JPH04280816A - Production of porous fine particulate titanium oxide - Google Patents

Production of porous fine particulate titanium oxide

Info

Publication number
JPH04280816A
JPH04280816A JP3125675A JP12567591A JPH04280816A JP H04280816 A JPH04280816 A JP H04280816A JP 3125675 A JP3125675 A JP 3125675A JP 12567591 A JP12567591 A JP 12567591A JP H04280816 A JPH04280816 A JP H04280816A
Authority
JP
Japan
Prior art keywords
titanium oxide
pure water
aqueous solution
acid
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3125675A
Other languages
Japanese (ja)
Inventor
Koichi Takahara
耕一 高原
Mutsuhiko Saiki
齋木 睦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Color Works Ltd
Original Assignee
Sanyo Color Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Color Works Ltd filed Critical Sanyo Color Works Ltd
Priority to JP3125675A priority Critical patent/JPH04280816A/en
Publication of JPH04280816A publication Critical patent/JPH04280816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To obtain a fine particulate titanium oxide having active surface free from sintered particles by reacting an aqueous suspension of a specific reaction condensate of hydrated titanium oxide and an organic acid with an alkali metal hydroxide, neutralizing and eliminating the alkali metal. CONSTITUTION:An aqueous solution system at >=50 deg.C, preferably 50-100 deg.C, having dissolved one or more dibasic or tribasic organic carboxylic acids is heated to a fixed temperature. Then, an aqueous solution of titanium tetrachloride is poured to the heated aqueous solution system while stirring, the reaction condensate of hydrated titanium oxide and an organic acid is precipitated, and is filtered, washed with water and dried. Then the reaction condensate is suspended in pure water, reacted with an alkali metal hydroxide at pH>=8 and at >=50 deg.C while stirring and filtered. Then the alkali titanate is suspended again in pure water, mixed with a mineral acid, the alkali metal in the alkali titanate is neutralized at pH <=3 and at >=50 deg.C, eliminated, filtered, washed with water and dried to give the objective porous fine particulate titanium oxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、多孔質性酸化チタン微
粒子の製造法に関するものである。本発明により得られ
る多孔質性酸化チタン微粒子は、電子セラミックスや消
臭剤及び、化粧品、塗料、インキ等の原料として有用な
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing porous titanium oxide fine particles. The porous titanium oxide fine particles obtained by the present invention are useful as raw materials for electronic ceramics, deodorants, cosmetics, paints, inks, and the like.

【0002】0002

【従来の技術】酸化チタン微粒子の製造法に関しては、
これまでに多くの文献、特許に開示されており、これ等
の製造法は、気相法による四塩化チタンの分解で直接に
酸化チタン微粒子を得る方法、液相法による硫酸チタン
又は四塩化チタンの加水分解で、まず水和酸化チタン粒
子を析出せしめ、これを▲ろ▼過、水洗、乾燥、粉砕し
て、200〜1000℃の温度で仮焼して酸化チタン微
粒子を得る方法、等に代表されるが、これ等の製造法で
得られる粒子の大きさ、比表面積は超微粒子酸化チタン
と言われるものでも、粒子径は0.05〜0.5μmで
、比表面積は350℃仮焼のもので70m2/g(特開
昭60−186418号)である。又、気相法及び液相
法共に高温での仮焼が不可欠なため、生成粒子が大きく
、強固に焼結しており、その後の機械的粉砕では超微粒
子まで粉砕することは不可能であり、活性のある微粒子
粉末を造ることは困難であつた。又、その製造工程は経
済的ではなかつた。
[Prior Art] Regarding the manufacturing method of titanium oxide fine particles,
So far, many documents and patents have disclosed these manufacturing methods, including methods for directly obtaining titanium oxide fine particles by decomposing titanium tetrachloride using a gas phase method, and titanium sulfate or titanium tetrachloride using a liquid phase method. First, hydrated titanium oxide particles are precipitated by hydrolysis of Although the particle size and specific surface area obtained by these manufacturing methods are typically 0.05 to 0.5 μm, even for what is called ultrafine titanium oxide, the particle size and specific surface area are 350°C calcined. It is 70 m2/g (Japanese Unexamined Patent Publication No. 186418/1983). In addition, since high-temperature calcination is essential for both the gas phase method and the liquid phase method, the particles produced are large and strongly sintered, making it impossible to grind them down to ultra-fine particles with subsequent mechanical grinding. However, it has been difficult to produce active microparticle powders. Also, the manufacturing process was not economical.

【0003】0003

【発明が解決しようとする課題】本発明の目的は、従来
技術では得られない比表面積の大きな、表面の活性な酸
化チタン微粒子粉末(粒子径は約0.1μm以下であり
、比表面積は約150m2/g以上)の経済的な製造法
を提供することにある。
[Problems to be Solved by the Invention] The object of the present invention is to produce a surface-active titanium oxide fine particle powder with a large specific surface area that cannot be obtained using conventional techniques (particle size is approximately 0.1 μm or less, and the specific surface area is approximately 150 m2/g or more).

【0004】0004

【課題を解決するための手段】本発明者等は、先に多孔
質性酸化チタン微粒子及びその製造法である特開平2−
196029号を開示した。しかしながら、この方法で
得られる多孔質性酸化チタン微粒子及びその製造法は、
200〜400℃での仮焼を必要とするため経済的でな
く、又、実質的に焼結粒子のない比表面積の大きな、表
面の活性な酸化チタン微粒子粉末を得ることは困難であ
つた。本発明者は、特開平2−196029号で開示し
た水和酸化チタン〜有機酸の反応縮合物の水懸濁液に水
酸化アルカリ金属を添加し、pH8以上のアルカリ性雰
囲気で50℃以上の温度域で処理した後、更に、鉱酸を
添加し、pH3以下の酸性雰囲気で50℃以上の温度域
で処理することにより、実質的に焼結粒子のない比表面
積の大きな、表面の活性な多孔質性酸化チタン微粒子が
得られることを見出し、本発明を完成したものである。 更に、驚くべきことに、四塩化チタン水溶液を原料とし
た場合は多孔質性ルチル型酸化チタンが、又、鉱酸を溶
解した四塩化チタン水溶液を原料とした場合は多孔質性
アナターゼ型酸化チタンが得られるとの、全く新しい知
見を得たのである。このことは、鉱酸の有無だけが異な
る同一条件及び操作でルチル型又は、アナターゼ型酸化
チタンが造り分けできることを意味するものである。
[Means for Solving the Problems] The present inventors have previously developed porous titanium oxide fine particles and a method for producing the same in Japanese Patent Application Laid-Open No.
No. 196029 was disclosed. However, the porous titanium oxide fine particles obtained by this method and the manufacturing method thereof are
Since it requires calcination at 200 to 400°C, it is not economical, and it is also difficult to obtain a titanium oxide fine particle powder with a large specific surface area and an active surface, which is substantially free of sintered particles. The present inventor added an alkali metal hydroxide to an aqueous suspension of a reaction condensate of hydrated titanium oxide and an organic acid disclosed in JP-A-2-196029, and heated the mixture at a temperature of 50°C or higher in an alkaline atmosphere with a pH of 8 or higher. By adding mineral acid and treating at a temperature of 50°C or higher in an acidic atmosphere with a pH of 3 or less, active pores on the surface with a large specific surface area and virtually no sintered particles are formed. The present invention was completed based on the discovery that fine particles of titanium oxide with high quality can be obtained. Furthermore, surprisingly, porous rutile-type titanium oxide is produced when titanium tetrachloride aqueous solution is used as a raw material, and porous anatase-type titanium oxide is produced when titanium tetrachloride aqueous solution containing mineral acid is used as raw material. We obtained completely new knowledge that it is possible to obtain This means that rutile type or anatase type titanium oxide can be produced under the same conditions and operations, differing only in the presence or absence of mineral acid.

【0005】即ち、本発明は、二塩基性又は、三塩基性
有機カルボン酸の一種又は、二種以上を溶解した50℃
以上の水溶液系に、四塩化チタンの水溶液又は、鉱酸を
溶解した四塩化チタンの水溶液を注加し、生成する水和
酸化チタン〜有機酸の反応縮合物を▲ろ▼過、水洗し、
次いで、この水和酸化チタン〜有機酸の反応縮合物の水
懸濁液に水酸化アルカリ金属を添加し、pH8以上、5
0℃以上の温度にて、反応させた後、▲ろ▼過、水洗し
、再び水懸濁液となした後、鉱酸を添加し、pH3以下
、50℃以上の温度にて、チタン酸アルカリのアルカリ
金属を中和、離脱せしめた後、▲ろ▼過、水洗、乾燥す
ることを特徴とする多孔質性酸化チタン微粒子の製造法
である。以下に、具体的製造方法を説明する。
That is, the present invention provides a method for dissolving one or more dibasic or tribasic organic carboxylic acids at 50°C.
An aqueous solution of titanium tetrachloride or an aqueous solution of titanium tetrachloride in which a mineral acid has been dissolved is added to the above aqueous solution system, and the resulting reaction condensate of hydrated titanium oxide and an organic acid is filtered and washed with water.
Next, an alkali metal hydroxide was added to the aqueous suspension of the reaction condensate of hydrated titanium oxide and an organic acid, and the pH was adjusted to 8 or higher and 5.
After reacting at a temperature of 0°C or higher, ▲filtration, washing with water, and making an aqueous suspension again, mineral acid was added, and titanic acid was reacted at a temperature of 50°C or higher at pH 3 or lower. This method of producing porous titanium oxide fine particles is characterized by neutralizing and removing the alkali metal, followed by filtration, washing with water, and drying. A specific manufacturing method will be explained below.

【0006】本発明の第一基本は、二塩基性又は、三塩
基性有機カルボン酸、例えばシュウ酸、マロン酸、コハ
ク酸、リンゴ酸、酒石酸、クエン酸、グルコン酸等の一
種又は、二種以上の所定濃度溶液(好ましくは、有機酸
の合計0.5〜5.0モルを純水5〜20lに溶解した
もの)を50〜100℃の一定温度に加温し、これを撹
拌しつつ四塩化チタンの所定濃度溶液(好ましくは、四
塩化チタンの0.25〜2.5モルを純水1.0〜5.
0lに溶解したもの)又は、鉱酸を溶解した四塩化チタ
ンの所定濃度溶液(好ましくは、四塩化チタンの0.2
5〜2.5モルと塩酸の0.5〜5.0モルを純水1.
0〜5.0lに溶解したもの)を一定速度(好ましくは
、5時間以内)にて注加し、四塩化チタンを加水分解せ
しめ、生成する水和酸化チタン〜有機酸の反応縮合物を
▲ろ▼過、水洗することを特徴とする。
The first basis of the present invention is to use one or two dibasic or tribasic organic carboxylic acids such as oxalic acid, malonic acid, succinic acid, malic acid, tartaric acid, citric acid, and gluconic acid. The above prescribed concentration solution (preferably, a total of 0.5 to 5.0 mol of organic acid dissolved in 5 to 20 liters of pure water) is heated to a constant temperature of 50 to 100°C, and while stirring. A solution of titanium tetrachloride at a predetermined concentration (preferably, 0.25 to 2.5 moles of titanium tetrachloride is added to 1.0 to 5 moles of pure water).
0 l) or a solution of titanium tetrachloride at a predetermined concentration in which a mineral acid is dissolved (preferably 0.2 l of titanium tetrachloride).
5 to 2.5 mol and 0.5 to 5.0 mol of hydrochloric acid to 1.0 mol of pure water.
(dissolved in 0 to 5.0 liters) at a constant rate (preferably within 5 hours) to hydrolyze titanium tetrachloride and form a reaction condensate of hydrated titanium oxide and organic acid. It is characterized by filtration and washing with water.

【0007】本発明の第二基本は、第一基本で得られた
水和酸化チタン〜有機酸の反応縮合物を純水に懸濁させ
(好ましくは、酸化チタンとして50〜200gを純水
5.0〜15.0lに懸濁させる)、これを50〜10
0℃の一定温度に加温し、撹拌しつつ水酸化アルカリ金
属の所定濃度溶液(好ましくは、水酸化アルカリ金属の
1.0〜10.0モルを純水1.0〜5.0lに溶解し
たもの)を添加し、懸濁液をpH8以上となし、1.0
〜5.0時間の間処理した後、▲ろ▼過、水洗すること
を特徴とする。この操作により、第一基本で得られた水
和酸化チタン〜有機酸の反応縮合物の有機酸は、反応縮
合物から中和、離脱し、離脱した有機酸の代わりにアル
カリ金属が水和酸化チタンと結合し、チタン酸アルカリ
が生成する。
The second basis of the present invention is to suspend the reaction condensate of hydrated titanium oxide and organic acid obtained in the first basis in pure water (preferably, 50 to 200 g of titanium oxide is suspended in pure water .0 to 15.0 l), then suspend this to 50 to 10
A predetermined concentration solution of alkali metal hydroxide (preferably 1.0 to 10.0 mol of alkali metal hydroxide is dissolved in 1.0 to 5.0 liters of pure water while heating to a constant temperature of 0°C and stirring) ) was added to make the suspension pH 8 or higher, and the pH was adjusted to 1.0.
After being treated for ~5.0 hours, it is characterized by ▲filtration and washing with water. Through this operation, the organic acid of the reaction condensate of hydrated titanium oxide and organic acid obtained in the first basic process is neutralized and separated from the reaction condensate, and the alkali metal is hydrated and oxidized in place of the separated organic acid. Combines with titanium to produce alkali titanate.

【0008】本発明の第三基本は、第二基本で得られた
チタン酸アルカリを純水に懸濁させ(好ましくは、酸化
チタンとして50〜200gを純水5.0〜15.0l
に懸濁させる)、これを50〜100℃の一定温度に加
温し、撹拌しつつ鉱酸の所定濃度溶液(好ましくは、鉱
酸の1.0〜10.0モルを純水1.0〜5.0lに溶
解したもの)を添加し、懸濁液をpH3以下となし、1
.0〜5.0時間の間処理した後、▲ろ▼過、水洗、乾
燥することを特徴とする。この操作により、第二基本で
得られたチタン酸アルカリのアルカリ金属は、チタン酸
アルカリから中和、離脱し、ついには酸化チタンと成り
得るのである。以下、実施例を以て、本発明を更に詳細
に説明するが、これ等によつて限定されるものではない
The third principle of the present invention is to suspend the alkali titanate obtained in the second principle in pure water (preferably, 50 to 200 g of titanium oxide is suspended in 5.0 to 15.0 liters of pure water).
This is heated to a constant temperature of 50 to 100°C, and while stirring, a solution of mineral acid at a predetermined concentration (preferably, 1.0 to 10.0 mol of mineral acid is suspended in 1.0 mol of pure water). ~5.0L) was added to bring the suspension to pH 3 or less, and 1
.. After treatment for 0 to 5.0 hours, it is characterized by ▲filtration, washing with water, and drying. By this operation, the alkali metal of the alkali titanate obtained in the second basic process is neutralized and separated from the alkali titanate, and finally becomes titanium oxide. Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

【0009】[0009]

【実施例、比較例】実施例1 酒石酸1.5モルを純水に溶解して8.0lとし、撹拌
しつつ80℃に昇温する。これとは別に四塩化チタン0
.8モルを純水に溶解して2.0lとし、これを5ml
/min.の添加速度で撹拌下の酒石酸溶液に添加する
と、四塩化チタンは直ちに加水分解して、白色状の水和
酸化チタン〜酒石酸の反応縮合物の微粒子が析出する。 添加終了後、更に1.0時間、80℃を維持した後、▲
ろ▼過し、▲ろ▼液がpH5になるまで純水にて水洗し
、この反応縮合物の水湿ケーキを純水に懸濁して5.0
lとし、撹拌しつつ80℃に昇温する。次いで、水酸化
ナトリウム2.0モルを純水に溶解して1.0lとし、
上記懸濁液がpH11になるまで添加し、更に1.5時
間、80℃を維持した後、▲ろ▼過し、▲ろ▼液がpH
8になるまで純水で水洗し、再び、この水湿ケーキを純
水に懸濁して5.0lとする。この懸濁液を撹拌しつつ
70℃に昇温し、塩酸2.0モルを純水に溶解して1.
0lとし上記懸濁液がpH1.5になるまで添加し、更
に1.5時間、70℃を維持した後、▲ろ▼過し、▲ろ
▼液がpH5になるまで純水で水洗して水湿ケーキとし
て取り出し、これを80℃で乾燥すると粉砕を必要とし
ない良好な粉末となる。これを電子顕微鏡で確認したと
ころ、数十〜数百Åの球状粒子の集合体で、大きさは0
.05〜0.1μmであり、BET法による比表面積の
実測値は160m2/gと非常に大きな数値であつた。 又、X線回折分析でルチル型酸化チタンが確認された。
[Examples and Comparative Examples] Example 1 1.5 mol of tartaric acid was dissolved in pure water to make 8.0 liters, and the temperature was raised to 80° C. while stirring. Apart from this, titanium tetrachloride 0
.. Dissolve 8 mol in pure water to make 2.0 liters, and add 5 ml of this to 2.0 liters.
/min. When added to the tartaric acid solution under stirring at an addition rate of , titanium tetrachloride is immediately hydrolyzed to precipitate fine particles of a white reaction condensate of hydrated titanium oxide and tartaric acid. After the addition was completed, the temperature was maintained at 80°C for another 1.0 hour, and then ▲
Filter, wash with pure water until the filtrate reaches pH 5, suspend the wet cake of this reaction condensate in pure water, and adjust to pH 5.0.
1 and raise the temperature to 80°C while stirring. Next, 2.0 mol of sodium hydroxide was dissolved in pure water to make 1.0 l,
The above suspension was added until the pH reached 11, and after maintaining the temperature at 80°C for another 1.5 hours, ▲filtered, and ▲the filtrate had a pH of
The wet cake was washed with pure water until it reached a concentration of 8, and the wet cake was suspended in pure water again to make a total volume of 5.0 liters. The temperature of this suspension was raised to 70°C while stirring, and 2.0 mol of hydrochloric acid was dissolved in pure water.
Add the above suspension until the pH reaches 1.5, maintain the temperature at 70°C for another 1.5 hours, ▲filter, and ▲wash with pure water until the filtrate reaches pH 5. A wet cake is taken out and dried at 80°C to form a good powder that does not require pulverization. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles with a diameter of several tens to hundreds of Å, and the size was 0.
.. The specific surface area measured by the BET method was 160 m2/g, which was a very large value. Moreover, rutile type titanium oxide was confirmed by X-ray diffraction analysis.

【0010】比較例1 酒石酸を使用しない他は、実施例1と同一条件及び要領
で白色状の粒状物を得たが、非常に固い数mm前後の乾
燥粒子となつた。これを粉砕し、電子顕微鏡で確認した
ところ、数μm〜数百μmの不定形粒状物であり、微粒
子と言えるものではなかつた。又、BET法による比表
面積の実測値は1.7mm2/gと非常に小さく、X線
回折分析で確認したところ非晶質であつた。
Comparative Example 1 White granules were obtained under the same conditions and procedures as in Example 1, except that tartaric acid was not used, but the result was very hard dry particles around several mm in size. When this was crushed and confirmed using an electron microscope, it was found to be irregularly shaped particles with a size of several μm to several hundred μm, and could not be called fine particles. Further, the actual value of the specific surface area measured by the BET method was very small, 1.7 mm2/g, and it was confirmed by X-ray diffraction analysis that it was amorphous.

【0011】実施例2 実施例1で、塩酸の代わりに硝酸を使用する他は、実施
例1と同一条件及び要領で白色の微粉末を得た。これを
電子顕微鏡で確認したところ、数十〜数百Åの球状粒子
の集合体で、大きさは0.05〜0.1μmであり、B
ET法による比表面積の実測値は172m2/gと非常
に大きな数値であつた。又、X線回折分析でルチル型酸
化チタンが確認された。
Example 2 A white fine powder was obtained under the same conditions and procedure as in Example 1, except that nitric acid was used instead of hydrochloric acid. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of several tens to hundreds of angstroms, with a size of 0.05 to 0.1 μm.
The actual value of the specific surface area measured by the ET method was 172 m2/g, which was a very large value. Moreover, rutile type titanium oxide was confirmed by X-ray diffraction analysis.

【0012】実施例3 シュウ酸2.0モルとグルコン酸1.0モルを純水に溶
解して15.0lとし、撹拌しつつ100℃に昇温する
。これとは別に四塩化チタン1.5モルを純水に溶解し
て5.0lとし、これを25ml/min.の添加速度
で撹拌下の酒石酸溶液に添加すると、四塩化チタンは直
ちに加水分解して、白色状の水和酸化チタン〜シュウ酸
〜グルコン酸の反応縮合物の微粒子が析出する。添加終
了後、更に1.0時間、100℃を維持した後、▲ろ▼
過し、▲ろ▼液がpH5になるまで純水にて水洗し、こ
の反応縮合物の水湿ケーキを純水に懸濁して15.0l
とし、撹拌しつつ100℃に昇温する。次いで、水酸化
カリウム3.0モルを純水に溶解して3.0lとし、上
記懸濁液がpH10になるまで添加し、更に1.0時間
、100℃を維持した後、▲ろ▼過し、▲ろ▼液がpH
8になるまで純水にて水洗し、再び、この水湿ケーキを
純水に懸濁して10.0lとする。この懸濁液を撹拌し
つつ100℃に昇温し、塩酸4.0モルを純水に溶解し
て2.0lとし、上記懸濁液がpH1.5になるまで添
加し、更に1.0時間、100℃を維持した後、▲ろ▼
過し、▲ろ▼液がpH5になるまで純水にて水洗し、水
湿ケーキとして取り出し、これを80℃で乾燥すると粉
砕を必要としない良好な粉末となる。これを電子顕微鏡
で確認したところ、数十〜数百Åの球状粒子の集合体で
、大きさは0.01〜0.1μmであり、BET法によ
る比表面積の実測値は252m2/gと非常に大きな数
値であつた。又、X線回折分析でルチル型酸化チタンが
確認された。
Example 3 2.0 mol of oxalic acid and 1.0 mol of gluconic acid are dissolved in pure water to make 15.0 liters, and the temperature is raised to 100° C. while stirring. Separately, 1.5 mol of titanium tetrachloride was dissolved in pure water to make 5.0 liters, and this was mixed at 25 ml/min. When added to the tartaric acid solution under stirring at an addition rate of , titanium tetrachloride is immediately hydrolyzed to precipitate fine particles of a white reaction condensate of hydrated titanium oxide, oxalic acid, and gluconic acid. After the addition was completed, the temperature was maintained at 100°C for another 1.0 hour, and then ▲filtration▼
▲The filtrate was washed with pure water until the pH reached 5, and the wet cake of this reaction condensate was suspended in pure water to 15.0 liters.
Then, the temperature was raised to 100°C while stirring. Next, 3.0 mol of potassium hydroxide was dissolved in pure water to make 3.0 liters, and added until the pH of the suspension reached 10. After maintaining the temperature at 100°C for an additional 1.0 hour, ▲filtration▲ ▲The pH of the filtrate is
The wet cake was washed with pure water until the size reached 8, and the wet cake was suspended in pure water again to make 10.0 liters. The temperature of this suspension was raised to 100°C while stirring, 4.0 mol of hydrochloric acid was dissolved in pure water to make 2.0 liters, and the suspension was added until the pH reached 1.5, and further 1.0 mol of hydrochloric acid was added until the pH reached 1.5. After maintaining the temperature at 100℃ for an hour, ▲Ro▼
The mixture is filtered, washed with pure water until the filtrate reaches pH 5, taken out as a wet cake, and dried at 80°C to form a good powder that does not require pulverization. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of tens to hundreds of angstroms in size, with a size of 0.01 to 0.1 μm, and the actual value of the specific surface area measured by the BET method was 252 m2/g, which is extremely large. This was a large number. Moreover, rutile type titanium oxide was confirmed by X-ray diffraction analysis.

【0013】実施例4 実施例1で、四塩化チタン0.8モルを純水に溶解して
2.0lとした四塩化チタン水溶液の代わりに、四塩化
チタン0.8モルと塩酸1.0モルを純水に溶解して2
.0lとした四塩化チタン〜塩酸水溶液を使用する他は
、実施例1と同一条件及び要領で白色の微粉末を得た。 これを電子顕微鏡で確認したところ、数十〜数百Åの球
状粒子の集合体で、大きさは0.03〜0.08μmで
あり、BET法による比表面積の実測値は286m2/
gと非常に大きな数値であつた。又、X線回折分析でア
ナターゼ型酸化チタンが確認された。
Example 4 In Example 1, 0.8 mole of titanium tetrachloride and 1.0 mol of hydrochloric acid were used instead of the titanium tetrachloride aqueous solution made by dissolving 0.8 mole of titanium tetrachloride in pure water to make 2.0 liters. Dissolve 2 moles in pure water
.. A white fine powder was obtained under the same conditions and procedure as in Example 1, except that a 0 liter titanium tetrachloride-hydrochloric acid aqueous solution was used. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of tens to hundreds of angstroms, with a size of 0.03 to 0.08 μm, and the actual value of the specific surface area measured by the BET method was 286 m2/
g, which was a very large number. Furthermore, anatase type titanium oxide was confirmed by X-ray diffraction analysis.

【0014】実施例5 実施例3で、四塩化チタン1.5モルを純水に溶解して
5.0lとした四塩化チタン水溶液の代わりに、四塩化
チタン1.5モルと塩酸4.0モルを純水に溶解して5
.0lとした四塩化チタン〜塩酸水溶液を使用する他は
、実施例3と同一条件及び要領で白色の微粉末を得た。 これを電子顕微鏡で確認したところ、数十〜数百Åの球
状粒子の集合体で、大きさは0.02〜0.1μmであ
り、BET法による比表面積の実測値は245m2/g
と非常に大きな数値であつた。又、X線回折分析でアナ
ターゼ型酸化チタンが確認された。
Example 5 In Example 3, 1.5 moles of titanium tetrachloride and 4.0 liters of hydrochloric acid were used instead of the titanium tetrachloride aqueous solution made by dissolving 1.5 moles of titanium tetrachloride in pure water to make 5.0 liters. Dissolve 5 moles in pure water
.. A fine white powder was obtained under the same conditions and procedure as in Example 3, except that a titanium tetrachloride-hydrochloric acid aqueous solution of 0 liters was used. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of several tens to hundreds of angstroms in size, with a size of 0.02 to 0.1 μm, and the actual value of the specific surface area measured by the BET method was 245 m2/g.
This was a very large number. Furthermore, anatase type titanium oxide was confirmed by X-ray diffraction analysis.

【0015】比較例2 シュウ酸とグルコン酸を使用しない他は、実施例5と同
一条件及び要領で白色状の粒状物を得たが、非常に固い
数mm前後の乾燥粒子となつた。これを粉砕し、電子顕
微鏡で確認したところ、数μm〜数百μmの不定形粒状
物であり、微粒子と言えるものではなかつた。又、BE
T法による比表面積の実測値は0.9m2/gと非常に
小さく、X線回折分析で確認したところ非晶質であつた
Comparative Example 2 White granules were obtained under the same conditions and procedures as in Example 5, except that oxalic acid and gluconic acid were not used, but the result was very hard dry particles around several mm in size. When this was crushed and confirmed using an electron microscope, it was found to be irregularly shaped particles with a size of several μm to several hundred μm, and could not be called fine particles. Also, BE
The actual value of the specific surface area measured by the T method was 0.9 m2/g, which was very small, and it was confirmed by X-ray diffraction analysis that it was amorphous.

【0016】実施例6 クエン酸2.0モルとマロン酸1.0モルとシュウ酸1
.0モルを純水に溶解して20.0lとし、撹拌しつつ
95℃に昇温する。これとは別に四塩化チタン2.0モ
ルと塩酸5.0モルを純水に溶解して5.0lとし、こ
れを18ml/min.の添加速度で撹拌下のクエン酸
〜マロン酸〜シュウ酸の混合溶液に添加すると、四塩化
チタンは直ちに加水分解して、白色状の水和酸化チタン
〜クエン酸〜マロン酸〜シュウ酸の反応縮合物の徴粒子
が析出する。添加終了後、更に2.0時間、95℃を維
持した後、▲ろ▼過し、▲ろ▼液がpH5になるまで純
水にて水洗し、この反応縮合物の水湿ケーキを純水に懸
濁して10.0lとし、撹拌しつつ95℃に昇温する。 次いで、水酸化カリウム6.0モルを純水に溶解して3
.0lとし、上記懸濁液がpH12になるまで添加し、
更に1.0時間、95℃を維持した後、▲ろ▼過し、▲
ろ▼液がpH8になるまで純水にて水洗し、再び、この
水湿ケーキを純水に懸濁して10.0lとする。この懸
濁液を撹拌しつつ95℃に昇温し、硫酸8.0モルを純
水に溶解して5.0lとし、上記懸濁液がpH2.5に
なるまで添加し、更に2.0時間、95℃を維持した後
、▲ろ▼過し、▲ろ▼液がpH5になるまで純水にて水
洗し、水湿ケーキとして取り出し、これを70℃で乾燥
すると粉砕を必要としない良好な粉末となる。これを電
子顕微鏡で確認したところ、数十〜数百Åの球状粒子の
集合体で、大きさは0.02〜0.08μmであり、B
ET法による比表面積の実測値は277m2/gと非常
に大きな数値であつた。又、X線回折分析でアナターゼ
型酸化チタンが確認された。
Example 6 2.0 mol of citric acid, 1.0 mol of malonic acid and 1 mol of oxalic acid
.. 0 mol was dissolved in pure water to make 20.0 liters, and the temperature was raised to 95°C while stirring. Separately, 2.0 moles of titanium tetrachloride and 5.0 moles of hydrochloric acid were dissolved in pure water to make 5.0 liters, and this was mixed at 18 ml/min. When titanium tetrachloride is added to a mixed solution of citric acid, malonic acid, and oxalic acid under stirring at an addition rate of Significant particles of condensate precipitate. After the addition was completed, the temperature was maintained at 95°C for another 2.0 hours, then ▲filtered, ▲washed with pure water until the filtrate reached pH 5, and the wet cake of the reaction condensate was washed with pure water. The solution was suspended in water to make 10.0 liters, and the temperature was raised to 95°C while stirring. Next, 6.0 mol of potassium hydroxide was dissolved in pure water and 3
.. 0l and added until the above suspension reached pH 12,
After maintaining the temperature at 95°C for another 1.0 hour, ▲filtration▼, ▲
The filtrate was washed with pure water until the pH reached 8, and the wet cake was suspended in pure water again to make 10.0 liters. The temperature of this suspension was raised to 95°C while stirring, 8.0 mol of sulfuric acid was dissolved in pure water to make 5.0 liters, and the suspension was added until the pH reached 2.5. After maintaining the temperature at 95℃ for an hour, ▲filtrate, ▲wash with pure water until the filtrate reaches pH 5, take it out as a wet cake, and dry it at 70℃, which is a good product that does not require pulverization. It becomes a fine powder. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of several tens to hundreds of angstroms, with a size of 0.02 to 0.08 μm.
The actual value of the specific surface area measured by the ET method was 277 m2/g, which was a very large value. Furthermore, anatase type titanium oxide was confirmed by X-ray diffraction analysis.

【0017】[0017]

【発明の効果】本発明の多孔質性酸化チタン微粒子は、
いずれも実質的に焼結粒子のない、粒子径0.1μm以
下の超微粒子粉末であり、本発明方法では高温での熱処
理を必要としないため、非常に経済的である。
[Effect of the invention] The porous titanium oxide fine particles of the present invention are
All of them are ultrafine powders with particle diameters of 0.1 μm or less and are substantially free of sintered particles, and the method of the present invention does not require heat treatment at high temperatures, making it very economical.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1で得た多孔質性酸化チタン微粒子の形
状を示す電子顕微鏡写真のトレース図であり、倍率は4
0,000倍である。
FIG. 1 is a trace diagram of an electron micrograph showing the shape of porous titanium oxide fine particles obtained in Example 1, and the magnification is 4.
0,000 times.

【図2】実施例1で得た多孔質性ルチル型酸化チタン微
粒子のX線回折分析図である。
FIG. 2 is an X-ray diffraction analysis diagram of porous rutile-type titanium oxide fine particles obtained in Example 1.

【図3】実施例6で得た多孔質性アナターゼ型酸化チタ
ン微粒子のX線回折分析図である。
FIG. 3 is an X-ray diffraction analysis diagram of porous anatase-type titanium oxide fine particles obtained in Example 6.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  二塩基性又は、三塩基性有機カルボン
酸の一種又は、二種以上を溶解した50℃以上の水溶液
系に四塩化チタンの水溶液を注加し、生成する水和酸化
チタン〜有機酸の反応縮合物を▲ろ▼過、水洗し、次い
で、この水和酸化チタン〜有機酸の反応縮合物の水懸濁
液に水酸化アルカリ金属を添加し、pH8以上、50℃
以上の温度にて、反応させた後、▲ろ▼過、水洗し、再
び水懸濁液となした後、鉱酸を添加し、pH3以下、5
0℃以上の温度にて、チタン酸アルカリのアルカリ金属
を中和、離脱せしめた後、▲ろ▼過、水洗、乾燥するこ
とを特徴とする多孔質性酔化チタン微粒子の製造法。
Claim 1: Hydrated titanium oxide produced by pouring an aqueous solution of titanium tetrachloride into an aqueous solution system at 50°C or higher in which one or more dibasic or tribasic organic carboxylic acids are dissolved. The reaction condensate of an organic acid is filtered and washed with water, and then an alkali metal hydroxide is added to the aqueous suspension of the reaction condensate of hydrated titanium oxide and an organic acid, and the mixture is heated to a pH of 8 or more at 50°C.
After reacting at the above temperature, ▲filtration, washing with water, and making an aqueous suspension again, mineral acid is added, pH is below 3, 5
A method for producing porous titanium fine particles, which comprises neutralizing and removing alkali metals from alkali titanate at a temperature of 0° C. or higher, followed by filtration, washing with water, and drying.
【請求項2】  二塩基性又は、三塩基性有機カルボン
酸の一種又は、二種以上を溶解した50℃以上の水溶液
系に鉱酸を溶解した四塩化チタンの水溶液を注加するこ
とを特徴とする請求項1記載の多孔質性酸化チタン微粒
子の製造法。
2. The method is characterized in that an aqueous solution of titanium tetrachloride in which a mineral acid is dissolved is poured into an aqueous solution system at 50°C or higher in which one or more dibasic or tribasic organic carboxylic acids are dissolved. The method for producing porous titanium oxide fine particles according to claim 1.
JP3125675A 1991-03-06 1991-03-06 Production of porous fine particulate titanium oxide Pending JPH04280816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125675A JPH04280816A (en) 1991-03-06 1991-03-06 Production of porous fine particulate titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125675A JPH04280816A (en) 1991-03-06 1991-03-06 Production of porous fine particulate titanium oxide

Publications (1)

Publication Number Publication Date
JPH04280816A true JPH04280816A (en) 1992-10-06

Family

ID=14915881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125675A Pending JPH04280816A (en) 1991-03-06 1991-03-06 Production of porous fine particulate titanium oxide

Country Status (1)

Country Link
JP (1) JPH04280816A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126319A (en) * 2003-10-01 2005-05-19 Toho Titanium Co Ltd Titanium dioxide powder
JP2013078725A (en) * 2011-10-04 2013-05-02 Sakai Chem Ind Co Ltd Adsorbent containing low-crystalline or amorphous titanium hydroxide, method for production thereof, and method for treating aqueous solution including cesium ion
WO2013176956A2 (en) * 2012-05-22 2013-11-28 3M Innovative Properties Company Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment
WO2020170918A1 (en) * 2019-02-19 2020-08-27 昭和電工株式会社 Titanium oxide production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126319A (en) * 2003-10-01 2005-05-19 Toho Titanium Co Ltd Titanium dioxide powder
JP2013078725A (en) * 2011-10-04 2013-05-02 Sakai Chem Ind Co Ltd Adsorbent containing low-crystalline or amorphous titanium hydroxide, method for production thereof, and method for treating aqueous solution including cesium ion
WO2013176956A2 (en) * 2012-05-22 2013-11-28 3M Innovative Properties Company Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment
WO2013176956A3 (en) * 2012-05-22 2014-03-06 3M Innovative Properties Company Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment
WO2020170918A1 (en) * 2019-02-19 2020-08-27 昭和電工株式会社 Titanium oxide production method
JPWO2020170918A1 (en) * 2019-02-19 2021-09-13 昭和電工株式会社 Titanium oxide manufacturing method

Similar Documents

Publication Publication Date Title
US7763232B2 (en) Methods for production of titanium oxide particles, and particles and preparations produced thereby
JPH04214030A (en) Manufacture of titanium dioxide
JPS6317221A (en) Crystalline titanium oxide sol and production thereof
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
KR100708812B1 (en) Manufacturing method of anatase type titanium dioxide photocatalyst
JPH04280815A (en) Fine particulate alkali titanate and its production
JPH04280816A (en) Production of porous fine particulate titanium oxide
KR100420275B1 (en) Preparation of TiO2 fine powder from titanium tetrachloride with inorganic acid
EP1194378A1 (en) Processing aqueous titanium solutions to titanium dioxide pigment
KR20170041451A (en) Method for preparation of pure anatase type powders
CN109219577B (en) Preparation of nanoparticulate titanium dioxide
JPH05163022A (en) Spherical anatase titanium oxide and its production
KR102256399B1 (en) Method for preparing titanium dioxide powder
KR100343395B1 (en) Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate
KR100420277B1 (en) Preparation of TiO2 fine powder from titanium tetrachloride with Alcohol or Acetone
JPH08333117A (en) Production of porous globular titanium oxide particle
KR100424069B1 (en) Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
KR100558337B1 (en) A process for preparing an ultrafine particle of substantial brookite-type titanium oxide, using titanium tetrachloride and aqueous nitric acid
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPS62252328A (en) Method for purifying inorganic compound
JPH06171944A (en) Production of zirconium oxide powder
菊田浩一 et al. Low temperature recycling process for barium titanate based waste
KR100413720B1 (en) Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100385903B1 (en) Method for making titanium dioxide powder