JPS6360888B2 - - Google Patents

Info

Publication number
JPS6360888B2
JPS6360888B2 JP56041632A JP4163281A JPS6360888B2 JP S6360888 B2 JPS6360888 B2 JP S6360888B2 JP 56041632 A JP56041632 A JP 56041632A JP 4163281 A JP4163281 A JP 4163281A JP S6360888 B2 JPS6360888 B2 JP S6360888B2
Authority
JP
Japan
Prior art keywords
electrode
counter electrode
electrochromic
display element
prussian blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56041632A
Other languages
Japanese (ja)
Other versions
JPS57157219A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56041632A priority Critical patent/JPS57157219A/en
Publication of JPS57157219A publication Critical patent/JPS57157219A/en
Publication of JPS6360888B2 publication Critical patent/JPS6360888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material

Description

【発明の詳现な説明】 本発明は電気化孊的酞化還元反応を利甚した衚
瀺玠子に関するもので、曎に詳しくは可逆酞化還
元材料ずしおプルシアンブルヌ皮膜を圢成した導
電材料を察向電極ずしお甚いた、察シペツク性が
向䞊しか぀倧圢化の容易な゚レクトロクロミツク
衚瀺玠子ECDに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a display element that utilizes an electrochemical redox reaction. This invention relates to an electrochromic display device (ECD) that has improved performance and can be easily enlarged.

近幎、電気化孊的酞化還元反応による光吞収特
性の倉化を可逆的に行なわせ、衚瀺玠子ずしお応
甚する、いわゆる゚レクトロクロミツク衚瀺玠子
の研究が盛んにな぀おいる。液晶衚瀺玠子、発光
ダむオヌドLED等の他の衚瀺玠子ず比范し
お、この゚レクトロクロミツク衚瀺玠子の有する
最倧の特城は、(1)芖角が広い、メモリヌ性を有
するの点であるず蚀うこずができ、かかる芳点
から研究が進められおいるが、この゚レクトロク
ロミツク玠子には、これたで倧別しお皮類のタ
むプが知られおいる。
In recent years, there has been active research into so-called electrochromic display elements in which light absorption characteristics are reversibly changed by electrochemical redox reactions and applied as display elements. Compared to other display elements such as liquid crystal display elements and light emitting diodes (LEDs), the two most important features of this electrochromic display element are (1) wide viewing angle, and (2) memory properties. Research is progressing from this perspective, and two types of electrochromic devices have been known so far.

第のものは溶液䞭に溶解した゚レクトロクロ
ミツク物質、䟋えばビオロゲン誘導䜓等に電気化
孊的酞化還元反応を行なわせ、溶液に䞍溶性な、
着色した反応生成物を電極䞊に析出させお衚瀺を
行なうものである。この堎合、消色は逆電圧を印
加するこずにより電極衚面に析出しおいる着色物
質を元の物質に戻、溶液䞭に再溶解させるこずに
より行なわれる。
The first method is to perform an electrochemical redox reaction on an electrochromic substance, such as a viologen derivative, dissolved in a solution, and to
Display is performed by depositing a colored reaction product on an electrode. In this case, decoloring is performed by applying a reverse voltage to return the colored substance deposited on the electrode surface to the original substance and redissolving it in the solution.

この第のタむプの゚レクトロクロミツク衚瀺
玠子ずしお甚いられる溶液ずしおは、゚レクトロ
クロミツク物質ずしおヘプチルビオロゲン・ブロ
マむドなどを溶解した臭化カリりム氎溶液などが
知られおいる。
As a solution used for this first type of electrochromic display element, an aqueous potassium bromide solution in which an electrochromic substance such as heptyl viologen bromide is dissolved is known.

第のものぱレクトロクロミツク物質ずし
お、酞化タングステンWO3、酞化モリブデン
MoO3などの溶液に䞍溶性な遷移金属酞化物
膜をを甚いるものである。この゚レクトロクロミ
ツク衚瀺玠子は透明基板䞊に蚭けた透明電極䞊に
゚レクトロクロミツク薄膜を蚭け、この薄膜状の
化合物の電気化孊的酞化還元反応による光吞収特
性の倉化を利甚するものであり、この堎合発消色
物質は垞に電極衚面に固定されおいる。
The second method uses a solution-insoluble transition metal oxide film such as tungsten oxide (WO 3 ) or molybdenum oxide (MoO 3 ) as the electrochromic material. This electrochromic display element has an electrochromic thin film on a transparent electrode provided on a transparent substrate, and utilizes changes in light absorption characteristics due to electrochemical redox reactions of this thin film compound. In this case, the color-developing substance is always fixed on the electrode surface.

これら䞡タむプの゚レクトロクロミツク衚瀺玠
子は構成が異なるが、゚レクトロクロミツク衚瀺
玠子の基本構成ずしおは、電気化孊的に可逆発消
色の可胜な衚瀺材料ず電解質ずを甚い、この電解
質に衚瀺極ず察向電極を接觊させおなるのであ
り、この衚瀺極ず察向電極に電圧を印加し、衚瀺
極における電気化孊的酞化あるいは還元反応によ
り衚瀺極をパタヌン衚瀺し、逆電圧印加により逆
反応をおこし消色を行なうものである。この゚レ
クトロクロミツク衚瀺玠子の原理より明らかなよ
うに、゚レクトロクロミツク衚瀺玠子においおは
衚瀺極においお発消色のために流れた電気量は必
然的に察向電極においおも流れなければならな
い。このため゚レクトロクロミツク衚瀺玠子にお
いおは、゚レクトロクロミツク物質の特性ず同時
に察向電極の特性が極めお重芁である。
These two types of electrochromic display elements have different structures, but the basic structure of an electrochromic display element is to use a display material that can be electrochemically reversibly colored and erased, and an electrolyte, and this electrolyte has a display electrode. A voltage is applied between the display electrode and the counter electrode, and a pattern is displayed on the display electrode through an electrochemical oxidation or reduction reaction at the display electrode, and a reverse reaction is caused by applying a reverse voltage to cause the display to disappear. It is something that does color. As is clear from the principle of this electrochromic display element, in an electrochromic display element, the amount of electricity that flows in the display electrode for coloring and erasing must also necessarily flow in the counter electrode. For this reason, in electrochromic display elements, the characteristics of the electrochromic material as well as the characteristics of the counter electrode are extremely important.

埓来、第のタむプの゚レクトロクロミツク衚
瀺玠子の察向電極ずしおは、金属電極を甚い金属
電極䞊でのハロゲンむオンの酞化反応を察向電極
䞊での可逆な電気化孊的反応ずしお利甚するもの
特開昭48−71380号公報、銀塩化銀電極の可
逆的酞化還元反応を利甚するもの特開昭55−
69127号公報が知られおいる。これらの察向電
極では電極䞊の反応生成物がゞピリゞニりム化合
物ず錯䜓等を圢成し、この生成物の逆反応の速床
が遅いこず、あるいは可逆性に欠けるずいうう欠
点があ぀た。たた、第のタむプの゚レクトロク
ロミツク衚瀺玠子の他の察向電極ずしおは
Fe(〓)Fe(〓)の酞化還元察の可逆反応を察向電極
での反応ずしお利甚しようずする提案もなされお
いる特開昭47−1562号公報。Fe(〓)Fe(〓)の可
逆的酞化還元反応は、電解液PHが玄2.5以䞋にお
いおのみ生ずるが、電解液PH2.5以䞋では、―
ゞシアノプニルゞピリゞニりムクロリド以倖の
ゞピリゞニりム化合物を゚レクトロクロミツク物
質ずしお甚いた堎合、発色反応の起る電䜍以前に
氎の分解による氎玠発生が生じ、装眮の砎損を招
くなど倧きな欠点を有する。
Conventionally, the first type of electrochromic display element uses a metal electrode as the counter electrode and utilizes the oxidation reaction of halogen ions on the metal electrode as a reversible electrochemical reaction on the counter electrode (particularly (Japanese Patent Application Laid-open No. 71380/1983), one that utilizes the reversible redox reaction of a silver/silver chloride electrode (Japanese Patent Application Laid-open No. 1983-71380),
69127) is known. These counter electrodes had the drawback that the reaction product on the electrode formed a complex with the dipyridinium compound, and the reverse reaction rate of this product was slow or lacked reversibility. In addition, as another counter electrode of the first type of electrochromic display element,
There has also been a proposal to utilize the reversible reaction of the redox pair Fe ( 〓 ) /Fe ( 〓 ) as a reaction at the counter electrode (Japanese Patent Laid-Open Publication No. 1562/1983). The reversible redox reaction of Fe ( 〓 ) /Fe ( 〓 ) occurs only when the electrolyte pH is about 2.5 or less;
When a dipyridinium compound other than dicyanophenyl dipyridinium chloride is used as an electrochromic substance, hydrogen is generated by decomposition of water before the potential at which the coloring reaction occurs, resulting in major drawbacks such as damage to the device.

又、第のタむプの゚レクトロクロミツク衚瀺
玠子の察向電極ずしおは、導電䜓䞊のWO3の還
元䜓を利甚するもの特開昭50−50893号公報、
あるいは癜金特開昭53−33093号公報、炭玠
特開昭52−73051号公報、金特開昭52−58941
号公報、ニツケル特開昭56−92523号公報等
の金属電極のみを利甚するものが知られおいる。
しか、WO3の還元䜓を甚いた際には、還元䜓の
安定性が悪いため、゚レクトロクロミツク衚瀺玠
子の保存性胜が悪いこず、癜金、炭玠、金、ニツ
ケル等の金属電極のみを甚いる堎合は、可逆な電
気化孊的酞化還元物質が存圚しないため、衚瀺極
の発消色電流が流れるずずもに、察向電極䞊で溶
媒あるいは支持電解質の電気化孊的分解反応が生
じ、寿呜を倧きく䜎䞋させる。
Further, as the counter electrode of the second type of electrochromic display element, a type using a reduced form of WO 3 on a conductor (Japanese Patent Application Laid-open No. 50-50893),
Or platinum (JP 53-33093), carbon (JP 52-73051), gold (JP 52-58941)
There are known methods using only metal electrodes such as Nickel (Japanese Unexamined Patent Publication No. 56-92523).
However, when a reduced form of WO 3 is used, the stability of the reduced form is poor, so the storage performance of the electrochromic display element is poor, and when only metal electrodes such as platinum, carbon, gold, or nickel are used. Since there is no reversible electrochemical redox substance, a coloring/discoloring current flows through the display electrode, and an electrochemical decomposition reaction of the solvent or supporting electrolyte occurs on the counter electrode, significantly shortening the service life.

たた、䞡タむプの゚レクトロクロミツク衚瀺玠
子に共通に䜿甚可胜な他の察向電極ずしお、可逆
酞化還元材料粉末、カヌボン及びバむンダヌ粉末
ずのホツトブレス成圢䜓が開瀺されおいる特開
昭55−69127号公報。しかしながら、この構成に
よる察向電極の電導床が悪くなり、たた可逆酞化
還元材料の酞化還元反応も起りにくくなり、察向
電極ずしおの機胜を果し埗なくなる。このためバ
むンダヌは、党重量の1/5〜1/10皋床ずなる。た
たバむンダヌの量を少くするこずは、察向電極の
真の衚面積を増加させこずができ、埓぀お発消色
反応に際しおの察向電極の電䜍倉化を抑制するこ
ずになり、察向電極に参照電極ずしおの機胜を付
䞎するこずができ奜たしい。しかしながらバむン
ダヌの量が少いずホツトプレスにより加圧成圢さ
れた察向電極は匷床的に極めおもろいものずな
る。このため゚レクトロクロミツク衚瀺玠子のセ
ルを構成した埌、電解液を泚入する際に受けるシ
ペツク、あるいは実際に䜿甚する際に受ける倖郚
的シペツクによりカヌボンが脱萜遊離し、衚瀺極
が汚染され寿呜の䜎䞋を招くこず、曎には、倧圢
の察向電極を補造するのが困難であるため倧圢の
゚レクトロクロミツク衚瀺玠子を䜜補するこずが
できないずいう欠点を有する。。
In addition, as another counter electrode that can be commonly used in both types of electrochromic display elements, a hot-press molded body of reversible redox material powder, carbon, and binder powder has been disclosed (Japanese Patent Laid-Open No. 55-69127). Public bulletin). However, with this configuration, the electrical conductivity of the counter electrode deteriorates, and the redox reaction of the reversible redox material becomes difficult to occur, making it impossible to function as a counter electrode. Therefore, the binder accounts for about 1/5 to 1/10 of the total weight. In addition, reducing the amount of binder can increase the true surface area of the counter electrode, thus suppressing the potential change of the counter electrode during the color development/decolorization reaction, and making the counter electrode suitable as a reference electrode. It is preferable because it can provide functions. However, if the amount of binder is small, the counter electrode formed under pressure by hot pressing becomes extremely brittle in terms of strength. For this reason, after the cell of an electrochromic display element is constructed, carbon falls off and becomes liberated due to the shock received when injecting the electrolyte or the external shock received during actual use, contaminating the display electrode and shortening its lifespan. Furthermore, it is difficult to manufacture a large-sized counter electrode, making it impossible to produce a large-sized electrochromic display element. .

本発明の目的は、前述のごずき埓来の察向電極
に付随する欠点を解消し、安定で、察シペツク性
が向䞊し、か぀倧圢化の容易な゚レクトロクロミ
ツク衚瀺玠子を提䟛するこずにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrochromic display element that is stable, has improved shock resistance, and can be easily enlarged, eliminating the drawbacks associated with conventional counter electrodes as described above.

埓぀お本発明の゚レクトロクロミツク衚瀺玠子
は可逆酞化還元材料ずしおのプルシアンブルヌ皮
膜を圢成した導電材料を察向電極ずしお甚いたこ
ずを特城ずする。
Therefore, the electrochromic display element of the present invention is characterized in that a conductive material on which a Prussian blue film is formed as a reversible redox material is used as a counter electrode.

本発明においお甚いる察向電極は導電材料の倖
面にプルシアンブルヌ皮膜を圢成したものである
が、このプルシアンブルヌはむンクや塗料の青色
顔料ずしお埓来より倚量に利甚されおいる極めお
安定な化合物であり、KFe(〓)〔Fe(〓)CN6〕ある
いはFe4 (〓)〔Fe(〓)CN6〕3なる化孊匏で瀺される
鉄
シアノ錯䜓であり、䞀般にプリシアンカリりム
あるいはプロシアン化カリりムあるいはその誘
導䜓ず、それ以倖の䟡あるいは䟡の鉄むオン
を含む溶液ずの混合により盎ちに沈柱物ずしお、
あるいは混合により生じた沈柱を埌凊理するこず
により埗られ、通垞第図に瀺すような察向電
極を被芆する圢状の薄膜ずしお埗るこずは困難で
ある。たたプルシアンブルヌはアルカリ性にお分
解するが、他の氎あるいは有機溶媒には䞍溶であ
るため、スピンナヌ法、デむツプコヌト法等によ
り電極衚面にプルシアンブルヌ薄膜を圢成するこ
ずはできない。たたプルシアンブルヌは高枩でも
分解するため蒞着法等によ぀おも電極衚面にプル
シアンブルヌ薄膜を圢成できない。このため、埓
来技術ではプルシアンブルヌを皮膜ずしお甚いる
こずは極めお困難であ぀た。しかしながらプリ
シアン化カリりムず、塩化第二鉄、あるいは硫酞
第二鉄等の䟡の鉄塩ずの混合溶液を甚いるず、
以䞋の手法により容易に電極衚瀺にプルシアンブ
ルヌ皮膜を圢成できるこずが刀明した。
The counter electrode used in the present invention has a Prussian blue film formed on the outer surface of a conductive material. Prussian blue is an extremely stable compound that has been used in large quantities as a blue pigment in inks and paints, and KFe ( 〓 ) [Fe ( 〓 ) (CN) 6 ] or Fe 4 ( 〓 ) [Fe ( 〓 ) (CN) 6 ] It is an iron cyano complex represented by the chemical formula 3 , and is generally potassium ferricyanide, potassium ferrocyanide, or potassium ferrocyanide. Immediately as a precipitate by mixing the derivative with a solution containing other divalent or trivalent iron ions,
Alternatively, it is obtained by post-processing the precipitate produced by mixing, and it is usually difficult to obtain a thin film having a shape that covers the counter electrode as shown in FIG. 3a. Further, although Prussian blue decomposes in alkalinity, it is insoluble in other water or organic solvents, so it is impossible to form a Prussian blue thin film on the electrode surface by a spinner method, a dip coating method, or the like. Furthermore, since Prussian blue decomposes even at high temperatures, a Prussian blue thin film cannot be formed on the electrode surface by vapor deposition or the like. For this reason, it has been extremely difficult to use Prussian blue as a film in the prior art. However, when a mixed solution of potassium ferricyanide and a trivalent iron salt such as ferric chloride or ferric sulfate is used,
It has been found that a Prussian blue film can be easily formed on an electrode display by the following method.

(1) 䞊蚘の混合溶液䞭に電極を入れ、混合溶液を
還元するず、電極衚面にプルシアンブルヌ皮膜
が圢成される。
(1) When an electrode is placed in the above mixed solution and the mixed solution is reduced, a Prussian blue film is formed on the electrode surface.

(2) 䞊蚘混合溶液䞭のむオン皮あるいは錯䜓が還
元される玄0.6察SCEより卑なアノヌド溶解
電䜍を有する金属、䟋えばNiFeCu等を䞊
蚘混合溶液䞭に浞挬するず無電解におも溶液䞭
のむオン皮が還元され、金属電極䞊にプルシア
ンブルヌ皮膜が析出する。
(2) Ionic species or complexes in the mixed solution are reduced.Metals with an anode dissolution potential less than about 0.6 (relative to SCE), such as Ni, Fe, and Cu, become electroless when immersed in the mixed solution. However, the ionic species in the solution are reduced and a Prussian blue film is deposited on the metal electrode.

(3) スピンナヌ法、デむツプコヌト法により、䞊
蚘混合溶液の薄局を電極衚瀺に塗垃し、也燥さ
せるず、溶液䞭の䞡化合物が反応し、電極衚面
にプルシアンブルヌ誘導䜓が圢成される。
(3) When a thin layer of the above mixed solution is applied to the electrode display by a spinner method or dip coating method and dried, both compounds in the solution react and a Prussian blue derivative is formed on the electrode surface.

これらの手法においおは、プリシアン化カリ
りムに代えお、プリシアン化ナトリりム等を䜿
甚するこずもできる。
In these methods, sodium ferricyanide or the like may be used instead of potassium ferricyanide.

本発明においおも、前蚘手法を甚いお容易に察
向電極ずしお䜿甚する匷床の倧きい導電材料の倖
面にプルシアンブルヌ皮膜を圢成するこずができ
る。
Also in the present invention, a Prussian blue film can be easily formed on the outer surface of a strong conductive material used as a counter electrode using the above method.

たた本発明においおに、前蚘導電材料ずしお
SnO2In2O3等の透明電極、癜金、金、ニツケ
ル、鉄、ステンレス、アルミニりム、タンタル、
チタン等の金属の板、網、焌結䜓、蒞着膜、発泡
䜓等、あるいは導電性のカヌボン䞍織垃、繊維等
を䜿甚するこずが可胜である。なかでも金属の
網、焌結䜓、発泡䜓、あるいはカヌボンの䞍織
垃、繊維は芋掛の面積あたりの電極衚面積を倧き
くするこずができるため、これらの材料から構成
される察向電極は、他の導電材料を甚いる堎合ず
比范しお、同䞀の電荷量を通じた堎合、䞀局察向
電極の電䜍倉化を小さく抌えるこずができ、参照
電極ずしおの機胜も持たせるこずができ奜たし
い。
Further, in the present invention, as the conductive material
Transparent electrodes such as SnO 2 , In 2 O 3 , platinum, gold, nickel, iron, stainless steel, aluminum, tantalum,
It is possible to use metal plates such as titanium, nets, sintered bodies, vapor deposited films, foams, etc., or conductive carbon nonwoven fabrics, fibers, etc. Among them, metal nets, sintered bodies, foams, carbon non-woven fabrics, and fibers can increase the electrode surface area per apparent area, so counter electrodes made of these materials are better than other conductive materials. Compared to the case where a material is used, it is preferable to pass the same amount of charge because it is possible to suppress the change in potential of the opposing electrode to a further small value, and it can also function as a reference electrode.

本発明による、前蚘手法により構成したプルシ
アンブルヌを衚面に固定した導電材料による察向
電極は、グラフアむトの成圢䜓にみられるもろさ
がないため、電解液泚入時、あるいは䜿甚時のシ
ペツクにより砎壊されるこずがない。たた、前蚘
の手法によるず倧面積の導電材料を甚いるこずに
より、容易に倧面積の察向電極を䜜成するこずが
できるこずは明癜である。
The counter electrode of the present invention, which is made of a conductive material with Prussian blue fixed on its surface and constructed by the above-mentioned method, does not have the brittleness seen in graphite molded bodies, so it can be destroyed by electrolyte injection or shock during use. Never. Further, according to the above-described method, it is clear that by using a large-area conductive material, a large-area counter electrode can be easily created.

しかし、導電材料の衚面に圢成されたプルシア
ンブルヌ皮膜は膜厚が厚くなるず電極衚面より萜
䞋するこずがあり、10Ό以䞋であるこずが必芁で
あ぀た。
However, when the Prussian blue film formed on the surface of the conductive material becomes thick, it may fall from the electrode surface, so the thickness needs to be 10 ÎŒm or less.

たた、このプルシアンブルヌは、前述の劂く、
埓来青色顔料ずしお利甚されおいるものであり、
その安定性は明癜である。曎に、プルシアンブル
ヌの還元䜓も䞭性乃至酞性の氎溶液及びプロピレ
ンカヌボネヌト、アセトニトリル、―ゞメ
チルホルムアミド等の有機溶媒䞭においお極めお
安定である。
In addition, this Prussian blue, as mentioned above,
It is traditionally used as a blue pigment,
Its stability is obvious. Furthermore, the reduced form of Prussian blue is extremely stable in neutral to acidic aqueous solutions and organic solvents such as propylene carbonate, acetonitrile, and N,N-dimethylformamide.

埓぀お本発明の゚レクトロクロミツク衚瀺玠子
は、プルシアンブルヌおよびその還元䜓を察向電
極甚可逆酞化還元材料ずしお利甚し、導電材料を
プルシアンブルヌ皮膜で被芆しお成る察向電極を
甚いたこずにより、安定で、察シペツク性が改善
され、倧圢化が可胜ずな぀たもので、実甚䟡倀が
極めお倧である。
Therefore, the electrochromic display element of the present invention utilizes Prussian blue and its reduced form as a reversible redox material for the counter electrode, and uses a counter electrode made of a conductive material coated with a Prussian blue film, thereby achieving stability. The shock resistance has been improved, and it has become possible to increase the size, so it has extremely high practical value.

以䞋図面を参照し本発明を曎に詳现に説明す
る。
The present invention will be explained in more detail below with reference to the drawings.

第図はおよび第図にそれぞれ本発明の䞀䟋
の゚レクトロクロミツク衚瀺玠子を瀺す。
FIG. 1 and FIG. 2 each show an electrochromic display element according to an example of the present invention.

第図においおはガラス等の透明基板で、こ
の䞊にSnO2等よりなる透明導電性電極を蚭け
る。この透明電極は䞀般に50〔Ω□〕以䞋の䜎
い抵抗、80〔〕以䞊の高い光透過性のものを甚
いる。この透明電極䞊のパタヌン郚及び電極リヌ
ド接続郚以倖に、SiOSiO2MgF2ポリ゚チ
レン等の絶瞁性被膜を蚭ける。䞀方背面基板
䞊に察向電極を蚭け、図瀺するようにスペヌサ
ヌを介しお衚瀺極透明電極のパタヌン郚ず
察向電極を平行に保持する。衚瀺極ず察向電極
ずの間には倚孔質アルミナ等から成る光散乱板
を蚭ける。次いで゚レクトロクロミツク物質を溶
解した電解質溶液をセル内に泚入し、泚入口を
゚ポキシ暹脂にお封止する。
In FIG. 1, reference numeral 1 denotes a transparent substrate made of glass or the like, on which a transparent conductive electrode 2 made of SnO 2 or the like is provided. This transparent electrode generally has a low resistance of 50 [Ω/□] or less and a high light transmittance of 80 [%] or more. An insulating film 3 made of SiO, SiO 2 , MgF 2 , polyethylene, etc. is provided in addition to the pattern portion and the electrode lead connection portion on the transparent electrode. On the other hand, the rear board 4
A counter electrode 5 is provided on top, and the display electrode (transparent electrode pattern portion) and the counter electrode are held in parallel with each other via a spacer 7 as shown in the figure. Display electrode and counter electrode 5
A light scattering plate 6 made of porous alumina etc.
will be established. Next, an electrolyte solution 9 in which an electrochromic substance is dissolved is injected into the cell, and the injection port is sealed with an epoxy resin 8.

このようにしお構成した゚レクトロクロミツク
衚瀺玠子は、衚瀺極ず察向電極間に適宜な電圧を
印加するず電解質溶液䞭の゚レクトロクロミツク
物質が発色し、逆に䞡電極間に逆電圧を印加する
ず衚瀺郚の像は消色し、瀺の透明状態に戻る。
In the electrochromic display element constructed in this way, when an appropriate voltage is applied between the display electrode and the counter electrode, the electrochromic substance in the electrolyte solution develops a color, and conversely, when a reverse voltage is applied between the two electrodes, a display is displayed. The color of the image disappears and it returns to its transparent state.

第図は第図の゚レクトロクロミツク衚瀺玠
子ずは構成䞊゚レクトロクロミツク物質より成る
衚瀺極を透明基板䞊に蚭けた点が異なる他の䟋の
゚レクトロクロミツク衚瀺玠子を瀺すものであ
る。
FIG. 2 shows another example of an electrochromic display element which differs from the electrochromic display element of FIG. 1 in that a display electrode made of an electrochromic material is provided on a transparent substrate.

実斜䟋  長さ50mm×幅30mmのニツケルNi板を察向
電極甚導電材料ずしお甚い、これを塩化第二
鉄及びプリシアン化カリりムを各々0.05〔
〕溶解した溶液に15秒間浞挬し、衚面に350Å
の厚さのプルシアンブルヌ膜を圢成し、KCl
の〔〕氎溶液䞭で電解還元しお察向電極
を䜜補した。第図およびに、このようにし
お䜜成した察向電極の断面図および平面図を瀺
す。尚図面䞭は察極甚リヌド線である。
Example 1 A nickel (Ni) plate with a length of 50 mm and a width of 30 mm was used as the conductive material 12 for the counter electrode, and ferric chloride and potassium ferricyanide were each 0.05 [M/
] Immerse in the dissolved solution for 15 seconds and apply 350 Å to the surface.
Form a Prussian blue film 10 with a thickness of
A counter electrode was prepared by electrolytic reduction in a 1 [M/] aqueous solution. FIGS. 3a and 3b show a cross-sectional view and a plan view of the counter electrode thus prepared. In addition, numeral 11 in the drawing is a lead wire for a counter electrode.

前蚘察向電極を甚い、第図に瀺す゚レクトロ
クロミツク衚瀺玠子を䜜補した。尚電解質溶液
ずしお、N′―ゞヘプチル―4′―ゞピリゞ
ニりムクロラむドを0.05〔〕、KClを
〔〕溶解した氎溶液を甚いた。この電解液
を衚瀺セルに泚入した際、察向電極の砎壊は生じ
なか぀た。衚瀺極に、察向電極に察しお−0.6
〔〕の電圧を印加するず衚瀺極は発色し、正の
電圧を印加するず消色が速かに進行した。発色の
ための電圧及び印加時間を−0.6〔〕0.5秒、
消去のための電圧及び印加時間0.3V〔秒〕に
お繰り返し寿呜詊隓を行な぀たずころ、×105
回以䞊経過しおも衚瀺、消去の特性には䜕ら倉化
を瀺さなか぀た。たた実際にこの衚瀺玠子を萜䞋
させお耐衝撃性を調べたが透明基板のガラスが砎
壊したが察向電極の砎損は芋られなか぀た。
An electrochromic display element shown in FIG. 1 was produced using the counter electrode. In addition, electrolyte solution 9
As, N,N'-diheptyl-4,4'-dipyridinium chloride is 0.05 [M/], KCl is 1
[M/] A dissolved aqueous solution was used. When this electrolyte was injected into the display cell, the counter electrode did not break. −0.6 to the display electrode and to the counter electrode
When a voltage of [V] was applied, the display electrode developed color, and when a positive voltage was applied, the color rapidly disappeared. The voltage and application time for color development were -0.6 [V] (0.5 seconds),
A repeated life test was performed using an erasing voltage and application time of +0.3V [1 second], and the result was 5×10 5
No change was observed in the display and erasing characteristics even after the test was repeated several times. Furthermore, this display element was actually dropped to examine its impact resistance, and although the glass of the transparent substrate was broken, no damage to the counter electrode was observed.

実斜䟋  実斜䟋においお甚いた察向電極甚導電材料ず
しお、実斜䟋のニツケル板にかえおカヌボン繊
維日本カヌボン補を䜿甚した。その衚面積は
芋掛の衚面積の23倍であ぀た。各々0.01〔〕
の硫酞第二鉄及びプリシアン化カリりムを含む
溶液にカヌボン繊維を浞挬し、芋掛の衚面積圓り
2.3mAcm2の電流密床にお40秒間、電解還元を行
ない、その衚面にプルシアンブルヌ薄膜を圢成
し、察向電極ずしお䜿甚した。他は実斜䟋ず同
様に構成し、゚レクトロクロミツク衚瀺玠子を䜜
成した。この衚瀺玠子に぀き実斜䟋ず同様の条
件でその特性を調べた結果、実斜䟋ずほずんど
同様の特性を瀺した。
Example 2 As the conductive material for the counter electrode used in Example 1, carbon fiber (manufactured by Nippon Carbon) was used instead of the nickel plate of Example 1. Its surface area was 23 times the apparent surface area. 0.01 [M/] each
carbon fibers are soaked in a solution containing ferric sulfate and potassium ferricyanide, and
Electrolytic reduction was performed at a current density of 2.3 mA/cm 2 for 40 seconds to form a Prussian blue thin film on the surface, which was used as a counter electrode. The rest of the structure was the same as in Example 1, and an electrochromic display element was produced. The characteristics of this display element were examined under the same conditions as in Example 1, and as a result, it showed almost the same characteristics as in Example 1.

実斜䟋  察向電極甚導電材料ずしお、カヌボンの䞍織垃
日本カヌボン補を䜿甚した。この䞍織垃の衚
面積は、芋掛の衚面積の玄4.5倍であ぀た。この
䞍織垃を、塩化第二鉄及びプリシアン化カリり
ム0.01〔〕を溶解した氎溶液に浞挬し、
0.9mAcm2芋掛の衚面積にお30秒間、陰極ず
しお電解を行い、その衚面にプルシアンブルヌ皮
膜を圢成した。このようにしお䜜成した察向電極
ず、電解質ずしお過塩玠酞リチりムを〔
〕、プロピレンカヌボネヌトに溶解した溶液を
䜿甚し、透明電極䞊に゚レクトロクロミツク物
質ずしおWO3の薄膜を衚瀺極ずしお有する
第図に瀺す゚レクトロクロミツク衚瀺玠子を䜜
成した。
Example 3 A carbon nonwoven fabric (manufactured by Nippon Carbon) was used as the conductive material for the counter electrode. The surface area of this nonwoven fabric was about 4.5 times the apparent surface area. This nonwoven fabric was immersed in an aqueous solution containing 0.01 [M/] of ferric chloride and potassium ferricyanide,
Electrolysis was performed as a cathode at 0.9 mA/cm 2 (apparent surface area) for 30 seconds to form a Prussian blue film on the surface. The counter electrode prepared in this way and lithium perchlorate as an electrolyte were
], using a solution dissolved in propylene carbonate, an electrochromic display element as shown in FIG. 2 was prepared having a thin film 13 of WO 3 as an electrochromic material on a transparent electrode 2 as a display electrode.

かくしお構成した゚レクトロクロミツク衚瀺玠
子は察極に察しお衚瀺−1.0V秒、消去
1.0V秒の矩圢波を衚瀺極に印加し、繰返し
寿呜詊隓を行な぀た結果、×105回以䞊経過し
おも䜕等衚瀺特性には倉化が芋られなか぀た。た
た電解液泚入時及び䜿甚時に受けるシペツクに察
しおも察向電極の砎壊は生じなか぀た。
The electrochromic display element thus constructed has a display voltage of -1.0V (1 second) and an erase voltage of +
As a result of a repeated life test by applying a 1.0 V (1 second) square wave to the display electrode, no change was observed in the display characteristics even after 5×10 5 cycles or more. Further, the counter electrode did not break due to shocks received during electrolyte injection and use.

尚実斜䟋においお、衚瀺材料ずしおN′―
ゞヘプチル―4′―ゞピリゞニりムクロラむド
及びWO3薄膜を䜿甚した゚レクトロクロミツク
衚瀺玠子に぀いおのみ瀺したが、他の衚瀺材料、
䟋えばゞ――シアノプニル―4′―ゞピリ
ゞニりムクロラむド、モリブデンオキサむド、ア
クリゞン誘導䜓等、䞀連の゚レクトロクロミツク
物質を䜿甚した゚レクトロクロミツク衚瀺玠子に
本発明が適甚されるこずぱレクトロクロミツク
衚瀺玠子の原理においおも自明のものである。
In the examples, N, N′-
Although only electrochromic display elements using diheptyl-4,4'-dipyridinium chloride and WO 3 thin film are shown, other display materials,
For example, the present invention is applicable to electrochromic display elements using a series of electrochromic substances such as di-p-cyanophenyl-4,4'-dipyridinium chloride, molybdenum oxide, and acridine derivatives. The principle of the element is also self-evident.

【図面の簡単な説明】[Brief explanation of drawings]

第図及び第図はそれぞれ本発明の䞀䟋の゚
レクトロクロミツク衚瀺玠子の断面図、第図
は本発明においお甚いる察向電極の断面図、第
図は第図の察向電極の平面図である。   透明電極、  導電性透明電極、 
 絶瞁性皮膜、  背面基板、  察向電
極、  光散乱板、  スペヌサ、  封
止甚暹脂、  電解質溶液、  プルシア
ンブルヌ皮膜、  察向電極甚リヌド線、
  察向電極甚導電材料、  WO3薄膜。
FIGS. 1 and 2 are cross-sectional views of an electrochromic display element according to an example of the present invention, and FIG.
is a cross-sectional view of the counter electrode used in the present invention;
Figure b is a plan view of the counter electrode of Figure 3a. 1... Transparent electrode, 2... Conductive transparent electrode, 3...
... Insulating film, 4 ... Back substrate, 5 ... Counter electrode, 6 ... Light scattering plate, 7 ... Spacer, 8 ... Sealing resin, 9 ... Electrolyte solution, 10 ... Prussian blue film, 11...Lead wire for counter electrode, 1
2... Conductive material for counter electrode, 13... WO 3 thin film.

Claims (1)

【特蚱請求の範囲】  電気化孊的酞化還元反応を利甚した゚レクト
ロクロミツク衚瀺玠子においいお、プルシアンブ
ルヌ皮膜を圢成した導電材料を察向電極ずしお甚
いたこずを特城ずする゚レクトロクロミツク衚瀺
玠子。  プルシアンブルヌ皮膜の膜厚が10Ό以䞋であ
る特蚱請求の範囲第項蚘茉の゚レクトロクロミ
ツク衚瀺玠子。
[Scope of Claims] 1. An electrochromic display element using an electrochemical redox reaction, characterized in that a conductive material on which a Prussian blue film is formed is used as a counter electrode. 2. The electrochromic display element according to claim 1, wherein the Prussian blue film has a thickness of 10 ÎŒm or less.
JP56041632A 1981-03-24 1981-03-24 Electrochromic display element Granted JPS57157219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56041632A JPS57157219A (en) 1981-03-24 1981-03-24 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56041632A JPS57157219A (en) 1981-03-24 1981-03-24 Electrochromic display element

Publications (2)

Publication Number Publication Date
JPS57157219A JPS57157219A (en) 1982-09-28
JPS6360888B2 true JPS6360888B2 (en) 1988-11-25

Family

ID=12613700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56041632A Granted JPS57157219A (en) 1981-03-24 1981-03-24 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS57157219A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087316A (en) * 1983-10-20 1985-05-17 Nissan Motor Co Ltd Electrochromic element
JPS60194431A (en) * 1984-03-16 1985-10-02 Nippon Sheet Glass Co Ltd Electrochromic element
JPS63106732A (en) * 1986-10-24 1988-05-11 Asahi Glass Co Ltd Electrochromic element

Also Published As

Publication number Publication date
JPS57157219A (en) 1982-09-28

Similar Documents

Publication Publication Date Title
JP6597373B2 (en) Electrochromic element, display device and driving method thereof
US3854794A (en) Image display cell
US4498739A (en) Electrochromic display devices using iron(III) hexacyanoferrate(II) salt
EP0169442A2 (en) Electro-optic device
US5209980A (en) Transparent counterelectrodes
US5215821A (en) Solid-state electrochromic device with proton-conducting polymer electrolyte and Prussian blue counterelectrode
JP2004504628A (en) Fast switching reversible electrochemical mirror
JPH08262501A (en) Optical device and electrolyte
US4693564A (en) Electrochromic display device
CA1148638A (en) Electrochromic display device
CA1104806A (en) Electrolyte for electrochromic display device
JPS6360888B2 (en)
JPS5814652B2 (en) electrochromic display device
JPH0477889B2 (en)
JPH075497A (en) Optical filter
JPS6360887B2 (en)
JPS5943071B2 (en) electrochromic display element
JPS6328289B2 (en)
JPS61223724A (en) Electrochromic display element
KR100860452B1 (en) Preparation method of activated metal oxide
US20050087448A1 (en) Electrochemical display element and electrochemical display
JPS61238028A (en) Electrochromic element
JPS61223725A (en) Electrochromic display element
JP4506171B2 (en) Electrochemical light control device and method for manufacturing the same
JP2006349751A (en) Electrochemical type display element and display