JPS6354970B2 - - Google Patents

Info

Publication number
JPS6354970B2
JPS6354970B2 JP55021607A JP2160780A JPS6354970B2 JP S6354970 B2 JPS6354970 B2 JP S6354970B2 JP 55021607 A JP55021607 A JP 55021607A JP 2160780 A JP2160780 A JP 2160780A JP S6354970 B2 JPS6354970 B2 JP S6354970B2
Authority
JP
Japan
Prior art keywords
dryer
heat
steam
drying
circulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55021607A
Other languages
Japanese (ja)
Other versions
JPS56119416A (en
Inventor
Minoru Morita
Tatsuyuki Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2160780A priority Critical patent/JPS56119416A/en
Publication of JPS56119416A publication Critical patent/JPS56119416A/en
Publication of JPS6354970B2 publication Critical patent/JPS6354970B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は間接加熱乾燥機および発電設備を備え
た含水有機物の乾燥焼却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for drying and incinerating water-containing organic matter, which is equipped with an indirect heating dryer and power generation equipment.

従来、水分含有率が60〜90%といつた水分の多
い含水有機物としての汚泥は、乾燥部と焼却部を
持つた竪型多段炉回転式キルン等の装置によつて
処理されていた。すなわち、そこでは投入される
湿潤ケーキが、ケーキが焼却されて発生する高温
ガスと接触して乾燥され、この乾燥ケーキが焼却
部に送られ、自然あるいは補助燃料によつて燃焼
される方式が採られている。この方式は、排気温
度が本発明的高い温度となつているため、この温
度まで湿潤ケーキの水分が蒸発および昇温するの
に大きな熱量を必要とする欠点がある。また流動
層式燃焼装置で処理する場合には、乾燥部と焼却
部との区別がないため、排ガス温度は更に高温と
なり、適切な排ガス熱回収装置を設けることが経
済性の点で不可欠となる。
Conventionally, sludge, which is a water-containing organic material with a water content of 60 to 90%, has been treated using equipment such as a vertical multi-stage rotary kiln that has a drying section and an incineration section. In other words, the input wet cake is dried by contacting with the high temperature gas generated when the cake is incinerated, and this dry cake is sent to the incineration section where it is burned naturally or with auxiliary fuel. It is being This system has the drawback that, since the exhaust gas temperature is as high as the present invention, a large amount of heat is required to evaporate the moisture in the wet cake and raise the temperature to this temperature. In addition, when processing with a fluidized bed combustion equipment, there is no distinction between the drying section and the incineration section, so the exhaust gas temperature becomes even higher, making it essential from an economic point of view to install an appropriate exhaust gas heat recovery device. .

本発明はかかる従来の難点を根本的に解消した
もので、その基本的な思想は、乾燥部を焼却部と
区別し、その乾燥機において含水有機物の水分を
除去する際に、可能な限り不凝縮性成分のないよ
うに間接加熱乾燥機を用いることによつて排気ガ
スの凝縮温度を上げ、同時に非凝縮性ガスの混入
しないように過熱蒸気を循環再使用し、かくして
得られた高い凝縮温度の排ガスによれば、熱交換
器を介してその排ガス温度で高い圧力をもつて蒸
発する作動流体に熱交換させれば、この作動流体
によつて十分に発電を達成できることにある。ま
た乾燥された有機物は、焼却炉に供給し、焼却す
るのであるが、汚泥を対象とする場合には乾燥汚
泥の発熱量は小さいが、石炭のような固形燃料と
しての取扱を行うことができるため、微粉炭燃焼
炉あるいは流動ボイラーのような、単位体積当り
の熱容量の高い装置を用いることができるから、
安価な設備で足り、かつ熱回収を十分行うことが
できる。そこで、この種の設備において熱回収を
行い、その回収熱により供給湿潤汚泥を乾燥させ
れば、熱の有効利用となることの知見にも基いて
いる。
The present invention fundamentally solves these conventional difficulties, and its basic idea is to distinguish the drying section from the incineration section, and to remove as much moisture as possible from hydrated organic matter in the dryer. The condensation temperature of the exhaust gas is increased by using an indirect heating dryer to avoid condensable components, and at the same time, the superheated steam is circulated and reused to avoid contamination with non-condensable gases. According to the exhaust gas, if heat is exchanged with a working fluid that evaporates at high pressure at the temperature of the exhaust gas through a heat exchanger, power generation can be sufficiently achieved using this working fluid. In addition, dried organic matter is supplied to an incinerator and incinerated, but when targeting sludge, the calorific value of dried sludge is small, but it can be treated as a solid fuel like coal. Therefore, it is possible to use equipment with a high heat capacity per unit volume, such as a pulverized coal combustion furnace or a fluidized boiler.
Inexpensive equipment is sufficient, and sufficient heat recovery can be performed. This is based on the knowledge that if heat is recovered in this type of equipment and the supplied wet sludge is dried using the recovered heat, the heat can be used effectively.

以下まず本発明を図面に示す具体例によつて説
明し、次いで個々の特徴とするところを述べる。
Hereinafter, the present invention will first be explained using specific examples shown in the drawings, and then individual characteristics will be described.

なお、以下汚泥の処理を中心にして述べるが、
含水有機物としては、含水褐炭、バガス等にも適
用できることは勿論である。図面中、符号1は間
接加熱乾燥機で、同図にはその一例として外套2
を備え、内部に多数の撹拌羽根3が設けられた撹
拌式の乾燥機が示されている。湿潤汚泥Sは図示
していないフイーダによつて供給され、外套2を
通る熱媒によつて周壁を通じて乾燥され、乾燥汚
泥が供給路4を通して焼却炉5に導かれる。乾燥
汚泥の一部は排出路4′を介して系外へ排出され
る。乾燥の際、汚泥は撹拌羽根3によつて撹拌さ
れ、熱媒の熱との接触の確実化が図られる。焼却
炉5では、その下部の空気吹込口6から燃焼用空
気Aが吹き込まれ、火格子7から吹き出され、汚
泥の焼却が行なわれる。ダストDは排出口8を介
して排出される。
The following discussion will focus on sludge treatment, but
Of course, the present invention can also be applied to hydrated lignite, bagasse, etc. as the hydrated organic matter. In the drawing, reference numeral 1 is an indirect heating dryer, and the figure shows an example of the cloak 2.
A stirring type dryer is shown, which is equipped with a large number of stirring blades 3 inside. The wet sludge S is supplied by a feeder (not shown), dried through the peripheral wall by the heat medium passing through the jacket 2, and the dried sludge is led to the incinerator 5 through the supply path 4. A portion of the dried sludge is discharged out of the system via the discharge path 4'. During drying, the sludge is stirred by the stirring blades 3 to ensure contact with the heat of the heating medium. In the incinerator 5, combustion air A is blown into the air inlet 6 at the lower part of the incinerator 5 and blown out from the grate 7, thereby incinerating the sludge. The dust D is discharged through the discharge port 8.

一方、乾燥機1からの水分を保有する排気ガス
は、排出口9から排出され、管路10を通つて排
風機11および熱交換器12に至る。熱交換器1
2にはフロンR―114等の作動流体が通る循環路
13が配設されている。この熱交換器12では、
管路10を通して導かれた排気ガスが入口12a
より入り凝縮して出口12bから排出される。こ
のとき、入口12cから流入する凝縮状態の作動
流体は蒸発せられ、出口12dから排出され発電
機14と連結されたタービン15に至り、膨張時
の回転力により発電機14を回した後、コンデン
サー16により凝縮され、圧力ポンプ17により
再び熱交換器12に循環する構成となつている。
On the other hand, the exhaust gas containing moisture from the dryer 1 is discharged from the outlet 9 and passes through the pipe 10 to the exhaust fan 11 and the heat exchanger 12. heat exchanger 1
2 is provided with a circulation path 13 through which a working fluid such as Freon R-114 passes. In this heat exchanger 12,
Exhaust gas guided through the pipe 10 enters the inlet 12a.
It enters, condenses, and is discharged from the outlet 12b. At this time, the condensed working fluid flowing in from the inlet 12c is evaporated and discharged from the outlet 12d, reaching the turbine 15 connected to the generator 14. After rotating the generator 14 by the rotational force during expansion, the condenser 16, and is circulated again to the heat exchanger 12 by a pressure pump 17.

また乾燥機1からの排気ガスの一部は、排風機
11によりガス加熱器18に導かれ、ここで次述
する熱媒により加熱された後、管路19を経て乾
燥機1内に供給され、循環するようになつてい
る。
Further, a part of the exhaust gas from the dryer 1 is guided by the exhaust fan 11 to the gas heater 18, where it is heated by a heat medium described below, and then supplied into the dryer 1 through a pipe 19. , has become cyclical.

一方、乾燥機1には熱媒が管路20を介して送
給され、湿潤汚泥を乾燥させた後、管路21を介
して焼却炉5に送られる。焼却炉5内には伝熱熱
回収部22が設けられ、熱媒はこの熱回収部22
において焼却炉5内の発生熱を吸収した後、出口
23より出て、管路24、弁28および管路25
を通り、さらに管路20および26を通つて、一
部は乾燥機1へ再循環され、他の部分はガス加熱
器18に加熱用として送られる。ガス加熱器18
からの排熱媒は、管路27を通して、再び熱回収
部22へと返送される。
On the other hand, a heat medium is supplied to the dryer 1 via a pipe line 20, and after drying the wet sludge, it is sent to the incinerator 5 via a pipe line 21. A heat transfer heat recovery section 22 is provided in the incinerator 5, and the heat medium is transferred to the heat recovery section 22.
After absorbing the generated heat in the incinerator 5, it exits from the outlet 23, and flows through the pipe 24, the valve 28, and the pipe 25.
and further through lines 20 and 26, a portion is recycled to the dryer 1 and another portion is sent to the gas heater 18 for heating. gas heater 18
The waste heat medium is returned to the heat recovery section 22 again through the pipe 27.

さらに、熱媒が水蒸気の場合には、熱回収部2
2において過熱蒸気とされた後、弁28が閉じ、
弁29,30が開き、その過熱蒸気が発電機31
に連結されたタービン32に送給され、発電が行
われた後、管路33を通して、上述例と同様に乾
燥機1およびガス加熱器18に送られる。なお、
焼却炉5で発生する熱量と乾燥機1等で必要とす
るエネルギーは平衡することはないので、一部を
熱交換器12を通る作動流体による発電に用いた
り、管路34を通して他の用途に用いることがで
きる。
Furthermore, when the heat medium is water vapor, the heat recovery section 2
After being made into superheated steam in step 2, the valve 28 is closed;
The valves 29 and 30 open, and the superheated steam flows into the generator 31.
After the gas is supplied to the turbine 32 connected to the turbine 32 to generate electricity, it is sent through the pipe 33 to the dryer 1 and the gas heater 18 in the same manner as in the above example. In addition,
Since the amount of heat generated in the incinerator 5 and the energy required by the dryer 1 etc. are not balanced, a portion is used for power generation by the working fluid passing through the heat exchanger 12, or is used for other purposes through the pipe 34. Can be used.

以上のような汚泥の焼却装置によれば、乾燥に
際し間接加熱乾燥機1が用いられてるので、この
乾燥機1内を通過する不凝縮性ガスの量を凝縮す
る汚泥からの蒸発水分に比較して極力少くし、あ
る場合には不凝縮性ガスのない加熱蒸気となし、
蒸発水分の凝縮温度を可能な限り高くしておけ
ば、この温度で高い圧力で蒸発する作動流体が得
られる。その結果、この作動流体に基いて十分に
発電を行うことができる。また、ガス加熱器18
によつて熱回収部22を通つた高温熱媒によつて
加熱することによつて乾燥効率を高めることがで
きる。
According to the sludge incineration apparatus described above, since the indirect heating dryer 1 is used for drying, the amount of non-condensable gas passing through the dryer 1 is compared with the evaporated water from the condensed sludge. In some cases, use heated steam without non-condensable gases,
By keeping the condensation temperature of the evaporated water as high as possible, a working fluid that evaporates at high pressure at this temperature can be obtained. As a result, sufficient power can be generated based on this working fluid. In addition, the gas heater 18
The drying efficiency can be increased by heating with the high-temperature heating medium passing through the heat recovery section 22.

また先に若干述べたように、焼却炉5には水分
の少い乾燥汚泥が供給されるので、安価な設備で
熱回収を簡単に行うことができる。そして熱媒と
して、油または水蒸気等を用いることができる
が、特に後者の水蒸気の場合には、これを過熱蒸
気とすることができる程焼却炉5を高温操作可能
であるから、焼却炉5で得た過熱蒸気によつてタ
ービン32による発電を行うことができる。ここ
でタービン32の排気温度はほぼ100〜140℃程度
で低い温度である。もし乾燥機として直接加熱式
のものを採用し、タービンからの排気を乾燥用空
気の加温用として用いたとしても、高い加熱用空
気温度は得られず、水分の多い汚泥を乾燥させる
には大量の空気が必要となるばかりでなく、熱効
率も悪い。ところが、幸いに温度は低いが大きな
顕熱を有する水蒸気であるからして、これを間接
加熱式の乾燥機に導けば、約90%程度の熱効率を
得ることができる。
Further, as mentioned above, since dry sludge with low moisture content is supplied to the incinerator 5, heat recovery can be easily performed using inexpensive equipment. Oil, steam, etc. can be used as the heating medium, but especially in the case of the latter steam, the incinerator 5 can be operated at a high enough temperature to turn it into superheated steam. The obtained superheated steam allows the turbine 32 to generate electricity. Here, the exhaust gas temperature of the turbine 32 is low, approximately 100 to 140°C. Even if a direct heating type dryer is adopted and the exhaust air from the turbine is used to heat the drying air, a high heating air temperature cannot be obtained, making it difficult to dry sludge with a high moisture content. Not only does it require a large amount of air, but it also has poor thermal efficiency. Fortunately, however, water vapor has a low temperature but a large amount of sensible heat, and if this is led to an indirect heating type dryer, a thermal efficiency of about 90% can be achieved.

なお、上記例の処理設備では、従来の汚泥乾燥
に必要な脱臭装置は不要となる。すなわち、本設
備では系外に排出されるものは主として凝縮水で
あり、非凝縮性ガスがあつたとしても僅かである
から、悪臭対策費はきわめて少くて足りる。
Note that the treatment equipment of the above example does not require a deodorizing device required for conventional sludge drying. In other words, in this equipment, what is discharged outside the system is mainly condensed water and only a small amount of non-condensable gas is present, so the cost for countermeasures against bad odors is extremely small.

ところで、乾燥機としては、撹拌式のものを例
示したが、スチームチユーブドライヤーあるいは
加熱器付流動層式等の間接加熱式であればいずれ
でもよい。また作動流体としては、フロンR―
114の他アンモニア等を用いることができる。さ
らに熱媒体として高沸点有機性熱媒体を用いる場
合、発電を行わないが、高温の熱媒体を直接的に
間接加熱に利用できるため、伝熱のための温度差
が大きくなり、乾燥機を小型とすることができ
る。
By the way, although a stirring type dryer is shown as an example, any indirect heating type dryer such as a steam tube dryer or a fluidized bed type with a heater may be used. In addition, as a working fluid, Freon R-
In addition to 114, ammonia and the like can be used. Furthermore, when a high boiling point organic heat medium is used as a heat medium, power is not generated, but the high temperature heat medium can be used directly for indirect heating, which increases the temperature difference for heat transfer and makes the dryer smaller. It can be done.

以上の通り、本発明によれば、含水有機物の乾
燥および焼却熱を有効に利用し、高い発熱効率を
もつた発電を行うことができるとともに、特に乾
燥機からの加熱媒体が焼却炉の熱回収部を通つて
乾燥機に戻る主熱媒循環系を構成することによつ
て、その熱媒を熱回収部で高温化でき、乾燥効率
が高く、さらに主熱循環系から分岐してガス加熱
器を通り熱回収部に戻る副熱媒循環系をも設けた
ので、そのガス加熱器によつて乾燥機からの発生
蒸気を乾燥機へ戻す際に確実に過熱蒸気化でき、
乾燥効率を高めることができる。かくして、プロ
セス全体の熱効率がきわめて高くなる利点があ
る。
As described above, according to the present invention, it is possible to effectively utilize the heat of drying and incineration of water-containing organic matter to generate electricity with high heat generation efficiency. By configuring the main heat medium circulation system that returns to the dryer through the heat recovery section, the heat medium can be heated to a high temperature in the heat recovery section, resulting in high drying efficiency, and further branched from the main heat circulation system to the gas heater. We have also installed an auxiliary heating medium circulation system that returns to the heat recovery section through the gas heater, so that the steam generated from the dryer can be reliably superheated and vaporized when returned to the dryer.
Drying efficiency can be increased. The advantage is thus that the thermal efficiency of the entire process is extremely high.

次に実施例を示す。 Next, examples will be shown.

実施例 本例は図面に示すフローとほぼ同様なもので、
直径1200mm×長さ6000mm、有効伝熱面積20m2であ
つて内部に120枚の撹拌羽根を有する間接加熱乾
燥機を、回転速度150RPMで運転した。そしてこ
の乾燥機に、水分含有率75%、乾燥固形物当りの
発熱量4000Kcalのパルプ汚泥を600Kg/hrの割合
で供給するとともに、外套に5.0Kg/cm2・Gageの
蒸気を供給した。乾燥機からの過熱蒸気は温度
130℃で、これを約1400Kg/hrの割合で熱交換器
に導き、作動流体としてのフロンR―114と熱交
換され、400〜420Kg/hrの凝縮水を得た。フロン
R―114の蒸発温度は80℃で、圧力は9.3Kg/cm2
絶対圧力であつた。この蒸発作動流体は小型の膨
張タービンに供給され、3.2Kg/cm2まで膨張し、
20.5kwの発電を行つた後、凝縮温度45℃のコン
デンサーに供給され、凝縮水が熱交換器に返送さ
れた。一方、乾燥された水分15%となつた乾燥汚
泥は、内径1200mmφ×高さ4000mmの流動層式焼却
炉に供給され、その下部から200℃の予熱空気が
供給され、炉内温度は900℃とされ、2300Nm3
hrの熱風が得られた。この熱風は廃熱ボイラーに
供給され、温度250℃で圧力30Kg/cm2の蒸気が900
Kg/hrの割合で得られた。この蒸気は6Kg/cm2
Gageに減圧された後、乾燥機に250Kg/hr、加熱
器に80Kg/hrの割合で供給され、残りの蒸気は放
圧された。
Example This example is almost the same as the flow shown in the drawing.
An indirect heating dryer having a diameter of 1200 mm x a length of 6000 mm, an effective heat transfer area of 20 m 2 and 120 stirring blades inside was operated at a rotation speed of 150 RPM. Pulp sludge with a water content of 75% and a calorific value of 4000 Kcal per dry solid was supplied to this dryer at a rate of 600 Kg/hr, and steam at 5.0 Kg/cm 2 ·Gage was supplied to the mantle. The superheated steam from the dryer has a temperature
At 130°C, this was introduced into a heat exchanger at a rate of about 1400 kg/hr, where heat was exchanged with Freon R-114 as a working fluid, yielding condensed water at a rate of 400 to 420 kg/hr. The evaporation temperature of Freon R-114 is 80℃, and the pressure is 9.3Kg/ cm2 .
It was absolute pressure. This evaporative working fluid is supplied to a small expansion turbine and expanded to 3.2Kg/ cm2 .
After generating 20.5kw of electricity, it was supplied to a condenser with a condensation temperature of 45℃, and the condensed water was returned to the heat exchanger. On the other hand, the dried sludge with a moisture content of 15% is supplied to a fluidized bed incinerator with an inner diameter of 1200 mmφ and a height of 4000 mm. Preheated air at 200°C is supplied from the bottom of the incinerator, and the temperature inside the furnace is 900°C. and 2300Nm 3 /
hr hot air was obtained. This hot air is supplied to the waste heat boiler, which produces 900% steam at a temperature of 250℃ and a pressure of 30Kg/ cm2.
Obtained at the rate of Kg/hr. This steam is 6Kg/ cm2
After being depressurized in the gage, it was supplied to the dryer at a rate of 250 Kg/hr and to the heater at a rate of 80 Kg/hr, and the remaining steam was depressurized.

この実施例で判明するように、従来実施例にお
ける対象汚泥では自燃ができれば良い方であつ
て、電力は勿論、余剰蒸気すら得ることができな
かつたのが、十分、発電を行うことができるとと
もに、乾燥機の加熱用蒸気も十分熱回収できる。
これは、汚泥の乾燥を間接加熱により行ない、同
時に発生したベーパとして過熱蒸気を用い、他の
非凝縮性ガスを用いることなく、乾燥機の系外へ
取出したため、熱交換器での凝縮温度は、過熱度
を除いた温度すなわち大気圧下での蒸気凝縮温度
(100℃)となり、その結果作動流体の蒸発温度が
高くなるため、発電効率が高くなることに基因し
ている。
As is clear from this example, it would be better if the target sludge could self-combust in the conventional example, and it was not possible to obtain electricity or even surplus steam, but it was possible to generate electricity and , sufficient heat can be recovered from the heating steam of the dryer.
This is because the sludge was dried by indirect heating, and superheated steam was used as the vapor generated at the same time, and was taken out of the dryer system without using other non-condensable gases, so the condensation temperature in the heat exchanger was This is due to the fact that the temperature excluding the degree of superheating is the steam condensation temperature (100°C) under atmospheric pressure, and as a result, the evaporation temperature of the working fluid becomes high, which increases the power generation efficiency.

なお、実施例では比較的小規模なプラントであ
つたため、高圧の蒸気をそのまま放圧したが、工
業的に大量の蒸気が得られればタービンを用いて
発電を行うことができること上述の通りである。
In addition, in the example, the high-pressure steam was released as it was because the plant was relatively small-scale, but as mentioned above, if a large amount of steam can be obtained industrially, it is possible to generate electricity using a turbine. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一具体例を示すフローシートで
ある。 1…間接加熱乾燥機、5…焼却炉、12…熱交
換器、15…タービン、16…コンデンサー、1
8…ガス加熱器、22…熱回収部。
The drawing is a flow sheet showing a specific example of the present invention. 1...Indirect heating dryer, 5...Incinerator, 12...Heat exchanger, 15...Turbine, 16...Condenser, 1
8... Gas heater, 22... Heat recovery section.

Claims (1)

【特許請求の範囲】 1 含水有機物を間接加熱乾燥機にて加熱熱媒に
より乾燥した後、この乾燥により生じる蒸気を発
電用タービンの駆動源として利用するとともに、
乾燥後の乾燥有機物を焼却炉へ供給するようにし
た乾燥焼却装置において: 前記乾燥機からの加熱熱媒を焼却炉内の熱回収
部を通り乾燥機へ再循環させる主熱媒循環系と;
乾燥機から発生する蒸気を熱交換器に導いてそこ
で凝縮させる一方で、その熱交換器において前記
発電用タービンの作動流体を間接的に接触させる
作動流体発電系と;乾燥機から発生する蒸気の一
部をガス加熱器を介して乾燥機に戻す蒸気循環系
と;前記主熱媒循環系の熱回収部出側において分
岐し前記ガス加熱器を通りそこで蒸気循環系を通
る蒸気に熱を与えて熱回収部の入側に戻る副熱媒
循環系と; を備えたことを特徴とする含水有機物の乾燥焼却
装置。 2 加熱熱媒としては水蒸気であつて、熱回収後
の熱媒を発電用タービンに供給した後、前記乾燥
機へ再循環させるようにした特許請求の範囲第1
項記載の含水有機物の乾燥焼却装置。 3 乾燥による蒸気をガス加熱器を介して可能な
限り過熱蒸気として乾燥機へ循環通過させるよう
にした特許請求の範囲第1項記載の含水有機物の
乾燥焼却装置。
[Claims] 1. After drying the hydrated organic matter using a heating medium in an indirect heating dryer, the steam generated by this drying is used as a driving source for a power generation turbine, and
In a drying and incineration apparatus configured to supply dried organic matter to an incinerator after drying: a main heating medium circulation system that recirculates a heating medium from the dryer to the dryer through a heat recovery section in the incinerator;
A working fluid power generation system in which the steam generated from the dryer is guided to a heat exchanger and condensed there, while the working fluid of the power generation turbine is brought into indirect contact with the heat exchanger; a steam circulation system in which a portion of the heat medium circulation system is returned to the dryer via the gas heater; the main heating medium circulation system is branched off at the exit side of the heat recovery section, passes through the gas heater, and there gives heat to the steam passing through the steam circulation system; An auxiliary heat medium circulation system that returns to the inlet side of the heat recovery section; 2 The heating heat medium is steam, and the heat medium after heat recovery is supplied to the power generation turbine and then recirculated to the dryer.
Drying and incineration equipment for water-containing organic matter as described in 2. 3. An apparatus for drying and incinerating water-containing organic matter according to claim 1, wherein the steam from the drying is circulated through a gas heater as superheated steam as much as possible to the dryer.
JP2160780A 1980-02-25 1980-02-25 Sludge drying and incinerating appatatus Granted JPS56119416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160780A JPS56119416A (en) 1980-02-25 1980-02-25 Sludge drying and incinerating appatatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160780A JPS56119416A (en) 1980-02-25 1980-02-25 Sludge drying and incinerating appatatus

Publications (2)

Publication Number Publication Date
JPS56119416A JPS56119416A (en) 1981-09-19
JPS6354970B2 true JPS6354970B2 (en) 1988-10-31

Family

ID=12059717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160780A Granted JPS56119416A (en) 1980-02-25 1980-02-25 Sludge drying and incinerating appatatus

Country Status (1)

Country Link
JP (1) JPS56119416A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125317A (en) * 1983-01-07 1984-07-19 Kubota Ltd Sludge drying and incinerating device
JPS59166300A (en) * 1983-03-10 1984-09-19 Kubota Ltd Drying and incinerating device for sludge
JP5509024B2 (en) * 2010-10-12 2014-06-04 月島機械株式会社 Coal drying apparatus and coal drying method
JP5535112B2 (en) * 2011-03-25 2014-07-02 月島機械株式会社 Coal thermal power generation facility and coal thermal power generation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127197A (en) * 1979-03-27 1980-10-01 Nippon Kokan Kk <Nkk> Treating method of high water content sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127197A (en) * 1979-03-27 1980-10-01 Nippon Kokan Kk <Nkk> Treating method of high water content sludge

Also Published As

Publication number Publication date
JPS56119416A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
CA1117300A (en) Power generation system
CN103288314B (en) Substance heat treatment separation and energy recovery system
US4516511A (en) Refuse incineration system
JP2012083031A (en) Coal drying device and method
JP4155898B2 (en) High moisture waste incineration facility equipped with gas turbine
JPS6261861B2 (en)
JP2005098552A5 (en)
JP6522085B1 (en) Heat recovery power generation equipment from flue gas and control method thereof
GB2155599A (en) Improved refuse incineration system
JP5893964B2 (en) Sludge drying system
JPH03137193A (en) Method and apparatus for treating fuel
US6138381A (en) Treatment of moist fuel
JP2005321131A (en) Sludge incinerating system
JPS6354970B2 (en)
US4878441A (en) Apparatus and process for generating steam from wet fuel
RU1838636C (en) Combined steam-and-gas turbine power station and method of recovery of thermal energy of fuel at this station
RU2039918C1 (en) Method of drying water-containing material at electric power station and device for its realization
JPS61209099A (en) Method and apparatus for drying and incinerating sludge
JP7102163B2 (en) Plant, biomass fuel production system and biomass power generation equipment, plant operation method and biomass fuel production method
JPH029248Y2 (en)
EP0377723B1 (en) Drying method in a power-plant process and dryer used in the method
CN214468540U (en) Sludge mixed combustion system utilizing condensate water of thermal power generating unit for pre-drying
CN214275754U (en) Coupling sludge low-temperature drying disposal system for waste incineration plant
RU2137981C1 (en) Technological power plant for thermal processing of solid waste
GB2132323A (en) Drying lignite