すグラフである。
Equipment for producing fluorine-containing glass by subjecting a porous glass body made of aggregation of glass particles to fluorine addition and transparency treatment requires a soaking section with a length equal to or longer than the length of the porous glass body. A so-called soaking furnace is used to carry out fluoridation and transparency treatment by placing a porous glass body inside and gradually raising the temperature. A so-called zone furnace is known in which the glass body is passed through and subjected to fluoridation treatment and transparency treatment. Since heat treatment is performed, fluorine can be uniformly added to the porous glass base material in a short time. Figure 2 shows the radial fluorine content of the fluorine-containing glass obtained using a soaking furnace.
(arbitrary unit).

ところが、この均熱炉では透明化時には多孔質ガラス母
材の外周部から透明化が始まるので、内部の気泡の残留
をさけることが難かしい、また、炉内に内装した炉芯管
(石英製)が変形するため、温度を1550℃以上に上
げることが難かしいという問題があった。
However, in this soaking furnace, transparency begins from the outer periphery of the porous glass base material, so it is difficult to avoid residual air bubbles inside the furnace. ) is deformed, so there was a problem that it was difficult to raise the temperature above 1550°C.

一方、ゾーン炉は多孔質ガラス体の一端から多端に向け
て断面毎に透明化が起こるため内部に気泡は残りに<<
、また、加熱される部分が限られるため炉芯管の変形を
余り気にせずに温度を上げることができるという利点を
有しているが、加熱処理が一部分ずつなされるため、全
体を均一にフッ素添加するにはトラバース速度を下げね
ばならず、長い時間が必要である。第3図はゾーン炉中
を多孔5tガラス体を高速でトラバースさせて得たフッ
素添加ガラスの径方向におけるフッ素含有量(任意単位
)を示すグラフであり、ガラス表面から中心部に向かっ
てフッ素官有量が低下していることがわかる。
On the other hand, in a zone furnace, the porous glass body becomes transparent in each cross section from one end to the other, so no air bubbles remain inside.
Also, since the heated area is limited, the temperature can be raised without worrying too much about the deformation of the furnace core tube, but since the heating process is done one part at a time, it is possible to heat the whole part uniformly. Fluoridation requires a reduced traverse speed and takes a long time. Figure 3 is a graph showing the fluorine content (arbitrary units) in the radial direction of fluorine-added glass obtained by traversing a porous 5t glass body through a zone furnace at high speed. It can be seen that the amount is decreasing.

不発EAはこのような従来装置の問題点を解決して、所
望量のフッ素が均一に添加され、かつ気泡残留等のない
高品質なガラスを効率よくかつ、炉芯管の損傷も少なく
製造できるfT規な装rILfic提供するものである
Unexploded EA solves these problems with conventional equipment and can efficiently produce high-quality glass with the desired amount of fluorine added uniformly and without residual bubbles, and with less damage to the furnace core tube. It provides fT-standard style rILfic.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はガラス微粒子が集合してなる多孔質ガラス体を
加熱炉の炉芯管中を通過させてフッ素化合物を含有する
雰囲気ガス中で高温処理することによりフッ素の添加と
透明化を行ない、フッ素を含むガラスを製造する装置に
おいて、上記多孔質ガラス体の移動方向に沿って加熱部
分の長いフッ素添加用加熱炉と該フッ素添加用加熱炉よ
ジ短かい透明化用加熱炉を記載の順に配置してなるフッ
素を含むガラスの製造装置である。
In the present invention, a porous glass body made up of aggregation of glass particles is passed through a core tube of a heating furnace and treated at high temperature in an atmospheric gas containing a fluorine compound, thereby adding fluorine and making it transparent. In an apparatus for manufacturing glass containing a glass material, a fluorine addition heating furnace having a long heating section and a transparency heating furnace having a shorter heating portion than the fluoride addition heating furnace are arranged in the stated order along the moving direction of the porous glass body. This is a manufacturing device for glass containing fluorine.

本発明の装置においては、フッ素添加用加熱炉の加熱部
分の長さが透明化用加熱炉の加熱部分の長さの3倍以上
でお夕、両者を貫通する高純度炉芯管を有しており、該
炉芯管内の雰囲気ガスを透明化用加熱炉からフッ素添加
用加熱炉に向かって流すように雰囲気ガス導入部及び排
出部を設けることが特に好ましい。
In the apparatus of the present invention, the length of the heating part of the heating furnace for fluoridation is at least three times the length of the heating part of the heating furnace for transparency, and the apparatus has a high-purity furnace core tube that penetrates both. It is particularly preferable to provide an atmospheric gas introduction part and a discharge part so that the atmospheric gas in the furnace core tube flows from the transparency heating furnace to the fluorine addition heating furnace.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は、本発明装置の実施態様を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the apparatus of the present invention.

第1図において、1はガラス微粒子の積層体である多孔
質ガラス体で、回転かつ上下動可能な軸2に取り付けら
れている。3は電気炉でカーボン等の発熱体(ヒータ)
4及び5を備えている。4は加熱部が長いフッ素添加用
のヒータ、5は加熱部が短かい透明化用のヒータであフ
、ヒータ4はヒータ5の3倍の長さである06が炉3内
に内装された炉芯管であって、石英又はカーボン展の一
体の筒で作られている。
In FIG. 1, reference numeral 1 denotes a porous glass body that is a laminate of glass particles, and is attached to a shaft 2 that can rotate and move up and down. 3 is an electric furnace with a heating element (heater) such as carbon
4 and 5. 4 is a heater for fluorine addition with a long heating section, 5 is a heater for transparency with a short heating section, heater 4 is three times as long as heater 5, and 06 is installed inside the furnace 3. The furnace core tube is made of a one-piece quartz or carbon-filled tube.

7は炉芯管内雰囲気ガスの導入部であり、8Viその排
出部である。
Reference numeral 7 denotes an introduction part for atmospheric gas in the furnace core tube, and 8Vi denotes its discharge part.

上記のように構成された加熱炉のヒータ4をフッ素添加
処理に適当な温度、例えば1300℃、に保持し、炉芯
管内雰囲気ガス導入部から当該処理工程に最適な雰囲気
ガスを導入し、この中へ多孔質ガラース体1を回転しつ
つ下降させていく。フッ素添加用ヒータ4は長いため、
多孔質ガラス体1は長時間フッ素添加に適した温度の下
で保持される。その結果相通程度トラバース速度を上け
ても多孔質ガラス体1に均一にフッ素を添加することが
できる。
The heater 4 of the heating furnace configured as described above is maintained at a temperature suitable for the fluorine addition treatment, for example, 1300°C, and the optimal atmospheric gas for the treatment process is introduced from the atmospheric gas introduction part in the furnace core tube. The porous glass body 1 is rotated and lowered into the interior. Since the fluorine addition heater 4 is long,
The porous glass body 1 is maintained at a temperature suitable for fluoridation for a long period of time. As a result, fluorine can be uniformly added to the porous glass body 1 even if the traverse speed is increased to a certain extent.

一方透明化用ヒータ5は短かい丸め、内装された炉芯管
6の加熱される部分が小さく、炉芯管6の変形を気にせ
ずに例えば1650℃程度に温度を上げることができる
。ヒータ5の長さが短かいためと、保持温度を高くとれ
ることの2つの理由から、多孔質ガラス体1は、はぼ長
手方向に順々と透明化していく。その結果、得られた透
明ガラス中に気泡が残りにくい。
On the other hand, the heater 5 for transparency is short and round, and the heated portion of the inner furnace core tube 6 is small, so that the temperature can be raised to, for example, about 1650° C. without worrying about deformation of the furnace core tube 6. The porous glass body 1 gradually becomes transparent in the longitudinal direction for two reasons: the length of the heater 5 is short and the holding temperature can be kept high. As a result, bubbles are less likely to remain in the resulting transparent glass.

本発明の装置において、フッ素添加用ヒータ4の長さは
透明化用ヒータ5の長さの3倍以上であることが好まし
い。これはフッ素添加速度と透明化速度のバランスをと
るためである。
In the apparatus of the present invention, the length of the fluorine addition heater 4 is preferably three times or more the length of the transparency heater 5. This is to balance the rate of fluorine addition and the rate of transparency.

また、透明化用加熱炉とフッ素添加用加熱炉を貫通する
炉芯管6としては高純度石英製炉芯管を使用することが
好ましく、これにより不純物に汚染されることなく、透
明ガラスを得ることができる。
Furthermore, it is preferable to use a high-purity quartz core tube as the furnace core tube 6 that passes through the heating furnace for transparency and the heating furnace for fluoridation, thereby obtaining transparent glass without being contaminated by impurities. be able to.

さらに、炉芯管内雰囲気を透明化炉側から、フッ素添加
炉側へ向って流すため、得られた透明ガラス母材には計
算値どお夕のフッ素が添加されるので、フッ素の添加t
を精密にコントロールすることができる。
Furthermore, since the atmosphere inside the furnace core tube flows from the clarifying furnace side to the fluoridation furnace side, the calculated amount of fluorine is added to the obtained transparent glass base material.
can be precisely controlled.

〔実施例〕〔Example〕

実施例1 第1図に示す構成の本発明装置を用い、多孔質ガラス体
からフッ素添加ガラスを製造した。
Example 1 Using the apparatus of the present invention having the configuration shown in FIG. 1, fluorine-doped glass was manufactured from a porous glass body.

石英炉心管としては「水」の含有量が特に少ない高純度
石英管を使用した。長さ45−のフッ素添加用ヒータ4
を1300℃に、また長さ15個の透明化用ヒータ5i
1650℃に保持し、雰囲気ガス導入部7よt) He
とSin、の混合ガスを導入し、その中へ外径120■
、長さ50cmの多孔質ガラス体を10■/分で下降さ
せていきフッ素添加・透明化を行なった。
A high-purity quartz tube with a particularly low water content was used as the quartz furnace tube. Fluorine addition heater 4 with length 45-
to 1300℃, and 15 long transparent heaters 5i
The temperature is maintained at 1650°C, and the atmospheric gas introduction section 7) He
Introduce a mixed gas of
A porous glass body having a length of 50 cm was lowered at a rate of 10 cm/min to perform fluorine addition and transparency.

得られた透明ガラス体にはフッ素が均一に添加されてい
た。同じ条件で100個の多孔質ガラス体をフッ素添加
・透明化した後の石英炉芯管は変形していなかった。
Fluorine was uniformly added to the obtained transparent glass body. The quartz furnace core tube was not deformed after fluoridation and transparency of 100 porous glass bodies under the same conditions.

実施例2 実施例1の装置を用い、中心に径12mの高純度ガラス
棒を有し、その外周にガラス微粒子が堆積して外径14
0露となった心細を持つ多孔質ガラス体を実施例1と同
様にしてフッ素添加・透明化した。
Example 2 Using the apparatus of Example 1, a high-purity glass rod with a diameter of 12 m was provided at the center, and glass fine particles were deposited on the outer periphery of the rod, resulting in an outer diameter of 14 m.
The porous glass body having a thin core with zero dew was fluoridated and made transparent in the same manner as in Example 1.

得られた透明ガラス体にはフッ素が均一に添加され、従
来法では残りやすかつ良心軸表面に残るもや状の気泡は
発生しなかった。
Fluorine was added uniformly to the obtained transparent glass body, and the mist-like bubbles that tend to remain and remain on the surface of the shaft did not occur in the conventional method.

また、得られた透明ガラスを直径25籠に延伸して長さ
120αのガラスロンドトシ、フッ素の含有it−プリ
フォームアナライザで測定したところ、全ての点でのフ
ッ素の含有量のばらつきは3%以内と極めてよく制御さ
れていた。
In addition, when the obtained transparent glass was stretched into a diameter 25 cage and measured using a fluorine-containing IT-preform analyzer using a glass iron plate with a length of 120α, the variation in fluorine content at all points was 3%. It was extremely well controlled.

〔発明の効果〕〔Effect of the invention〕

以上の説明及び実施例の結果から明らかなとおり、本発
明のフッ素を含むガラスの製造装置は気泡を含まぬ、フ
ッ素の含有量をffI密にコントロールしたガラスt−
ff造できるので、元ファイバ用母材の製造装置に適し
ている。また、炉芯管の変形が少ないので、ランニング
コストの低い点でも有利である0さらに炉心管として高
純度石英管を用いれば、不純物による汚染の少ない高品
質ガラスが得られる。
As is clear from the above explanation and the results of the examples, the apparatus for manufacturing fluorine-containing glass of the present invention is a glass t-glass containing no bubbles and having a closely controlled ffI fluorine content.
Since it can be used in FF manufacturing, it is suitable for manufacturing equipment for base materials for original fibers. Furthermore, since the furnace core tube is less deformed, it is advantageous in terms of low running costs.Furthermore, if a high purity quartz tube is used as the furnace core tube, high quality glass with less contamination by impurities can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフッ素金含むガラスの製造装置の実施
態様を説明する概略断面図、第2図及び第3図は従来装
置を用いた場合の、ガラスの径方向におけるフッ素含有
量を示すグラフであって、第2図は従来の均熱炉使用の
場合、第3図は従来のゾーン炉使用の場合をあられす。
FIG. 1 is a schematic cross-sectional view illustrating an embodiment of the apparatus for producing glass containing fluorine gold according to the present invention, and FIGS. 2 and 3 show the fluorine content in the radial direction of the glass when a conventional apparatus is used. Fig. 2 shows the case when a conventional soaking furnace is used, and Fig. 3 shows the case when a conventional zone furnace is used.

Claims (4)

【特許請求の範囲】[Claims] (1)ガラス微粒子が集合してなる多孔質ガラス体を加
熱炉の炉芯管中を通過させてフッ素化合物を含有する雰
囲気ガス中で高温処理することによりフッ素の添加と透
明化を行ない、フッ素を含むガラスを製造する装置にお
いて、上記多孔質ガラス体の移動方向に沿つて加熱部分
の長いフッ素添加用加熱炉と該フッ素添加用加熱炉より
短かい透明化用加熱炉を記載の順に配置してなるフッ素
を含むガラスの製造装置。
(1) A porous glass body made of aggregated glass particles is passed through a core tube of a heating furnace and treated at high temperature in an atmospheric gas containing a fluorine compound to add fluorine and make it transparent. In the apparatus for producing glass containing a glass, a heating furnace for adding fluorine having a long heating part and a heating furnace for making transparent having a shorter heating part than the heating part for adding fluorine are arranged in the order described along the moving direction of the porous glass body. Equipment for manufacturing glass containing fluorine.
(2)フッ素添加用加熱炉の加熱部分の長さが透明化用
加熱炉の加熱部分の長さの3倍以上である特許請求の範
囲第(1)項記載のフッ素を含むガラスの製造装置。
(2) The apparatus for manufacturing fluorine-containing glass according to claim (1), wherein the length of the heating part of the heating furnace for adding fluorine is three times or more the length of the heating part of the heating furnace for transparency. .
(3)フッ素添加用加熱炉及び透明化用加熱炉が両者を
貫通する高純度石英製炉芯管を有している特許請求の範
囲第(1)項記載のフッ素を含むガラスの製造装置。
(3) The apparatus for producing glass containing fluorine according to claim (1), wherein the heating furnace for adding fluorine and the heating furnace for transparency have a high-purity quartz furnace core tube passing through both.
(4)炉芯管内の雰囲気ガスを透明化用加熱炉からフッ
素添加用加熱炉に向かつて流すように雰囲気ガス導入部
及び排出部を設けてなる特許請求の範囲第(1)項記載
のフッ素を含むガラスの製造装置。
(4) Fluorine according to claim (1), wherein an atmospheric gas introduction part and a discharge part are provided so that the atmospheric gas in the furnace core tube flows from the heating furnace for transparency to the heating furnace for adding fluorine. Glass manufacturing equipment including.
JP19898086A 1986-08-27 1986-08-27 Apparatus for producing fluorine-containing glass Pending JPS6355131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19898086A JPS6355131A (en) 1986-08-27 1986-08-27 Apparatus for producing fluorine-containing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19898086A JPS6355131A (en) 1986-08-27 1986-08-27 Apparatus for producing fluorine-containing glass

Publications (1)

Publication Number Publication Date
JPS6355131A true JPS6355131A (en) 1988-03-09

Family

ID=16400118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19898086A Pending JPS6355131A (en) 1986-08-27 1986-08-27 Apparatus for producing fluorine-containing glass

Country Status (1)

Country Link
JP (1) JPS6355131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049977A3 (en) * 2000-12-20 2003-01-30 Corning Inc Method of doping an optical fiber preform with fluorine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049977A3 (en) * 2000-12-20 2003-01-30 Corning Inc Method of doping an optical fiber preform with fluorine

Similar Documents

Publication Publication Date Title
DE69123313T2 (en) Method of making a silica glass preform
TWI380957B (en) Fused silica having low oh, od levels and method of making
JPS5858292B2 (en) Silica glass manufacturing method
JPS6081033A (en) Manufacture of optical fiber
CN1197798C (en) Method for producing fibre-optical precast stick
JPS6355131A (en) Apparatus for producing fluorine-containing glass
US5160358A (en) Process for producing silica glass plate having controlled refractive index distribution
EP0197585B1 (en) Method for making glass bodies
JPS56160334A (en) Manufacture of base material for optical fiber
JP2002104830A (en) Method of manufacturing glass preform
JP3188517B2 (en) Manufacturing method of quartz glass
JP4535497B2 (en) Method for producing synthetic silica glass with controlled OH group concentration
JP2004338992A (en) Method for manufacturing glass preform
JPH01286932A (en) Production of optical fiber preform
JPH0274533A (en) Production of glass parent material for optical fiber
JPH0226848A (en) Production of high-purity quartz glass
JPH0450130A (en) Production of preform for optical fiber
US20240140853A1 (en) Manufacturing method of glass base material for optical fiber
JPH0818842B2 (en) Method for manufacturing base material for optical fiber
JPS6291439A (en) Production of fluorine-added transparent quartz glass body
CN114262148A (en) Method for producing glass substrate for optical fiber
JP2000239025A (en) Production of glass for optical part
CN114804614A (en) Manufacturing method of optical glass material and melting homogenization equipment
JPS63291832A (en) Production of parent material for optical fiber and unit therefor
JPS62256734A (en) Production of base material for optical fiber