JPS6355119A - Production of alumina zirconia based fine powder - Google Patents

Production of alumina zirconia based fine powder

Info

Publication number
JPS6355119A
JPS6355119A JP19806486A JP19806486A JPS6355119A JP S6355119 A JPS6355119 A JP S6355119A JP 19806486 A JP19806486 A JP 19806486A JP 19806486 A JP19806486 A JP 19806486A JP S6355119 A JPS6355119 A JP S6355119A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
solution
fine powder
precipitate
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19806486A
Other languages
Japanese (ja)
Other versions
JPH07100613B2 (en
Inventor
Toichi Takagi
東一 高城
Masaaki Watanabe
雅昭 渡辺
▲飴▼谷 公兵
Kimitake Ametani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP19806486A priority Critical patent/JPH07100613B2/en
Publication of JPS6355119A publication Critical patent/JPS6355119A/en
Publication of JPH07100613B2 publication Critical patent/JPH07100613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the titled fine powder having excellent homogeneity, dispersibility, etc., by adding hydrogen peroxide to a mixed aqueous solution of a Zr salt and Al salt under alkaline conditions to form a hydrogen peroxide complex of Zr ion, heat-treating a mixed solution containing the complex, adjusting pH to form a precipitate and filtering the resultant precipitate. CONSTITUTION:A mixed aqueous solution of a zirconium salt (e.g. oxychlorozirconium) and aluminum salt (e.g. aluminum chloride) is prepared. An alkali is added to the solution to form an alkaline solution thereof. Hydrogen peroxide is added to the alkaline solution and reacted with the alkaline solution to forma mixed solution containing a hydrogen peroxide complex of zirconium ion and aluminum ion. The mixed solution is then heated at 80-200 deg.C and pH of the aqueous solution is adjusted into 4-10 ranges to form a precipitate. The resultant precipitate is filtered, washed with water, dried to provide the aimed alumina zirconia based fine powder.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は構造用セラミックス林料の原料として用いられ
るアルミナジルコニア系微粉末の製法に関する。ジルコ
ニア粒子を分散させてなる高強度かつ高靭性のセラミッ
クスは分散強化セラミックフェア系微粉末が望まれてい
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing alumina-zirconia fine powder used as a raw material for structural ceramic materials. For high-strength and high-toughness ceramics made by dispersing zirconia particles, dispersion-strengthened ceramic fair-based fine powders are desired.

〈従来技術と問題点〉 アルミナジルコニア系微粉末の製法にはアルミナ〔A)
203〕粉末とジルコニア(Zr02)粉末もしくはZ
r02にC!a、Mg及びYなどの6価以上の原子価を
有する金属元素(安定化剤という)の少なくとも121
を含有する粉末をボールミル等の一般の混合方法により
混合する方法が一般的である(文献例: N、01au
ss+en:Journal of The Amer
icanCeramic 8ociety、第59巻、
49〜51頁、1976年)。
<Conventional technology and problems> Alumina [A] is used in the production method of alumina-zirconia fine powder.
203] Powder and zirconia (Zr02) powder or Z
C on r02! At least 121 of a metal element having a valence of 6 or more (referred to as a stabilizer) such as a, Mg and Y
A common method is to mix powder containing N, 01au using a general mixing method such as a ball mill
ss+en: Journal of The Amer
icanCeramic 8ociety, Volume 59,
49-51, 1976).

しかしながら、この方法ではジルコニア粉末をアルミナ
中に均一に分散することが困難であり、機械的特性の優
れたアルミナジルコニア系セラミックス焼結体が得にく
い欠点があった。
However, this method has the disadvantage that it is difficult to uniformly disperse zirconia powder in alumina, making it difficult to obtain an alumina-zirconia ceramic sintered body with excellent mechanical properties.

また、アルミニウムの塩とジルコニウムの塩トを含む酸
性水溶液あるいはさらにこれに安定化剤の塩を添加した
酸性水溶液とアンモニア、水酸化ナトリウムなどのアル
カリあるいは炭酸アンモニウム、シュウ酸塩などの塩と
を反応させて沈殿を形成させる方法すなわち共沈法が知
られている(なお、文献は見当らない)。この方法によ
れば溶液状態から沈殿を生成させるためにジルコニアが
かなり均一に分散させることができる。しかしながら、
この方法においては生成したジルコニウムの沈殿粒子(
たとえば水酸化ジルコニウム沈殿粒子〕同志が凝集粒子
を形成しやすく微細なジルコニア粒子を分散したアルミ
ナジルコニア系微粉末が得られにくい欠点があった。
In addition, an acidic aqueous solution containing an aluminum salt and a zirconium salt, or an acidic aqueous solution to which a stabilizer salt is added, is reacted with an alkali such as ammonia or sodium hydroxide, or a salt such as ammonium carbonate or oxalate. A method is known in which a precipitate is formed by causing a precipitate to form, that is, a coprecipitation method (no literature has been found). According to this method, zirconia can be dispersed fairly uniformly to form a precipitate from a solution state. however,
In this method, the produced zirconium precipitate particles (
For example, zirconium hydroxide precipitated particles] comrades tend to form agglomerated particles, making it difficult to obtain alumina-zirconia fine powder in which fine zirconia particles are dispersed.

本発明は粒子の均一性に優れ、かつ、分散性のよいアル
ミナジルコニア系微粉末の↓遣方法を提供することを目
的とする。
An object of the present invention is to provide a method for dispensing alumina-zirconia fine powder with excellent particle uniformity and good dispersibility.

く問題点を解決するための手段〉 本発明者らは先に、水酸化ジルコニウムはアルカリ中で
過酸化水素と錯体を形成して溶解し、このアルカリ水溶
液を加熱処理すると、配位子の過酸化水素を徐々に分解
−説離し、分散性のよいZrO2超微粒子が生成すると
の知見を得て出願したが(特願昭60−111179号
及び%願昭60−267277号)、本発明者らはこの
方法をアルミナジルコニア系微粉末の製造法に応用する
ことを考え、種々研究を重ねた結果、アルミニウムは両
性金属であり、アルカリ中でイオンとなり溶解すること
を見出し、この発明を完成するに至った。
Means for Solving the Problems> The present inventors first discovered that zirconium hydroxide forms a complex with hydrogen peroxide and dissolves in an alkali, and when this alkaline aqueous solution is heat-treated, the ligands are superimposed. The present inventors filed an application based on the knowledge that hydrogen oxide can be gradually decomposed and dissociated to produce ZrO2 ultrafine particles with good dispersibility (Japanese Patent Application No. 111179/1982 and % Application No. 267277/1982). thought of applying this method to the production of alumina-zirconia fine powder, and after conducting various researches, discovered that aluminum is an amphoteric metal and dissolves as ions in an alkali. It's arrived.

すなわち、本発明はジルコニウム塩及びアルミニウム塩
の混合水漬液をアルカリ性にして、過酸化水素を加える
ことにより、ジルコニウムイオンの過酸化水素錯体とア
ルミニウムイオンとの混合液とし、つぎに、前記混合液
を温度80〜200℃で加熱したのち、水溶液の−を4
〜10の範囲とすることによって沈殿を生成させ、該沈
殿を分離することを特徴とするアルミナジルコニア系微
粉末の製法である。
That is, in the present invention, a mixed solution of a zirconium salt and an aluminum salt is made alkaline and hydrogen peroxide is added to obtain a mixed solution of a hydrogen peroxide complex of zirconium ions and aluminum ions. After heating at a temperature of 80 to 200℃, the - of the aqueous solution is reduced to 4.
This is a method for producing alumina-zirconia-based fine powder, which is characterized in that a precipitate is generated by adjusting the range of 10 to 10, and the precipitate is separated.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においてジルコニウム塩及びアルミニウム塩の塩
とは塩酸塩、硝酸塩、硫酸塩、酢酸塩などである。これ
らの金属成分濃度は特別な制限はないが、実用上0.1
〜1.0モル/ノ程度が適切である。
In the present invention, zirconium salts and aluminum salts include hydrochloride, nitrate, sulfate, acetate, and the like. There is no particular limit to the concentration of these metal components, but in practice it is 0.1
~1.0 mol/no is appropriate.

アルカリ剤としては、ジルコニウムイオンの過酸化水素
錯体が溶解し始める水素イオン濃度p)112以上を容
易に達成できるもので、しかも、加熱処理を施すに際し
揮発性でないものが望ましい。通常は水酸化す) IJ
ウムまたは水酸化カリウムが適している。なお、この場
合において、アルカリ濃度を高めてたとえば−>13.
5にすルト、ジルコニウムイオンの過酸化水素錯体の分
解、脱離速度が著しく遅くなるので分散性にすぐれた微
粉末を農造することができる。しかも、溶質によるモル
沸点上昇効果も大きくとれるので、次の処理である過酸
化水素錯体の熱処理温度を高くすることができ、分散性
をさらに向上させることができる。従って、本発明にお
いては、アルカリ濃度を高めることは好ましいことであ
る。
The alkaline agent is desirably one that can easily achieve a hydrogen ion concentration p) of 112 or higher at which the hydrogen peroxide complex of zirconium ions begins to dissolve, and that is not volatile during heat treatment. Usually hydroxylated) IJ
um or potassium hydroxide are suitable. In this case, the alkali concentration is increased to, for example, ->13.
Since the rate of decomposition and desorption of the hydrogen peroxide complex of zirconium ions is significantly slowed down, fine powder with excellent dispersibility can be produced. Moreover, since the effect of raising the molar boiling point by the solute can be greatly increased, the temperature of the subsequent heat treatment of the hydrogen peroxide complex can be increased, and the dispersibility can be further improved. Therefore, in the present invention, it is preferable to increase the alkali concentration.

過酸化水素としては、濃度が約30チの過酸化水素水を
用いるのが望ましく、その添加量は、水溶性ジルコニウ
ムイオンの過酸化水素錯体を形成するために溶液中のジ
ルコニウム量の当モル以上とするのがよい。アルカリ剤
と過酸化水素の添加順序は分割添加などどのような方法
であってもよい。反応温度は、通常、常温で行われる。
As hydrogen peroxide, it is preferable to use a hydrogen peroxide solution with a concentration of about 30%, and the amount added is equal to or more than the equivalent mole of zirconium in the solution in order to form a hydrogen peroxide complex of water-soluble zirconium ions. It is better to The alkaline agent and hydrogen peroxide may be added in any order, such as by adding them in portions. The reaction temperature is usually room temperature.

以上のようにして得られたジルコニウムの過酸化水素錯
体とアルミニウムイオンを含む溶液を加熱処理し、つい
で酸の添加あるいはイオン交換樹脂処理により−を4〜
10として沈殿生成を行なう。酸は、塩酸、硝酸、炭酸
、面識、シュウ酸などでよい。加熱処理温度としては、
80〜200°C1好ましくは90〜140°cである
。80℃未満では、粉末の析出に長大な時間を要し経済
的にも実際的でなく、一方、200°Cをこえると反応
時間は短縮されるが、生成する粉末が粗大で粒度が不均
一となるので好ましくない。
The solution containing the zirconium hydrogen peroxide complex and aluminum ions obtained as described above is heat-treated, and then the -
Step 10: Precipitate formation. The acid may be hydrochloric acid, nitric acid, carbonic acid, citric acid, oxalic acid, or the like. The heat treatment temperature is
The temperature is 80 to 200°C, preferably 90 to 140°C. If the temperature is less than 80°C, it will take a long time for the powder to precipitate, making it economically impractical. On the other hand, if the temperature exceeds 200°C, the reaction time will be shortened, but the resulting powder will be coarse and the particle size will be uneven. This is not desirable.

上記反応中は、反応の均一性を高め、得られる粉末の均
一化を図るために充分な攪拌を行なうことが望ましい。
During the above reaction, it is desirable to perform sufficient stirring in order to improve the uniformity of the reaction and to make the resulting powder uniform.

得られた沈殿は濾過、遠心分離法などにより分離し、充
分に洗浄後、乾燥することによってアルミナジルコニア
系微粉末が得られる。
The obtained precipitate is separated by filtration, centrifugation, etc., thoroughly washed, and then dried to obtain alumina-zirconia fine powder.

洗浄は沈澱物中のci−やNOゴなどの不純物を除去す
るため充分に行なうことが望ましく、また不純物除去後
、エタノールやアセトンなどで洗浄することによって沈
澱粒子同志の凝集を防ぐことも有効である。
It is desirable to wash thoroughly to remove impurities such as ci- and NO in the precipitate, and it is also effective to prevent the precipitated particles from agglomerating together by washing with ethanol, acetone, etc. after removing the impurities. be.

乾燥は通常の加熱乾燥、真空乾燥の他、噴霧乾燥方法、
振動流動乾燥法、ドラムドライヤー乾燥法、フィルムエ
バポレーター乾燥法などの方法がある。
Drying can be done by regular heat drying, vacuum drying, spray drying,
Methods include vibration fluidized drying, drum dryer drying, and film evaporator drying.

粉末同志の凝集を防ぐことは微粉末を得る際に重要であ
るので乾燥後にボールミル、振動ボールミル、ジェット
ミルなどによる解砕を行なうことは有効である。
Since it is important to prevent powders from agglomerating together when obtaining a fine powder, it is effective to crush the powder using a ball mill, vibrating ball mill, jet mill, etc. after drying.

このようにして得られるアルミナジルコニア系微粉末の
粒子特性をとくに高めるために、上記乾燥後の粉末また
は解砕後の粉末を仮焼し、仮焼後の解砕を行なうことが
好ましい。
In order to particularly improve the particle characteristics of the alumina-zirconia fine powder obtained in this manner, it is preferable to calcinate the dried powder or crushed powder, and then crush the calcined powder.

仮焼温度は450℃より低い温度のとき沈澱物中の水分
などの除去が不充分であジ、120口0Cより高い場合
には粉末同志の焼結などによる凝集が起こり反応性が低
下する難点があり、またエネルギー的にも高温での仮焼
は実際的でない。
When the calcination temperature is lower than 450°C, the removal of moisture in the precipitate is insufficient, and when it is higher than 120°C, the powders coagulate due to sintering, resulting in a decrease in reactivity. In addition, calcining at high temperatures is not practical in terms of energy.

従って仮焼温度は450〜1200℃が好ましく600
〜i ooo℃がとくに好ましい。
Therefore, the calcination temperature is preferably 450 to 1200°C.
-i ooo°C is particularly preferred.

なお、前記微粉末中に安定化剤すなわち、マグネシウム
、カルシウムまたは3価以上の原子価を肩する金属元素
を配合させると、微粉末の特性がより一層改善され、分
散強化特性が向上する。ここで、6価以上の原子価ti
する金属元素とは、イツトリウム、セリウム、イッテル
ビウム、スカンジウムなどである。
In addition, when a stabilizer, that is, magnesium, calcium, or a metal element having a valence of 3 or more is blended into the fine powder, the characteristics of the fine powder are further improved and the dispersion strengthening characteristics are improved. Here, valence ti of hexavalence or more
The metal elements include yttrium, cerium, ytterbium, scandium, etc.

配合方法は前記安定化剤を塩酸塩、硝酸塩、アルコキシ
ドなどの水浴性化合物として、ジルコニウム塩およびア
ルミニウム塩の溶解時に同時に溶解させる方法が最も好
ましい。
The most preferable blending method is to dissolve the stabilizer as a water bathing compound such as a hydrochloride, nitrate, or alkoxide at the same time as the zirconium salt and aluminum salt are dissolved.

これらの成分の添加量は、ジルコニウム金属成分に対し
て20モルチ以下が好ましい。とくに、マグネシウムと
カルシウムについては6〜15モル係、イツトリウムな
どは2〜15モルチが好ましい。
The amount of these components added is preferably 20 molti or less relative to the zirconium metal component. In particular, 6 to 15 mol is preferred for magnesium and calcium, and 2 to 15 mol is preferred for yttrium.

〈実施例〉 以下、実施例、比較例をあげてさらに説明する。<Example> Further explanation will be given below with reference to Examples and Comparative Examples.

実施例1 塩化アルミニウム(A)Cノ3・6H20) ′59−
5 gとオキシ塩化ジルコニウム(ZrO○)、−8)
I20 ) 5.8gとを純水200dに溶解し、これ
に濃度0.5そル/ノの水酸化ナトリウム水溶液を加え
、攪拌しながら濃度31重量%の過酸化水素水50dを
加えた。ついで、濃度8モル/ノの水酸化ナトリウム水
溶g、120 dを加えて攪拌したところ溶゛液は淡黄
色になった。これを還流下、温度95 ’Cで3時間加
熱し、さらば、濃度5モル/!の塩酸を加えて−を7と
したのち得られた沈殿を充分に水洗ろ過したのち110
℃の温度で3時間乾燥後、800°Cで1時間仮焼した
Example 1 Aluminum chloride (A) C-3/6H20) '59-
5 g and zirconium oxychloride (ZrO○), -8)
I20) 5.8 g was dissolved in 200 d of pure water, to which was added an aqueous sodium hydroxide solution with a concentration of 0.5 solu/no, and while stirring, 50 d of hydrogen peroxide solution with a concentration of 31% by weight was added. Next, 120 g of an aqueous solution of sodium hydroxide having a concentration of 8 mol/min was added and stirred, and the solution turned pale yellow. This was heated under reflux at a temperature of 95'C for 3 hours, and the concentration was 5 mol/! After adding hydrochloric acid to bring the - to 7, the resulting precipitate was thoroughly washed with water and filtered, and the resultant solution was 110
After drying for 3 hours at a temperature of 800°C, it was calcined for 1 hour.

得られた粉末全走査型電子顕微鏡(組成分析装置付、以
下、SKMと略す)で観察したところ、その粉末は粒径
0.28〜0.32 μm (平均0.3μm)で粒径
がそろっていた。また、前記粉末の組成分析結果から、
この粉床中にはff10.05〜0.1 μm (平均
0−08 μm )のZrO2粒子が含まれたものがあ
り、顕微鏡の視野全体としてはZrO2は均一に分散し
ていた。
When the obtained powder was observed using a total scanning electron microscope (equipped with a composition analyzer, hereinafter abbreviated as SKM), the powder had a uniform particle size of 0.28 to 0.32 μm (average 0.3 μm). was. Furthermore, from the composition analysis results of the powder,
Some of the powder bed contained ZrO2 particles with an ff of 10.05 to 0.1 μm (average 0 to 08 μm), and the ZrO2 was uniformly dispersed throughout the field of view of the microscope.

比較例1 過酸化水素水を添加しなかった外は実施例1と同様にし
て粉末を得た。得られた粉末を実施例1と同様にSEM
で観察したところ、粉末の径が1〜6μm(平均2.8
μm)のAI203の凝集粒子と、径が2〜5μrn(
平均6.4μm)のZ r O2の凝集粒子が混在して
おジ、顕微鏡の視野内のZ r O2粒子の分布は不均
一であった。
Comparative Example 1 A powder was obtained in the same manner as in Example 1 except that hydrogen peroxide solution was not added. The obtained powder was subjected to SEM in the same manner as in Example 1.
When observed, the powder diameter was 1 to 6 μm (average 2.8 μm).
aggregated particles of AI203 with a diameter of 2 to 5 μrn (
The distribution of Z r O2 particles within the field of view of the microscope was non-uniform, with a mixture of agglomerated particles of Z r O2 with an average diameter of 6.4 μm.

実施例2 塩化アルミニウム(A)013番6H20) 39−5
 Lオキシ塩化ジルコニウム(Zr0O)2惨3H2o
 ) 5−89および塩化イツトリウム(MO)3・6
H20)0.45 F e用いて以下実施例1と同じ操
作で粉末を得た。得られた粉末は程径0.27〜0.6
3μm(平均0.3μm)であり、この粉末中には粒径
0.05〜0.1μm(平均0.08μm)のZrO2
粒子が含まれたものがあり、実施例1と同様に微粉末で
分散性、均一性に優れたものであった。
Example 2 Aluminum chloride (A) No. 013 6H20) 39-5
L zirconium oxychloride (Zr0O)2 3H2o
) 5-89 and yttrium chloride (MO) 3.6
H20) A powder was obtained in the same manner as in Example 1 using 0.45 Fe. The obtained powder has a diameter of 0.27 to 0.6
3 μm (average 0.3 μm), and this powder contains ZrO2 with a particle size of 0.05 to 0.1 μm (average 0.08 μm).
Some contained particles, and like Example 1, they were fine powders with excellent dispersibility and uniformity.

実施例3 塩化アルミニウム(A)Oノ3−6a2o) 39.5
 g、オキシ塩化ジルコニウム(Zr0O)2”8H2
0) 5.8 gおよび塩化マグネシウム(MgC)2
・6H20) [1,359を用いて以下実施例1と同
じ操作で微粉末を得た龍 得られた粉末はぎ径0.28〜0.33μm(平均0.
31μm)であり、この粉末中には粒径0.05〜0.
1μm(平均0.08μm )のZ r 02粒子が含
まレタものがあり、実施例1と同様に微粉末で分散性、
均一性に優れたものであった。
Example 3 Aluminum chloride (A)Ono3-6a2o) 39.5
g, zirconium oxychloride (Zr0O)2”8H2
0) 5.8 g and magnesium chloride (MgC)2
・6H20) [1,359 was used to obtain a fine powder in the same manner as in Example 1.
31 μm), and this powder has a particle size of 0.05 to 0.3 μm.
There is a letter containing Z r 02 particles of 1 μm (average 0.08 μm), and as in Example 1, it is a fine powder and has good dispersibility.
It had excellent uniformity.

実施例4 塩化アルミニウム(hia)3・6H20) 39.5
 Lオキシ塩化ジル:I 二fy ム(Zr0Oj2・
8H20) 5−8 f!および炭酸カルシウム0.1
5gを用いて以下実施例1と同じ操作で微粉末会得た。
Example 4 Aluminum chloride (hia) 3.6H20) 39.5
L oxychloride: I2fymu(Zr0Oj2・
8H20) 5-8 f! and calcium carbonate 0.1
Using 5 g, a fine powder was obtained in the same manner as in Example 1.

得られた粉末は粒径0−29〜0.34 μm (平均
0.32 μm )であり、この粉末中には粒径0.0
5〜0.1μm(平均0.08μm)のZ ro 2粒
子が含まれたものがあり、実施例1と同様に微粉末で分
散性、均一性に優れたものであった。
The obtained powder has a particle size of 0-29 to 0.34 μm (average 0.32 μm), and this powder contains particles with a particle size of 0.0 μm.
Some contained Z ro 2 particles of 5 to 0.1 μm (average 0.08 μm), and like Example 1, they were fine powders with excellent dispersibility and uniformity.

〈発明の効果〉 (11本発明によれば、ジルコニウム塩及びアルミニウ
ム塩の混合水溶液をアルカリ性にして、過酸化水素を加
えることにより、ジルコニウムイオンの過酸化水素錯体
とアルミニウムイオンとの混合液とし、つぎに、加熱処
理をし、ついでアルミニウムイオンをアルカリ性側から
沈殿させることにより、均−性及び分散性に優れたアル
ミナジルコニア系微粉末が得られる。
<Effects of the Invention> (11) According to the present invention, a mixed aqueous solution of a zirconium salt and an aluminum salt is made alkaline and hydrogen peroxide is added to form a mixed solution of a hydrogen peroxide complex of zirconium ions and aluminum ions, Next, a heat treatment is performed, and then aluminum ions are precipitated from the alkaline side, thereby obtaining an alumina-zirconia fine powder with excellent uniformity and dispersibility.

(2)本発明の製法は、極めて単純な単位操作から構成
され、同一容器内ですべての操作を行なえばよく大量−
の処理が可能であるため工業的大量生産が容易であり、
その経済的価値は著しく高い。
(2) The manufacturing method of the present invention consists of extremely simple unit operations, and all operations can be performed in the same container in large quantities.
It is easy to mass-produce industrially because it is possible to process
Its economic value is significantly high.

Claims (1)

【特許請求の範囲】[Claims] ジルコニウム塩及びアルミニウム塩の混合水溶液をアル
カリ性にして、過酸化水素を加えることにより、ジルコ
ニウムイオンの過酸化水素錯体とアルミニウムイオンと
の混合液とし、つぎに、前記混合液を温度80〜200
℃で加熱したのち、水溶液のpHを4〜10の範囲とす
ることによつて沈殿を生成させ、該沈殿を分離すること
を特徴とするアルミナジルコニア系微粉末の製法。
A mixed aqueous solution of a zirconium salt and an aluminum salt is made alkaline and hydrogen peroxide is added to obtain a mixed solution of a hydrogen peroxide complex of zirconium ions and aluminum ions, and then the mixed solution is heated to a temperature of 80 to 200 ml.
1. A method for producing alumina-zirconia fine powder, which comprises heating at a temperature of 0.degree. C., adjusting the pH of an aqueous solution to a range of 4 to 10 to form a precipitate, and separating the precipitate.
JP19806486A 1986-08-26 1986-08-26 Manufacturing method of alumina zirconia-based fine powder Expired - Lifetime JPH07100613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19806486A JPH07100613B2 (en) 1986-08-26 1986-08-26 Manufacturing method of alumina zirconia-based fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19806486A JPH07100613B2 (en) 1986-08-26 1986-08-26 Manufacturing method of alumina zirconia-based fine powder

Publications (2)

Publication Number Publication Date
JPS6355119A true JPS6355119A (en) 1988-03-09
JPH07100613B2 JPH07100613B2 (en) 1995-11-01

Family

ID=16384924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19806486A Expired - Lifetime JPH07100613B2 (en) 1986-08-26 1986-08-26 Manufacturing method of alumina zirconia-based fine powder

Country Status (1)

Country Link
JP (1) JPH07100613B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089247A (en) * 1988-01-19 1992-02-18 Degussa Aktiengesellschaft Process for producing zirconium-doped pseudoboehmite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089247A (en) * 1988-01-19 1992-02-18 Degussa Aktiengesellschaft Process for producing zirconium-doped pseudoboehmite

Also Published As

Publication number Publication date
JPH07100613B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
KR100691908B1 (en) Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
JP2523776B2 (en) Composition for zirconia ceramic material
US4810680A (en) Preparation of high purity, homogeneous zirconia mixtures
JPS62260718A (en) Production of ultrafine powder of high-purity zirconia-alumina by hydrothermal process
JPS6355119A (en) Production of alumina zirconia based fine powder
JPH0251847B2 (en)
JPS5935029A (en) Preparation of zirconia type fine powder
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
JPS61141619A (en) Production of zirconia fine powder
JPH04280815A (en) Fine particulate alkali titanate and its production
JPH03126621A (en) Zirconium dioxide powder, preparation thereof, use thereof and sintered body prepared therefrom
JP3265597B2 (en) Method for producing zirconia fine powder
JP3257094B2 (en) Method for producing zirconia powder
JP3146578B2 (en) Manufacturing method of zirconia fine powder
JPH06171944A (en) Production of zirconium oxide powder
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JPS63222014A (en) Production of oxide fine powder of perovskite type
JPH0316918A (en) Production of zirconia oxide powder
JP3358217B2 (en) Method for producing zirconium oxide powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPH06171943A (en) Production of zirconium oxide powder
JPH05132311A (en) Production of sol of ceric oxide
JP2001080919A (en) Fine powdery zirconia and its production
JPH04280816A (en) Production of porous fine particulate titanium oxide
JPH05116943A (en) Production of barium titanate powder