JPS6355047B2 - - Google Patents

Info

Publication number
JPS6355047B2
JPS6355047B2 JP56026358A JP2635881A JPS6355047B2 JP S6355047 B2 JPS6355047 B2 JP S6355047B2 JP 56026358 A JP56026358 A JP 56026358A JP 2635881 A JP2635881 A JP 2635881A JP S6355047 B2 JPS6355047 B2 JP S6355047B2
Authority
JP
Japan
Prior art keywords
acid
electrolyte layer
electrochromic
electrochromic display
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56026358A
Other languages
Japanese (ja)
Other versions
JPS57139721A (en
Inventor
Osahisa Matsudaira
Kyoshi Masui
Kanenori Yoshida
Kenzo Fukuyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP56026358A priority Critical patent/JPS57139721A/en
Priority to US06/351,953 priority patent/US4448493A/en
Priority to DE8282101432T priority patent/DE3261409D1/en
Priority to EP82101432A priority patent/EP0058995B1/en
Publication of JPS57139721A publication Critical patent/JPS57139721A/en
Publication of JPS6355047B2 publication Critical patent/JPS6355047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for

Description

【発明の詳細な説明】 本発明はエレクトロクロミツク表示体に用いる
固形状電解質の主成分としてチタン酸、スズ酸、
アンチモン酸、ジルコニウム酸、ケイ酸から選択
される一種もしくは二種以上の混合物を用いる
か、プロトン導電性固体と、前記のチタン酸、ス
ズ酸、ジルコニウム酸、アンチモン酸、ニオブ
酸、タンタル酸、ケイ酸から選択される一種もし
くは二種以上の混合物とを共存させたものを用
い、さらに必要に応じて多価アルコールを含有さ
せたものに関する。これらの化合物は白色の粉末
として容易に入手出来るため電解質として用いる
ことにより、低コストとなり、白色下地上に鮮明
でコントラストの高い表示が得られる。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses titanic acid, stannic acid,
Either one or a mixture of two or more selected from antimonic acid, zirconic acid, and silicic acid is used, or a proton conductive solid and the aforementioned titanic acid, stannic acid, zirconic acid, antimonic acid, niobic acid, tantalic acid, and silicic acid are used. It relates to a product that uses one or a mixture of two or more selected from acids and further contains a polyhydric alcohol if necessary. Since these compounds are easily available as white powders, their use as electrolytes reduces costs and provides clear, high-contrast displays on white substrates.

又、これらの化合物自身がプロトン導電体であ
るため、発色濃度、応答スピードをも改善され
る。しかもこれらの化合物は粉末として得られ、
インキ化することが出来るから、例えばスクリー
ン印刷法等の手段にて塗布すれば簡単に層として
形成でき、セル構造が簡単で、作成が容易なエレ
クトロクロミツク表示体が得られる。
Furthermore, since these compounds themselves are proton conductors, the color density and response speed are also improved. Moreover, these compounds are obtained as powders,
Since it can be made into an ink, it can be easily formed into a layer by applying it, for example, by screen printing, and an electrochromic display with a simple cell structure and easy to produce can be obtained.

従来、エレクトロクロミツク体を形成する遷移
金属酸化物としては、酸化チタン(TiO2)、酸化
ニツケル(NiOまたはNi2O3)、酸化セリウム
(CeO2)、五酸化バナジウム(V2O5)、酸化イリ
ジウム(Ir2O3)、酸化ロジウム(Rh2O3)、酸化
ニオブ(Nb2O5)、酸化タンタル(Ta2O5)、酸化
クロム(Cr2O3)、酸化モリブテン(MoO3)、酸
化タングステン(WO3)、二酸化マンガン
(MnO2)、酸化レニウム(Re2O7)、酸化オスミウ
ム(OsO4)、酸化コバルト(Co2O3)等が知られ
ており、なかでもWO3、MoO3、TiO2、Ir2O3
Rh2O3、NiO、V2O5等が賞用されている。酸化
タングステンに代表される遷移金属酸化物よりな
る表示素子をエレクトロクロミツク体として用い
た場合、濃度0.1規定の硫酸のような電解液と組
合せることによつて、電圧の印加によつてブルー
に酸化タングステン層が発色するエレクトロクロ
ミツク表示体が知られている。しかし、電解液を
用いると液もれを防止する必要があり、セルの構
造が複雑化してしまつており、しかも酸化タング
ステン等のエレクトロクロミツク層が溶解するな
どの欠点があり、電解質を固体化することが望ま
れている。かかる立場から例えば、特開昭53−
12348号公報にみられるようにヘキサメチレンテ
トラミンと硫酸よりなる酸付加塩等の公知のプロ
トン導電性固体電解質層に用いることが提案され
ている。このプロトン導電性固体は白色結晶であ
るため、エレクトロクロミツク表示体に用いる
と、白色下地にブルーの鮮かな表示が得られる。
しかし、そのプロトン導電率が低いため、応答性
を上げるために電解質層を薄くしようとすると、
アノード電極の色がすかして見えるようになりベ
ースの色濃度が上つてしまい、白色度を上げる必
要がでてくる。従来より表示を鮮かに見せるため
に白色顔料の使用が考えられており、特開昭51−
99057号公報にみられるように酸化チタン
(TiO2)を電解液中に添加したものがある。しか
し、TiO2は絶縁体であり、その比抵抗は1×108
Ω/cmとかなり高く、電解液のようにその抵抗が
低い場合にはTiO2を添加しても、応答性への影
響は大きくないが、ヘキサメチレンテトラミンと
硫酸からなるプロトン導電性固体電解質などでは
そのプロトン導電性が低いためTiO2を添加する
ことにより表示の鮮かさは上昇するが応答性が低
下してしまう。
Traditionally, transition metal oxides that form electrochromic bodies include titanium oxide (TiO 2 ), nickel oxide (NiO or Ni 2 O 3 ), cerium oxide (CeO 2 ), and vanadium pentoxide (V 2 O 5 ). , iridium oxide (Ir 2 O 3 ), rhodium oxide (Rh 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), chromium oxide (Cr 2 O 3 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), manganese dioxide (MnO 2 ), rhenium oxide (Re 2 O 7 ), osmium oxide (OsO 4 ), and cobalt oxide (Co 2 O 3 ), among others. WO3 , MoO3 , TiO2 , Ir2O3 ,
Rh 2 O 3 , NiO, V 2 O 5 and the like are used. When a display element made of a transition metal oxide such as tungsten oxide is used as an electrochromic material, when combined with an electrolyte such as sulfuric acid with a concentration of 0.1, it can turn blue by applying a voltage. Electrochromic displays in which a tungsten oxide layer develops color are known. However, when using an electrolyte, it is necessary to prevent leakage, which complicates the structure of the cell.Furthermore, there are disadvantages such as dissolution of the electrochromic layer such as tungsten oxide, so it is difficult to solidify the electrolyte. It is desired to do so. From this standpoint, for example, JP-A-53-
As seen in Japanese Patent No. 12348, it has been proposed to use an acid addition salt of hexamethylenetetramine and sulfuric acid in a known proton-conductive solid electrolyte layer. Since this proton conductive solid is a white crystal, when used in an electrochromic display, a vivid blue display can be obtained on a white background.
However, since its proton conductivity is low, when trying to make the electrolyte layer thinner to increase responsiveness,
The color of the anode electrode becomes fainter and the color density of the base increases, making it necessary to increase the whiteness. The use of white pigments has long been considered in order to make displays appear more vivid;
There is one in which titanium oxide (TiO 2 ) is added to the electrolyte, as seen in Japanese Patent No. 99057. However, TiO 2 is an insulator and its specific resistance is 1×10 8
The resistance is quite high (Ω/cm), and when the resistance is low like an electrolytic solution, adding TiO 2 does not have a large effect on the response, but it is difficult to add TiO 2 to a proton-conducting solid electrolyte made of hexamethylenetetramine and sulfuric acid. Since its proton conductivity is low, adding TiO 2 increases the brightness of the display but reduces the responsiveness.

本発明は以上の事情を考え、プロトン導電率を
落さずにしかも白色度を上げることを目的として
種々検討を行なつた結果、チタン酸、スズ酸、ジ
ルコニウム酸、アンチモン酸、ニオブ酸、タンタ
ル酸、ケイ酸が白色粉末で下地の白色度を上げる
のに有効であり、しかもそれ自体プロトン導電性
を示し、その抵抗値が1×104〜1×105Ω/cmと
低く、これらを添加したものは発色応答性が悪く
なることはなく、反応に応答スピード、発色濃度
とも改善されることをみいだしたものである。
又、チタン酸、スズ酸、ジルコニウム酸、アンチ
モン酸、ニオブ酸、タンタル酸、チタン酸のそれ
ぞれに印刷インキに用いられるバインダーを少量
添加し、酸化タングステンに代表される遷移金属
酸化物層に隣接して印刷塗布して積層したものに
電圧を印加してもブルーの発色が得られ、それ自
身がエレクトロクロミツク表示体の電解質として
有効なこともわかつた。
In view of the above circumstances, the present invention has been developed based on various studies aimed at increasing whiteness without reducing proton conductivity. Acid and silicic acid are white powders that are effective in increasing the whiteness of the base, and they themselves exhibit proton conductivity and have a low resistance value of 1 x 10 4 to 1 x 10 5 Ω/cm. It has been found that the addition of these additives does not impair color development response and improves both reaction response speed and color development density.
In addition, a small amount of a binder used in printing ink is added to each of titanic acid, stannic acid, zirconic acid, antimonic acid, niobic acid, tantalic acid, and titanic acid to form a layer adjacent to a transition metal oxide layer represented by tungsten oxide. Even when a voltage was applied to the laminated material printed and coated with the material, a blue color was obtained, and it was also found that the material itself is effective as an electrolyte for electrochromic displays.

本発明に用いられるこれらの化合物に関しては
詳細な研究が報告されているがまだ確かではな
い。チタン酸はH4TiO4で示されるが、これに水
が不定量についている。TiO(OH)2・nH2Oや
TiO(2−x)(OH)2x・yH2O(x>1)という報
告もある。又10個のチタン原子あたり3個のプロ
トンが存在するといる報告もある。
Although detailed studies have been reported regarding these compounds used in the present invention, the results are not yet certain. Titanic acid is represented by H 4 TiO 4 and has an indeterminate amount of water attached to it. TiO(OH) 2・nH 2 O
There is also a report that TiO(2-x)(OH) 2x・yH 2 O (x>1). There is also a report that there are 3 protons per 10 titanium atoms.

スズ酸はオルトスズ酸H4SO4、メタスズ酸
H2SnO3ヘキサヒドロオクソスズ酸H2〔Sn
(OH)6〕などが知られているが最近ではSnO2
xH2Oとも書かれ、その水は、(1)付着水:200℃
以下で脱離するが、表面や空孔に連結し、その量
は調整法により変動する(2)結合水:水素結合で母
体と結合し200〜400℃で脱離する(3)構造水:400
℃以上で脱離するなど、水の結合の強さが連続的
に変化していくこともわかつてきた。
Stannic acid is orthostannic acid H 4 SO 4 , metastannic acid
H 2 SnO 3 Hexahydroxostannic acid H 2 [Sn
(OH) 6 ], but recently SnO 2 and
Also written as xH 2 O, the water is (1) Adhering water: 200℃
It is desorbed below, but it connects to the surface and pores, and its amount varies depending on the preparation method. (2) Bound water: It binds to the parent body through hydrogen bonds and desorbs at 200 to 400°C. (3) Structured water: 400
It has also become clear that the strength of water's bond changes continuously, such as desorption at temperatures above ℃.

アンチモン酸にはオルトアンチモン酸
H3SbO4、メタアンチモン酸HSbO3、ピロアンチ
モン酸(二アンチモン酸)H4Sb2O7)、三アンチ
モン酸H5Sb3O10などがあるが、Sb2O3・xH2Oや
Sb2O5・xH2Oのように書かれることもある。1
原子のアンチモンにに1個の水酸基と1個の自由
水が存在することが分かつておりX線回折による
と結晶性のものは{〔H3Sb3O5(OH)8〕}3
〔H5Sb5O6(OH)18〕の組成をもち、これが単位格
子となり14個の交換可能な水素原子をもつている
ことがわかつている。
Antimonic acid is orthoantimonic acid
H 3 SbO 4 , metaantimonic acid HSbO 3 , pyroantimonic acid (diantimonic acid) H 4 Sb 2 O 7 ), triantimonic acid H 5 Sb 3 O 10 , etc., but Sb 2 O 3 xH 2 O
It is sometimes written as Sb 2 O 5 xH 2 O. 1
It has been found that there is one hydroxyl group and one free water in the antimony atom, and according to X-ray diffraction, the crystalline one is {[H 3 Sb 3 O 5 (OH) 8 ]} 3
It has the composition [H 5 Sb 5 O 6 (OH) 18 ], and is known to have a unit cell containing 14 exchangeable hydrogen atoms.

ジルコニウム酸はZr(OH)4・xH2Oと書かれる
もので他の第族元素の水酸物の通性に従つて、
これを酸とみることもできるが、酸としての性質
は少ない。タンタル酸はHTaO3の形が与えられ
ているがこれに不定量の水が付きTa2O5・nH2O
と書かれる。ニオブ酸はNb2O5・xH2Oと書かれ
る。
Zirconic acid is written as Zr(OH) 4 xH 2 O, and according to the facultative properties of hydroxides of other group elements,
Although this can be considered an acid, it has few acidic properties. Tantalum acid is given the form HTaO 3 , but an indeterminate amount of water is added to it to form Ta 2 O 5・nH 2 O
is written. Niobic acid is written as Nb 2 O 5 xH 2 O.

ケイ酸にはオルトケイ酸H4SiO4、メタケイ酸
H2SiO3、メソ二ケイ酸、H2Si2O5、メソ三ケイ
酸H4Si3O8、メソ四ケイ酸H6Si4O4などがあるが
正確にこの組成のものを得るのはむずかしく、白
色粉末として得られる。以上の化合物はすべて白
色の粉末として容易に入手可能である。
Silicic acid includes orthosilicic acid H 4 SiO 4 and metasilicic acid.
There are H 2 SiO 3 , meso disilicic acid, H 2 Si 2 O 5 , meso trisilicate H 4 Si 3 O 8 , meso tetrasilicate H 6 Si 4 O 4, etc., but you can obtain one with exactly this composition. It is difficult to obtain as a white powder. All of the above compounds are readily available as white powders.

チタン酸、スズ酸、アンチモン酸、ジルコニウ
ム酸、タンタル酸、ニオブ酸およびケイ酸は含水
物の状態であるが、その水が化学的に結合してお
り表面が水でおおわれたプロトン導電性の固体で
あり酸としての性質を持つようになるが、遷移金
属酸化物をおかすことがなくエレクトロクロミツ
ク表示体の電解質としても有効であり、単に酸化
チタン、酸化スズ、酸化アンチモン、酸化ジルコ
ニウム、酸化タンタル、酸化ニオブに水を混ぜた
ものとは異なつている。
Titanic acid, stannic acid, antimonic acid, zirconic acid, tantalic acid, niobic acid, and silicic acid are in the state of hydrated substances, but the water is chemically bonded and the surface is covered with water and is a proton conductive solid. Although it has properties as an acid, it is also effective as an electrolyte for electrochromic displays without leaving transition metal oxides; , which is different from niobium oxide mixed with water.

また、チタン酸、スズ酸、アンチモン酸、ジル
コニウム酸、タンタル酸、ニオブ酸、ケイ酸など
の電解質層用の固体電解質は20℃における蒸気圧
が0.1mmHg以下、特に0.05mmHg以下で常態で液体
の多価アルコール類を含有せしめることができ低
湿度条件下での導電性を一層顕著に向上させるこ
とができる。この理由はこれらの多価アルコール
がプロトンの解離エネルギーを低減させるように
作用させることにあるものと思われる。用いる多
価アルコールの量には一定の適当な範囲があり電
解質層の主成分たる固形分に対して0.5乃至30%
特に5乃至20%の範囲の量で用いるのが望ましく
この範囲外では導電性がむしろ低下する傾向があ
りさらに膜強度も低下させる。
In addition, solid electrolytes for electrolyte layers such as titanic acid, stannic acid, antimonic acid, zirconic acid, tantalic acid, niobic acid, and silicic acid have a vapor pressure of 0.1 mmHg or less at 20°C, especially 0.05 mmHg or less, and are normally liquid. Since polyhydric alcohols can be contained, the conductivity under low humidity conditions can be further significantly improved. The reason for this appears to be that these polyhydric alcohols act to reduce the dissociation energy of protons. There is a certain suitable range for the amount of polyhydric alcohol used, and it is 0.5 to 30% based on the solid content, which is the main component of the electrolyte layer.
In particular, it is preferable to use the amount in the range of 5 to 20%; outside this range, the conductivity tends to decrease, and the film strength also decreases.

多価アルコールとしては式 HO−(R−O)−oH (式中、Rは炭素類2乃至10のアルキレン基であ
り、nは1以上の数であつて、nは多価アルコー
ルが常態であるように選択される) で表わされるグリコール類やグリセリン・ジグリ
セリン等が好適に使用される。
The polyhydric alcohol has the formula HO-(R-O)- o H (wherein, R is an alkylene group having 2 to 10 carbon atoms, n is a number of 1 or more, and n is a polyhydric alcohol. Glycols, glycerin, diglycerin, and the like represented by (selected as follows) are preferably used.

グリコールとして適当な例は次の通りである。
エチレングリコール、ジエチレングリコール、ト
リエチレングリコール、テトラエチレングリコー
ル、n=5以上のポリエチレングリコール、(分
子量400以下)、プロピレングリコール、ジプロピ
レングリコール、n=3以上のポリプロピレング
リコール(分子量40以下)、ブチレン−1.4−グリ
コール、ヘキシレングリコール、オクチレングリ
コール等を使用することができる。なおペンタエ
リスリトール、マンニツト、ソルビツト、グリコ
ース等の常態で固体の多価アルコールは低湿度下
での導電性を向上させる効果を有していない。
Examples of suitable glycols are:
Ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol with n = 5 or more (molecular weight 400 or less), propylene glycol, dipropylene glycol, polypropylene glycol with n = 3 or more (molecular weight 40 or less), butylene-1.4 - Glycol, hexylene glycol, octylene glycol, etc. can be used. Note that normally solid polyhydric alcohols such as pentaerythritol, mannitol, sorbitol, and glycose do not have the effect of improving conductivity under low humidity.

本発明のエレクトロクロミツク表示体の構造の
一例を示せば第1図に示すように透明基板1上に
パターン化された透明電極2を設け、さらに発色
層であるエレクトロクロミツク体層3として同じ
くパターン化された遷移金属酸化物層一例として
酸化タングステン層を設ける。電気のリークを防
ぐために絶縁層4を非表示部に設け、その上に電
解質層5としてチタン酸、スズ酸、アンチモン
酸、ジルコニウム酸、ニオブ酸、タンタル酸、ケ
イ酸あるいは複数の混合物か、それらをさらにプ
ロトン導電性固体に混合したものを塗布し、その
上に対向電極6を設けた形状となつている。
An example of the structure of the electrochromic display body of the present invention is shown in FIG. An example of a patterned transition metal oxide layer is a tungsten oxide layer. In order to prevent electrical leakage, an insulating layer 4 is provided in a non-displayed area, and an electrolyte layer 5 is formed on the insulating layer 4 using titanic acid, stannic acid, antimonic acid, zirconic acid, niobic acid, tantalic acid, silicic acid, or a mixture thereof. Further, a mixture of proton-conductive solid is coated, and a counter electrode 6 is provided on top of the coating.

前記2つの電極間に電圧を印加することによつ
て、上記金属の酸化物に化学的に結合している水
の部が容易にプロトンを放出し、酸化タングステ
ン層を還元発色させる。本発明は従来の固体電解
質型のエレクトロクロミツク表示体に比較してプ
ロトンの解離とその移動度が高いため、きわめて
高い応答スピードと高い発色濃度を得ることが可
能である。そして、逆電圧を印加すれば、速かに
発色層は消色される。
By applying a voltage between the two electrodes, the water chemically bonded to the metal oxide easily releases protons, causing the tungsten oxide layer to undergo reduction and color development. The present invention has higher proton dissociation and higher mobility than conventional solid electrolyte type electrochromic displays, so it is possible to obtain extremely high response speed and high color density. Then, when a reverse voltage is applied, the coloring layer is quickly decolored.

なお、説明が前後したが、前述したようなチタ
ン酸、スズ酸、アンチモン酸、ジルコニウム酸、
ニオブ酸、タンタル酸、ケイ酸などと共存して電
解質層の主成分とすることのできるプロトン導電
性固体の例をあげると、酸成分がスルホン酸で塩
基成分が尿素類である酸付加塩のプロトン導電性
固体をあげることができ、その具体例は以下の如
くである。
Although the explanation has been mixed, titanic acid, stannic acid, antimonic acid, zirconic acid,
Examples of proton conductive solids that can coexist with niobic acid, tantalic acid, silicic acid, etc. and serve as the main component of the electrolyte layer are acid addition salts in which the acid component is sulfonic acid and the base component is urea. Proton conductive solids can be mentioned, and specific examples thereof are as follows.

(1) 尿素〜Pトルエンスルホン酸 混合モル比
(1:1.2) (2) 尿素〜ベンゼンスルホン酸 混合モル比
(1:1.2) (3) 尿素〜フエノールスルホン酸 混合モル比
(1:1.2) 本発明を以下の実施例で更に詳細に説明する。
(1) Urea to P-toluenesulfonic acid mixed molar ratio (1:1.2) (2) Urea to benzenesulfonic acid mixed molar ratio (1:1.2) (3) Urea to phenolsulfonic acid mixed molar ratio (1:1.2) The invention will be explained in more detail in the following examples.

実施例 1 酸化インジウムの透明電極をパターン状にガラ
ス基板上に設け、さらにその上に酸化タングステ
ンを電子ビーム加熱法により約0.5μmの膜厚に真
空蒸着した。次に非表示部にスクリーン印刷法に
より東洋インキ製造(株)商品名SS−2500の絶縁層
を設けた。
Example 1 A transparent electrode of indium oxide was provided in a pattern on a glass substrate, and tungsten oxide was vacuum-deposited thereon to a thickness of about 0.5 μm by electron beam heating. Next, an insulating layer made by Toyo Ink Mfg. Co., Ltd. under the trade name SS-2500 was provided on the non-display area by screen printing.

次に電解質としてメタスズ酸(三津和化学薬品
灼熱減量15%)とグリセリンとを重量比で4:1
で混合し、モルブデンよりなる対向電極の間サン
ドイツチし両電極間1〜2Vの電圧を印加させる
と白色下地にブルーの発色が得られた。
Next, as an electrolyte, metastannic acid (Mitsuwa Chemicals 15% loss on ignition) and glycerin were used in a weight ratio of 4:1.
When the mixture was mixed and sandwiched between opposing electrodes made of molybdenum and a voltage of 1 to 2 V was applied between both electrodes, a blue color was obtained on the white background.

実施例 2 ガラス基板上に、透明電極と酸化タングステン
層を設けさらに非表示部にスクリーン印刷法によ
り東洋インキ製造(株)商品名SS−2500の絶縁層を
設けたものと、モリブデンよりなる対向電極の間
に尿素・Pトルエンスルフオン酸のモル比1:
1.2よりなる固体電解質にメタスズ酸、グリセリ
ン、バインダー(スチレンアクリル共重合体エマ
ルジヨン商品名トークリルK−70〔東洋インキ製
造(株)〕)を重量比1.6:0.4:0.3:0.3の割合で混合
したものをサンドイツチし、これに1.3Vの電圧
を印加した。このときの発色濃度は通電5秒で
0.4になつた。一方メタスズ酸を加えずに作成し
たセルの場合1.3Vを印加し、発色濃度0.4を得る
のに15秒かかり応答スピードで3倍の増加が得ら
れた。又下地の白色度も向上し、表示の鮮かさも
非常に増し、見やすくなつた。
Example 2 A transparent electrode and a tungsten oxide layer were provided on a glass substrate, and an insulating layer of Toyo Ink Mfg. Co., Ltd. trade name SS-2500 was provided on the non-display area by screen printing, and a counter electrode made of molybdenum. The molar ratio of urea/P-toluenesulfonic acid between 1:
1.2 solid electrolyte mixed with metastannic acid, glycerin, and a binder (styrene-acrylic copolymer emulsion trade name Torcryl K-70 [Toyo Ink Manufacturing Co., Ltd.]) in a weight ratio of 1.6:0.4:0.3:0.3. A voltage of 1.3V was applied to this. The color density at this time is 5 seconds after energizing.
It became 0.4. On the other hand, in the case of a cell prepared without adding metastannic acid, it took 15 seconds to obtain a color density of 0.4 when 1.3V was applied, resulting in a three-fold increase in response speed. In addition, the whiteness of the base was improved, and the brightness of the display was greatly increased, making it easier to see.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のエレクトロクロミツク表示体
の一実施例を示す概略断面図である。 1……透明基板、2……透明電極、3……エレ
クトロクロミツク体層、4……絶縁層、5……電
解質層、6……対向電極。
FIG. 1 is a schematic sectional view showing an embodiment of the electrochromic display of the present invention. DESCRIPTION OF SYMBOLS 1... Transparent substrate, 2... Transparent electrode, 3... Electrochromic body layer, 4... Insulating layer, 5... Electrolyte layer, 6... Counter electrode.

Claims (1)

【特許請求の範囲】 1 透明なパターン電極と対向電極との間に少な
くとも遷移金属酸化物よりなるエレクトロクロミ
ツク体層と電解質層を設けてなるエレクトロクロ
ミツク表示体において、電解質層の主成分として
チタン酸、スズ酸、アンチモン酸、ジルコニウム
酸、ニオブ酸、タンタル酸、およびケイ酸から選
択された一種もしくは二種以上の混合物を用いる
ことを特徴とするエレクトロクロミツク表示体。 2 透明なパターン電極と、対向電極との間に少
なくとも遷移金属酸化物よりなるエレクトロクロ
ミツク体層と電解質層を設けてなるエレクトロク
ロミツク表示体において、電解質層の主成分とし
てチタン酸、スズ酸、アンチモン酸、ジルコニウ
ム酸、ニオブ酸、タンタル酸、およびケイ酸から
選択された一種もしくは二種以上の混合物とプロ
トン導電性固体とを共存させたものを用いること
を特徴とするエレクトロクロミツク表示体。 3 電解質層の主成分に対して、20℃における蒸
気圧が0.1mmHg以下でかつ常態で液体の多価アル
コールを0.5〜30重量パーセント添加した特許請
求の範囲第1項記載のエレクトロクロミツク表示
体。 4 電解質層の主成分に対して、20℃における蒸
気圧が0.1mmHg以下でかつ常態で液体の多価アル
コールを0.5〜30重量パーセント添加した特許請
求の範囲第2項記載のエレクトロクロミツク表示
体。
[Scope of Claims] 1. In an electrochromic display body comprising at least an electrochromic body layer made of a transition metal oxide and an electrolyte layer between a transparent patterned electrode and a counter electrode, as a main component of the electrolyte layer. An electrochromic display characterized by using one or a mixture of two or more selected from titanic acid, stannic acid, antimonic acid, zirconic acid, niobic acid, tantalic acid, and silicic acid. 2. In an electrochromic display comprising at least an electrochromic body layer made of a transition metal oxide and an electrolyte layer between a transparent patterned electrode and a counter electrode, titanic acid or stannic acid is used as the main component of the electrolyte layer. , antimonic acid, zirconic acid, niobic acid, tantalic acid, and a mixture of two or more selected from silicic acid and a proton conductive solid. . 3. The electrochromic display according to claim 1, in which 0.5 to 30 weight percent of polyhydric alcohol, which has a vapor pressure at 20°C of 0.1 mmHg or less and is normally liquid, is added to the main component of the electrolyte layer. . 4. The electrochromic display according to claim 2, in which 0.5 to 30 weight percent of polyhydric alcohol, which has a vapor pressure at 20°C of 0.1 mmHg or less and is normally liquid, is added to the main component of the electrolyte layer. .
JP56026358A 1981-02-25 1981-02-25 Electrochromic display body Granted JPS57139721A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56026358A JPS57139721A (en) 1981-02-25 1981-02-25 Electrochromic display body
US06/351,953 US4448493A (en) 1981-02-25 1982-02-24 Electrochromic display device
DE8282101432T DE3261409D1 (en) 1981-02-25 1982-02-25 Electrochromic display device
EP82101432A EP0058995B1 (en) 1981-02-25 1982-02-25 Electrochromic display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56026358A JPS57139721A (en) 1981-02-25 1981-02-25 Electrochromic display body

Publications (2)

Publication Number Publication Date
JPS57139721A JPS57139721A (en) 1982-08-28
JPS6355047B2 true JPS6355047B2 (en) 1988-11-01

Family

ID=12191255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56026358A Granted JPS57139721A (en) 1981-02-25 1981-02-25 Electrochromic display body

Country Status (1)

Country Link
JP (1) JPS57139721A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173752B2 (en) * 2003-11-05 2007-02-06 E Ink Corporation Electro-optic displays, and materials for use therein
JP6112739B2 (en) * 2015-02-19 2017-04-12 国立大学法人岐阜大学 Ammonia production method and ammonia production apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642214A (en) * 1979-09-14 1981-04-20 Teijin Ltd Flexible solid electrocoloring element
JPS56130723A (en) * 1980-03-18 1981-10-13 Citizen Watch Co Ltd Entirely solid electrochromic display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642214A (en) * 1979-09-14 1981-04-20 Teijin Ltd Flexible solid electrocoloring element
JPS56130723A (en) * 1980-03-18 1981-10-13 Citizen Watch Co Ltd Entirely solid electrochromic display element

Also Published As

Publication number Publication date
JPS57139721A (en) 1982-08-28

Similar Documents

Publication Publication Date Title
EP0058995B1 (en) Electrochromic display device
JP3353905B2 (en) Electrochromic glass
WO1992018896A1 (en) Improved electrode for display devices
KR20020071027A (en) Optical switching device
JPS62483B2 (en)
JPS6355047B2 (en)
JPS6355048B2 (en)
JPS5953816A (en) Fully solid state type electrochromic element
JPS6111727A (en) Transmission type electrochromic element
JPS6078428A (en) Transmission type electrochromic element
JPS59184327A (en) Electrochromic display element
JPS6186733A (en) Electrochromic element
JPH0128927B2 (en)
JPH0115852B2 (en)
JPS6355049B2 (en)
JPH0117137B2 (en)
JPH0143935B2 (en)
GB1601278A (en) Electrochromic display device
JPH0372328A (en) Electrochromic element
JPH0549969B2 (en)
JPS6175325A (en) Display cell
JPS63189844A (en) Electrochromic display element
JPH0241726B2 (en)
JPH0143934B2 (en)
JPS6360888B2 (en)