JP2012083031A - Coal drying device and method - Google Patents

Coal drying device and method Download PDF

Info

Publication number
JP2012083031A
JP2012083031A JP2010229925A JP2010229925A JP2012083031A JP 2012083031 A JP2012083031 A JP 2012083031A JP 2010229925 A JP2010229925 A JP 2010229925A JP 2010229925 A JP2010229925 A JP 2010229925A JP 2012083031 A JP2012083031 A JP 2012083031A
Authority
JP
Japan
Prior art keywords
coal
exhaust gas
steam
heat
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010229925A
Other languages
Japanese (ja)
Other versions
JP5509024B2 (en
Inventor
Takayuki Noguchi
隆行 野口
Masaki Kataoka
正樹 片岡
Toshiyuki Kimura
敏之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2010229925A priority Critical patent/JP5509024B2/en
Publication of JP2012083031A publication Critical patent/JP2012083031A/en
Application granted granted Critical
Publication of JP5509024B2 publication Critical patent/JP5509024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PROBLEM TO BE SOLVED: To provide a coal drying device capable of reducing consumption of coal and COemission per unit electricity generated.SOLUTION: A pulverizer 2 is disposed in a state that dried coal DC discharged from a steam tube dryer 1 can be charged thereto. A boiler 3 is mounted in a state that powdered coal pulverized by the pulverizer 2 can be charged thereto. The steam S1 generated in the boiler 3 and boiler combustion exhaust gas EG4 are distributed to a high-pressure steam turbine 7 through a first superheater 4. The exhaust steam S5 is discharged from a low-pressure steam turbine 8 connected to the high-pressure steam turbine 7, and the exhaust steam S5 is distributed to a steam condenser 9. The exhaust steam S5 is condensed by the condenser 9, the condensed water D1 is distributed to a heat exchanger 11 to exchange heat with dried exhaust gas DEG in the heat exchanger 11, and the heat is recovered from the dried exhaust gas DEG.

Description

本発明は、単位発電量当たりの石炭使用量やCO2排出量を削減し得る石炭乾燥装置及び石炭乾燥方法に関し、石炭を燃料とする石炭火力発電設備に適用可能なものである。 The present invention relates to a coal drying apparatus and a coal drying method that can reduce the amount of coal used per unit power generation and CO 2 emissions, and can be applied to coal-fired power generation facilities using coal as fuel.

近年、石炭価格の高騰により、石炭火力発電所においては、高い水分を含有した高水分石炭を燃料として使用するようになってきている。しかし、高水分石炭を燃料とした場合、発電効率が低下して石炭の使用量が増加するだけでなく、CO2の排出量も増加する。さらに、石炭使用量が増加するのに伴い、石炭火力発電所の石炭破砕機やボイラの排ガスブロワの動力も増加する事から、経済的ではなかった。 In recent years, due to soaring coal prices, coal-fired power plants have come to use high moisture coal containing high moisture as fuel. However, when high moisture coal is used as a fuel, not only the power generation efficiency is reduced and the amount of coal used is increased, but also the amount of CO 2 emitted is increased. Furthermore, as the amount of coal used increases, the power of the coal crusher of the coal-fired power plant and the exhaust gas blower of the boiler increase, which is not economical.

また、石炭火力発電所において石炭を一般に乾燥しているが、この石炭の乾燥は、ローラーミル等の微粉砕機で石炭を微粉砕する際に、微粉砕機に低酸素濃度のボイラ燃焼排ガスを供給することで、石炭の粉塵爆発を防止しながら微粉砕と共に行っている。この際、微粉砕機に供給するボイラ燃焼排ガスの温度で、乾燥の調整をし、ボイラ燃焼排ガスから空気加熱器等で熱回収する熱回収前の高温排ガスと熱回収後の低温排ガスを適宜混合して温度調整をしている。   In addition, coal is generally dried in a coal-fired power plant. This coal is dried by pulverizing the coal with a pulverizer such as a roller mill. By supplying, it is carried out with fine pulverization while preventing coal dust explosion. At this time, drying is adjusted at the temperature of the boiler combustion exhaust gas supplied to the pulverizer, and the high-temperature exhaust gas before heat recovery that recovers heat from the boiler combustion exhaust gas with an air heater or the like and the low-temperature exhaust gas after heat recovery are mixed as appropriate. To adjust the temperature.

微粉砕機に供給するボイラ燃焼排ガスの量は、微粉砕機の風力分級能力等に関連するが、微粉砕機の振動の原因や過負荷の原因になるため、上限値と下限値がある。さらに、微粉砕機に供給するボイラ燃焼排ガスの温度は、微粉砕機の設計温度から上限値がある。従って、微粉砕機の仕様範囲を超えた高い水分を含有するような高水分石炭には従来対応できなかった。   The amount of boiler combustion exhaust gas supplied to the fine pulverizer is related to the wind classifying ability of the fine pulverizer, etc., but it causes vibration and overload of the fine pulverizer, and therefore has an upper limit value and a lower limit value. Furthermore, the temperature of the boiler combustion exhaust gas supplied to the fine pulverizer has an upper limit value from the design temperature of the fine pulverizer. Therefore, conventionally, it has not been possible to cope with high moisture coal containing high moisture exceeding the specification range of the fine pulverizer.

尚、微粉砕機に供給されたボイラ燃焼排ガスは、石炭の乾燥により発生した水蒸気と共に微粉砕石炭を伴ってそのままボイラに供給される。但し、省エネルギーの効果はないので、発電効率の向上やCO2の削減にはほとんど寄与しない。 In addition, the boiler combustion exhaust gas supplied to the fine pulverizer is supplied to the boiler as it is with the finely pulverized coal together with the water vapor generated by the drying of the coal. However, since there is no energy saving effect, it hardly contributes to improvement of power generation efficiency or CO 2 reduction.

特開平7−279621号公報JP 7-279621 A 特開平6−108058号公報JP-A-6-108058 特開2005−172391号公報JP 2005-172391 A

この一方、蒸気タービンから蒸気を抽気して、該抽気蒸気を加熱源として空気を加熱し、微粉砕機に供給する方法も提案されている(特許文献1)。しかし、上記で説明したように高水分石炭にはこの特許文献1は適用できないし、微粉砕機での酸素濃度の上昇につながり、炭塵爆発の危険性が増大する欠点を有していた。   On the other hand, a method has also been proposed in which steam is extracted from a steam turbine, air is heated using the extracted steam as a heating source, and the air is supplied to a pulverizer (Patent Document 1). However, as described above, this Patent Document 1 cannot be applied to high-moisture coal, and it has the disadvantage that it leads to an increase in the oxygen concentration in the pulverizer and increases the risk of a coal dust explosion.

他方、蒸気タービンから蒸気を抽気して、該抽気蒸気を加熱源として石炭を乾燥する方法も、既に提案されている(特許文献2)。しかし、石炭の乾燥排ガスは、集塵機で除塵された後、大気に通常放出されていて、熱回収(主に蒸発潜熱回収)をこの特許文献2も経済的に行うことはできなかった。   On the other hand, a method of extracting steam from a steam turbine and drying coal using the extracted steam as a heating source has already been proposed (Patent Document 2). However, the dry exhaust gas of coal is normally discharged to the atmosphere after being removed by a dust collector, and heat recovery (mainly latent heat of vaporization) cannot be economically performed by Patent Document 2.

尚ここで、石炭火力発電所の熱収支を考えると、入熱と出熱は概略次のようになる。入熱としては、燃料の熱量、燃焼空気(大気)の熱量、補給純水(室温)の熱量であり、また、出熱としては、復水器放散放熱量、排ガス熱量、機器等の放熱量、発電量である。   Here, considering the heat balance of the coal-fired power plant, the heat input and output heat are roughly as follows. The heat input is the amount of fuel, the amount of combustion air (atmosphere), the amount of pure water (room temperature), and the amount of heat output is the amount of heat dissipated in the condenser, the amount of heat emitted from the exhaust gas, the amount of heat released from the equipment, etc. The amount of power generation.

本発明は上記事情に鑑みてなされたもので、単位発電量当たりの石炭消費量やCO2排出量を削減し得る石炭乾燥装置及び石炭乾燥方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a coal drying device, and a coal drying method may reduce the coal consumption and CO 2 emissions per unit of power generation.

請求項1に係る石炭乾燥装置は、ケーシング内に装入した石炭を、ケーシング内に設けた加熱用蒸気を流通させる加熱路の壁面を通して間接加熱するのに伴い乾燥排ガスを排出する間接加熱型乾燥機と、
乾燥後の石炭を燃料とする石炭燃焼ボイラと、
該石炭燃焼ボイラが発生する蒸気により駆動する蒸気タービンと、
蒸気タービンの復水器と、
前記間接加熱型乾燥機からの乾燥排ガスと前記復水器の復水を接触させて復水を加熱することで、乾燥排ガスのもっている熱を回収すると共に、この復水を前記石炭燃焼ボイラに送る熱回収手段と、
を備えることを特徴とする。
The coal drying apparatus according to claim 1 is an indirect heating type dryer that discharges dry exhaust gas as it indirectly heats the coal charged in the casing through the wall surface of the heating passage through which heating steam provided in the casing circulates. Machine,
A coal-fired boiler that uses dried coal as fuel,
A steam turbine driven by steam generated by the coal-fired boiler;
A steam turbine condenser,
By heating the condensate by contacting the dry exhaust gas from the indirect heating dryer with the condensate of the condenser, the heat of the dry exhaust gas is recovered, and this condensate is supplied to the coal combustion boiler. Heat recovery means to send,
It is characterized by providing.

請求項1に係る石炭乾燥装置の作用を以下に説明する。
本請求項の石炭乾燥装置によれば、石炭を装入して加熱することで乾燥した石炭を間接加熱型乾燥機が排出し、この乾燥された石炭を石炭燃焼ボイラが燃焼して蒸気等の熱媒体を発生する。また、石炭燃焼ボイラで発生した熱媒体により蒸気タービンを駆動し熱媒体の温度が低下するが、間接加熱型乾燥機から排出された乾燥排ガスより熱回収手段が熱回収して、例えば復水とされるこの熱媒体を再加熱してから、この加熱された復水を石炭燃焼ボイラに送る。
The operation of the coal drying apparatus according to claim 1 will be described below.
According to the coal drying apparatus of this claim, the indirect heating type dryer discharges the coal dried by charging and heating the coal, the coal combustion boiler burns the dried coal, Generate heat medium. In addition, the steam turbine is driven by the heat medium generated in the coal combustion boiler and the temperature of the heat medium is lowered, but the heat recovery means recovers heat from the dry exhaust gas discharged from the indirect heating dryer, for example, condensate and The heating medium is reheated and then the heated condensate is sent to a coal fired boiler.

従って、本請求項の石炭乾燥装置によれば、蒸気タービンを駆動して温度が低下した熱媒体を熱回収手段が乾燥排ガスより熱回収して再加熱することで、従来用いられずに捨てられていた熱を有効利用できるようになった。このことから、単位発電量当たりの石炭消費量やCO2排出量を削減することが可能となるのに伴い、例えば石炭火力発電所等の石炭火力発電設備においてより効率的な発電が出来るようになった。なお、キルン、流動層乾燥機等の直接加熱型乾燥機でも適用自体は可能であるが、間接加熱型乾燥機の方が、乾燥排気ガス中の露点が高く、潜熱回収が容易で、潜熱回収量も大きくなる。それに伴い、発電効率の向上もより得やすい利点がある。 Therefore, according to the coal drying apparatus of this claim, the heat recovery means recovers heat from the dry exhaust gas and reheats the heat medium whose temperature has been lowered by driving the steam turbine, and is discarded without being used conventionally. The heat that had been used can now be used effectively. As a result, coal consumption per unit power generation and CO 2 emissions can be reduced, so that more efficient power generation is possible in coal-fired power generation facilities such as coal-fired power plants. became. It can be applied to direct heating dryers such as kilns and fluidized bed dryers, but indirect heating dryers have a higher dew point in the dry exhaust gas, and latent heat recovery is easier and latent heat recovery is possible. The amount also increases. Along with this, there is an advantage that it is easier to improve the power generation efficiency.

ここで、入熱量を一定として発電量を増加させて発電効率を向上するには、復水器からの放散熱量を低減することや排ガス熱量を低減する事が有効である。これに伴い、従来は、蒸気タービンの途中から蒸気を抽気して、ボイラへの給水を加熱するいわゆる再生方式や、高圧蒸気タービンの排気蒸気をボイラで再過熱して次の蒸気タービンに供給するいわゆる再過熱方式により、復水器からの放散熱量を低減し発電効率の向上を果たしてきた。   Here, in order to improve the power generation efficiency by increasing the power generation amount while keeping the heat input constant, it is effective to reduce the amount of heat dissipated from the condenser or the heat amount of the exhaust gas. Along with this, conventionally, steam is extracted from the middle of the steam turbine to heat the feed water to the boiler, or the high-pressure steam turbine exhaust steam is reheated by the boiler and supplied to the next steam turbine. The so-called resuperheating method has reduced the amount of heat dissipated from the condenser and improved the power generation efficiency.

これに対して、本請求項では、蒸気タービンの拙気蒸気を使用してボイラへの給水を加熱する再生方式を採用することによって発電効率を向上できるだけでなく、蒸気タービンの抽気蒸気の加熱源として、ボイラで燃焼させる石炭を予め乾燥する乾燥機の乾燥排ガスを用いている。このことで、発電効率を向上し、単位発電量当たりの石炭消費量やCO2排出量を削減することができた。 On the other hand, in this claim, not only can the power generation efficiency be improved by adopting a regeneration system that uses the steam steam of the steam turbine to heat the feed water to the boiler, but also the heating source of the steam extracted from the steam turbine As described above, dry exhaust gas from a dryer for drying coal previously burned in a boiler is used. This improved power generation efficiency and reduced coal consumption and CO 2 emissions per unit power generation.

請求項2に係る石炭乾燥装置の作用を以下に説明する。
本請求項に係る石炭乾燥装置は請求項1と同一の作用を奏する。但し、本請求項では、前記熱回収手段が、前記乾燥排ガスと前記復水との間で間接的に熱交換する間接型熱交換器とされるという構成を有している。
The operation of the coal drying apparatus according to claim 2 will be described below.
The coal drying apparatus according to the present invention has the same effect as that of the first aspect. However, the present invention has a configuration in which the heat recovery means is an indirect heat exchanger that indirectly exchanges heat between the dry exhaust gas and the condensate.

本請求項によれば、間接型熱交換機という簡単な装置により、乾燥排ガスの凝縮潜熱の約90%が回収できる。つまり、これにより乾燥機に供給した熱量の大部分を回収できるので、ボイラで発生させる必要蒸気量は、ほとんど増加する必要がなくなる。   According to this claim, about 90% of the condensation latent heat of the dry exhaust gas can be recovered by a simple device called an indirect heat exchanger. That is, most of the amount of heat supplied to the dryer can be recovered by this, so that the required amount of steam generated in the boiler need not increase substantially.

請求項3に係る石炭乾燥装置の作用を以下に説明する。
本請求項に係る石炭乾燥装置は請求項1と同一の作用を奏する。但し、本請求項では、前記熱回収手段が、乾燥排ガスが送り込まれる湿式スクラバーと、この湿式スクラバーの循環液と復水との間で熱交換する間接型熱交換器を含むという構成を有している。
The operation of the coal drying apparatus according to claim 3 will be described below.
The coal drying apparatus according to the present invention has the same effect as that of the first aspect. However, in the present invention, the heat recovery means includes a wet scrubber into which dry exhaust gas is sent, and an indirect heat exchanger that exchanges heat between the circulating liquid of the wet scrubber and the condensate. ing.

本請求項によれば、湿式ガススクラバー及び間接型熱交換機という簡単な装置により、乾燥排ガスの凝縮潜熱の約90%が回収できる。つまり、これにより請求項2と同様に、乾燥機に供給した熱量の大部分を回収できるので、ボイラで発生させる必要蒸気量は、ほとんど増加する必要がなくなる。   According to the present claim, about 90% of the condensation latent heat of the dry exhaust gas can be recovered by a simple apparatus such as a wet gas scrubber and an indirect heat exchanger. That is, as in claim 2, since most of the amount of heat supplied to the dryer can be recovered, the required amount of steam generated in the boiler need not increase substantially.

請求項4に係る石炭乾燥装置の作用を以下に説明する。
本請求項に係る石炭乾燥装置は請求項1と同一の作用を奏する。但し、本請求項では、前記間接加熱型乾燥機内に送り込まれるキャリアガスと前記加熱用蒸気のドレインを熱交換してキャリアガスを加熱した後、前記加熱された復水と一緒に前記石炭燃焼ボイラに送るという構成を有している。
つまり、これにより石炭燃焼ボイラに送られる復水の温度が高まって、より効率的な石炭乾燥装置となる。
The operation of the coal drying apparatus according to claim 4 will be described below.
The coal drying apparatus according to the present invention has the same effect as that of the first aspect. However, in the present invention, the carrier gas fed into the indirect heating dryer and the drain of the heating steam are heat-exchanged to heat the carrier gas, and then the coal-fired boiler together with the heated condensate. It has the composition of sending to.
That is, the temperature of the condensate sent to the coal combustion boiler is thereby increased, resulting in a more efficient coal drying apparatus.

請求項5に係る石炭乾燥装置の作用を以下に説明する。
本請求項に係る石炭乾燥装置は請求項1と同一の作用を奏する。但し、本請求項では、前記石炭燃焼ボイラの排ガスを、前記間接加熱型乾燥機内に吹き込むキャリアガスとして利用するという構成を有している。
つまり、石炭燃焼ボイラの排ガスをキャリアガスとして用いることで、より一層の効率化が図られる。
The operation of the coal drying apparatus according to claim 5 will be described below.
The coal drying apparatus according to the present invention has the same effect as that of the first aspect. However, the present invention has a configuration in which the exhaust gas of the coal combustion boiler is used as a carrier gas blown into the indirect heating dryer.
That is, the efficiency can be further improved by using the exhaust gas of the coal combustion boiler as the carrier gas.

請求項6に係る石炭乾燥方法は、石炭を装入して間接加熱型乾燥機で加熱することで、乾燥した石炭を排出すると共に乾燥排ガスを排出し、
次に乾燥された石炭を石炭燃焼ボイラで燃焼して蒸気を発生し、
この後、この蒸気で蒸気タービンを駆動し、
間接加熱型乾燥機から排出された乾燥排ガスより熱回収手段が熱回収して、蒸気タービンを駆動し温度が低下し、復水器で復水となったこの復水を再加熱すると共に、この加熱された復水を石炭燃焼ボイラに送る、
ことを含む。
In the method for drying coal according to claim 6, the coal is charged and heated with an indirect heating dryer, thereby discharging the dried coal and discharging the dried exhaust gas.
Next, the dried coal is burned in a coal-fired boiler to generate steam,
After this, the steam turbine is driven by this steam,
The heat recovery means recovers the heat from the dry exhaust gas discharged from the indirect heating dryer, drives the steam turbine to lower the temperature, and reheats the condensate that has become condensate in the condenser. Sending heated condensate to a coal fired boiler,
Including that.

請求項6に係る石炭乾燥方法は、請求項1の石炭乾燥装置と同様に、発電効率を向上し、単位発電量当たりの石炭消費量やCO2排出量を削減することができる。 The coal drying method according to the sixth aspect can improve the power generation efficiency and reduce the coal consumption per unit power generation amount and CO 2 emission, similarly to the coal drying apparatus according to the first aspect.

請求項7に係る石炭乾燥方法の作用を以下に説明する。
本請求項に係る石炭乾燥方法は請求項6と同一の作用を奏する。但し、本請求項では、石炭を装入して間接加熱型乾燥機で加熱する際に間接加熱型乾燥機からドレインが排出され、このドレインにより、間接加熱型乾燥機に送り込まれるキャリアガスを加熱した後、
乾燥排ガスから熱回収した後の復水とこのドレインを混合するという構成を有している。
つまり、間接加熱型乾燥機から排出されるドレインによりキャリアガスを加熱することで、発電効率のより一層の向上が図れるようになる。
The operation of the coal drying method according to claim 7 will be described below.
The coal drying method according to the present invention has the same effect as that of the sixth aspect. However, in this claim, when the coal is charged and heated by the indirect heating dryer, the drain is discharged from the indirect heating dryer, and the carrier gas fed into the indirect heating dryer is heated by this drain. After
The condensate after heat recovery from the dry exhaust gas and this drain are mixed.
That is, the power generation efficiency can be further improved by heating the carrier gas with the drain discharged from the indirect heating dryer.

請求項8に係る石炭乾燥方法の作用を以下に説明する。
本請求項に係る石炭乾燥方法は請求項6と同一の作用を奏する。但し、本請求項では、ボイラで石炭を燃焼する際に燃焼排ガスが排出され、
この燃焼排ガスの一部を間接加熱型乾燥機に送り込まれるキャリアガスとして使用するという構成を有している。
つまり、大気放散しているボイラの燃焼排ガスの一部を間接加熱型乾燥機のキャリアガスとして使用すれば、40℃程度まで顕熱も回収できて、発電効率のより一層の向上が図れる。
The operation of the coal drying method according to claim 8 will be described below.
The coal drying method according to the present invention has the same effect as that of the sixth aspect. However, in this claim, flue gas is discharged when coal is burned in a boiler,
A part of the combustion exhaust gas is used as a carrier gas fed into an indirect heating dryer.
That is, if a part of the combustion exhaust gas from the boiler that is diffused into the atmosphere is used as the carrier gas of the indirect heating dryer, sensible heat can be recovered up to about 40 ° C., and the power generation efficiency can be further improved.

以上に示したように本発明によれば、単位発電量当たりの石炭消費量やCO2排出量を削減可能な石炭乾燥装置及び石炭乾燥方法を提供することができる。
すなわち、本発明によれば、乾燥排ガスからの潜熱回収するための装置や、排ガスをキャリアガスとして供給するための装置といった簡単な設備の組み合わせで、単位発電量当たりの石炭消費量やCO2排出量を削減可能な石炭火力発電設備を提供する事ができるようにもなる。
As described above, according to the present invention, it is possible to provide a coal drying apparatus and a coal drying method that can reduce coal consumption per unit power generation amount and CO 2 emission.
That is, according to the present invention, a combination of simple equipment such as a device for recovering latent heat from dry exhaust gas and a device for supplying exhaust gas as a carrier gas, coal consumption per unit power generation and CO 2 emissions It will also be possible to provide coal-fired power generation facilities capable of reducing the amount.

本発明の第1の実施の形態に適用されるスチームチューブドライヤの一部破断した斜視図である。1 is a partially broken perspective view of a steam tube dryer applied to a first embodiment of the present invention. 本発明の第1の実施の形態が適用される再過熱・再生方式の石炭火力発電設備を示す概略図であって、スチームチューブドライヤのキャリアガスがSTDキャリアガス加熱器で加熱される場合を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the coal-fired power generation facility of the reheating and regeneration system to which the 1st Embodiment of this invention is applied, Comprising: The case where the carrier gas of a steam tube dryer is heated with a STD carrier gas heater is shown . 本発明の第2の実施の形態が適用される再過熱・再生方式の石炭火力発電設備を示す概略図であって、スチームチューブドライヤのキャリアガスがボイラ排ガスとされる場合を示す。It is the schematic which shows the coal-fired power generation facility of the reheating and regeneration system to which the 2nd Embodiment of this invention is applied, Comprising: The case where the carrier gas of a steam tube dryer is made into boiler exhaust gas is shown. 本発明の第1の実施の形態が適用される再過熱・再生方式の石炭火力発電設備を示す概略図であって、乾燥排ガススクラバー及び間接型熱交換器を採用した場合を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the reheat-and-regeneration-type coal thermal power generation equipment to which the 1st Embodiment of this invention is applied, Comprising: The case where a dry exhaust gas scrubber and an indirect type heat exchanger are employ | adopted is shown.

本発明に係る石炭乾燥装置及び石炭乾燥方法の第1の実施の形態を、以下に図面を参照しつつ説明する。まず、本実施の形態を説明するに先立って、理解を深めるために本発明の実施の形態に適用される間接加熱回転乾燥機であるスチームチューブドライヤ(以下適宜STDという)の例について、図1に基づき予め説明する。   A first embodiment of a coal drying apparatus and a coal drying method according to the present invention will be described below with reference to the drawings. First, prior to describing the present embodiment, an example of a steam tube dryer (hereinafter referred to as STD as appropriate) that is an indirect heating rotary dryer applied to the embodiment of the present invention to deepen understanding will be described with reference to FIG. Will be described in advance.

図1に示すこのスチームチューブドライヤ1は、軸心周りに回転自在とされる回転筒30内において、両端板間に軸心と並行に複数の加熱管31が配管されていて、回転継手50に取付けられた熱媒体入口管51を通して、外部より送り込まれたSTD加熱用蒸気S11がこれらの加熱管31に加熱蒸気として供給され、各加熱管31に流通された後、熱媒体出口管52を介してこの加熱蒸気のドレインが排出されるようになっている。   This steam tube dryer 1 shown in FIG. 1 has a plurality of heating pipes 31 arranged between both end plates in parallel with the axis in a rotary cylinder 30 that is rotatable around the axis. The STD heating steam S11 fed from the outside is supplied as heating steam to these heating pipes 31 through the attached heat medium inlet pipe 51 and circulates through the respective heating pipes 31, and then passes through the heat medium outlet pipe 52. The drain of the heated steam is discharged.

そして、被処理物を回転筒30内に装入する為にスクリュー等を有した図示しない装入装置がこのスチームチューブドライヤ1には備えられている。この装入装置の挿入口53より回転筒30内にその一端側から投入された被処理物である例えば水分を含有した石炭や有機物などを、加熱蒸気により加熱した加熱管31と接触させて乾燥させるようなる。これとともに回転筒30が下り勾配をもって設置されていることで、排出口54方向に順次円滑に移動させて、回転筒30の他端側からこの被処理物を連続的に排出させるようになっている。   The steam tube dryer 1 is provided with a charging device (not shown) having a screw or the like for charging the workpiece into the rotary cylinder 30. For example, coal or organic matter containing moisture, which is an object to be processed that has been thrown into the rotary cylinder 30 from the insertion port 53 of this charging device, is brought into contact with the heating pipe 31 heated by heating steam and dried. To become. At the same time, since the rotating cylinder 30 is installed with a downward slope, it is moved smoothly in the direction of the discharge port 54 so that the workpiece is continuously discharged from the other end side of the rotating cylinder 30. Yes.

図1に示されるように、回転筒30は基台36の上に設置され、回転筒30の軸心と並行に相互に間隔を置いて配された2組の支承ローラ35,35によって、タイヤ34を介して支承されている。回転筒30の下り勾配および直径に合わせて2組の支承ローラ35,35間の幅およびそれらの長手方向傾斜角度が選択される。   As shown in FIG. 1, the rotary cylinder 30 is installed on a base 36, and two sets of support rollers 35, 35 arranged parallel to the axis of the rotary cylinder 30 and spaced apart from each other, 34 is supported. The width between the two sets of support rollers 35 and 35 and the inclination angle in the longitudinal direction thereof are selected in accordance with the downward gradient and diameter of the rotating cylinder 30.

一方、回転筒30を回転させるために、回転筒30の周囲には、従動ギア40が設けられており、これに駆動ギア43が噛合し、原動機41の回転力が減速機42を介して伝達され、回転筒30の軸心回りに回転するようになっている。さらに、回転筒30の内部には、キャリアガス入口61からキャリアガスCGが導入され、これらキャリアガスCGは被処理物である石炭や有機物に含有される水分が蒸発した蒸気を同伴してキャリアガス排出口62より排出される。   On the other hand, in order to rotate the rotating cylinder 30, a driven gear 40 is provided around the rotating cylinder 30, and the drive gear 43 meshes with the driven gear 40, and the rotational force of the prime mover 41 is transmitted via the speed reducer 42. Thus, it rotates around the axis of the rotating cylinder 30. Further, a carrier gas CG is introduced into the inside of the rotary cylinder 30 from a carrier gas inlet 61, and the carrier gas CG is accompanied by a vapor obtained by evaporating moisture contained in coal or organic matter to be processed. It is discharged from the discharge port 62.

なお、上記スチームチューブドライヤ1の全体構成は一例であり、本発明は上記構成により限定されるものではない。   In addition, the whole structure of the said steam tube dryer 1 is an example, and this invention is not limited by the said structure.

図2は、本実施の形態が適用される再過熱・再生方式の石炭火力発電設備を示す概略図である。
この図2に示すように、スチームチューブドライヤ1から排出される乾燥された乾燥炭DCが投入可能なように、微粉砕機2が配置されており、また、この微粉砕機2で粉砕されて粉状になった乾燥炭DCが投入可能なように、ボイラ3が取り付けられている。ボイラ3で発生した蒸気S1及びボイラ燃焼排ガスEG4が、第1過熱器4に送り込まれるようになっていて、この第1過熱器4を通過した過熱蒸気S2が高圧蒸気タービン7に送り込まれて、この高圧蒸気タービン7が駆動されるようになっている。
FIG. 2 is a schematic view showing a reheat / regeneration type coal-fired power generation facility to which the present embodiment is applied.
As shown in FIG. 2, a fine pulverizer 2 is arranged so that the dried dry coal DC discharged from the steam tube dryer 1 can be charged, and the fine pulverizer 2 is pulverized by the fine pulverizer 2. A boiler 3 is attached so that dry coal DC in powder form can be input. The steam S1 generated in the boiler 3 and the boiler combustion exhaust gas EG4 are sent to the first superheater 4, and the superheated steam S2 passing through the first superheater 4 is sent to the high-pressure steam turbine 7, This high-pressure steam turbine 7 is driven.

そして、この高圧蒸気タービン7は、低圧蒸気タービン8に連結されているだけでなく、図示しない発電機に繋がっていて、高圧蒸気タービン7と低圧蒸気タービン8とが連動して回転することで、電力を発生するようになっている。また、ボイラ燃焼排ガスEG4は第1過熱器4を通過して、ボイラ燃焼排ガスEG5として再過熱器5を通過するだけでなく、この後、ボイラ燃焼排ガスEG6として空気加熱器6に投入される。最終的には、ボイラ燃焼排ガスEG1となって、排ガスとされると共に、ボイラ燃焼排ガスEG2とされて微粉砕機2に送り込まれるようになっている。   The high-pressure steam turbine 7 is not only connected to the low-pressure steam turbine 8, but also connected to a generator (not shown), and the high-pressure steam turbine 7 and the low-pressure steam turbine 8 rotate in conjunction with each other. It is designed to generate power. In addition, the boiler combustion exhaust gas EG4 passes through the first superheater 4 and passes through the resuperheater 5 as boiler combustion exhaust gas EG5, and thereafter, is introduced into the air heater 6 as boiler combustion exhaust gas EG6. Eventually, the boiler combustion exhaust gas EG1 is used as exhaust gas, and the boiler combustion exhaust gas EG2 is supplied to the pulverizer 2.

他方、過熱蒸気S2が投入された高圧蒸気タービン7からは排気蒸気S3が排出され、再過熱器5に投入されて、この再過熱器5で再過熱されて再過熱蒸気S4となり、低圧蒸気タービン8に供給されるようになっている。これに伴い、この低圧蒸気タービン8からは排気蒸気S5が排出されるが、この排気蒸気S5は復水器9に送り込まれるようになっていて、この復水器9で排気蒸気S5が復水されてドレインD1となる。この復水器9は熱交換機11に繋がっていて、このドレインD1が熱交換機11に送り込まれるようになり、この熱交換機11で乾燥排ガスDEGと熱交換されて、乾燥排ガスDEGから熱回収する。   On the other hand, the exhaust steam S3 is discharged from the high-pressure steam turbine 7 to which the superheated steam S2 is input, and is input to the resuperheater 5, and is resuperheated by the resuperheater 5 to become the resuperheated steam S4. 8 is supplied. Accordingly, the exhaust steam S5 is discharged from the low-pressure steam turbine 8. The exhaust steam S5 is sent to the condenser 9, and the exhaust steam S5 is condensed into the condensate. This becomes the drain D1. The condenser 9 is connected to a heat exchanger 11, and the drain D1 is fed into the heat exchanger 11. The heat exchanger 11 exchanges heat with the dry exhaust gas DEG and recovers heat from the dry exhaust gas DEG.

さらに、この熱交換機11はボイラ3に繋がっていて、このドレインD1は熱交換機11を通過してボイラ給水D2となって、ボイラ3に送り込まれるようになる。この際、低圧蒸気タービン8の途中から排出された蒸気の一部とされる抽気蒸気S9、S10及び、高圧蒸気タービン7の途中から排出された蒸気の一部とされる抽気蒸気S7、S8が、この途中に投入されて、ボイラ給水D2を加熱する。   Further, the heat exchanger 11 is connected to the boiler 3, and the drain D <b> 1 passes through the heat exchanger 11 to become boiler feed water D <b> 2 and is fed into the boiler 3. At this time, extracted steam S9 and S10, which are part of the steam discharged from the middle of the low-pressure steam turbine 8, and extracted steam S7, S8 which are part of the steam discharged from the middle of the high-pressure steam turbine 7, In this way, the boiler feed water D2 is heated.

他方、スチームチューブドライヤ1から排出されたドレインD3は、STDキャリアガス加熱器10で外気A3を加熱してキャリアガスCGとすると共に、ドレインD4となってボイラ給水D2に混合されるようになっている。   On the other hand, the drain D3 discharged from the steam tube dryer 1 heats the outside air A3 with the STD carrier gas heater 10 to become the carrier gas CG, and becomes the drain D4 and is mixed with the boiler feed water D2. Yes.

次に、本実施の形態が適用される石炭火力発電設備における手順を説明する。
図2に示すようにスチームチューブドライヤ1に石炭Cが供給されると、乾燥されて乾燥炭DCとなり、乾燥した乾燥炭DCを排出すると共に乾燥排ガスDEGを排出し、この乾燥炭DCが微粉砕機2で微粉砕される。他方、空気加熱器6前後の温度の相互に異なる出口燃焼排ガスEG6と出口燃焼排ガスEG1とが混合されて温度調整された排ガスEG2とされ、この排ガスEG2が微粉砕機2に供給され、この微粉砕機2が石炭を乾燥しながら微粉砕する。そして、この排ガスEG2が微粉砕物を同伴してボイラ3に供給され、このボイラ3内の図示しないバーナーで燃焼される。
Next, the procedure in the coal-fired power generation facility to which this embodiment is applied will be described.
As shown in FIG. 2, when the coal C is supplied to the steam tube dryer 1, it is dried to become dry coal DC, and the dried dry coal DC is discharged and the dry exhaust gas DEG is discharged. The dry coal DC is finely pulverized. It is pulverized by the machine 2. On the other hand, the outlet combustion exhaust gas EG6 and the outlet combustion exhaust gas EG1 having different temperatures before and after the air heater 6 are mixed to obtain an exhaust gas EG2 whose temperature is adjusted, and this exhaust gas EG2 is supplied to the pulverizer 2, The pulverizer 2 pulverizes the coal while drying it. Then, the exhaust gas EG2 is supplied to the boiler 3 accompanied by finely pulverized material, and burned by a burner (not shown) in the boiler 3.

ボイラ3で発生した熱媒体である蒸気S1は、第1過熱器4においてボイラ燃焼排ガスEG4により加熱されて過熱蒸気S2となり、高圧蒸気タービン7に供給され、この高圧蒸気タービン7を駆動する。この高圧蒸気タービン7の途中から蒸気の一部が抽出されて抽気蒸気S7、S8となり、ボイラ給水D2を加熱する。残りの大部分の蒸気は、高圧蒸気タービン7から排気蒸気S3として排出され、再過熱器5でボイラ燃焼排ガスEG5により再過熱されて再過熱蒸気S4となり、低圧蒸気タービン8に供給される。   Steam S1, which is a heat medium generated in the boiler 3, is heated by the boiler combustion exhaust gas EG4 in the first superheater 4 to become superheated steam S2, and is supplied to the high-pressure steam turbine 7 to drive the high-pressure steam turbine 7. Part of the steam is extracted from the middle of the high-pressure steam turbine 7 to become extracted steam S7 and S8, and the boiler feed water D2 is heated. Most of the remaining steam is discharged from the high-pressure steam turbine 7 as exhaust steam S3, is re-superheated by the boiler combustion exhaust gas EG5 in the re-superheater 5, becomes re-superheated steam S4, and is supplied to the low-pressure steam turbine 8.

低圧蒸気タービン8の途中から蒸気の一部は抽気蒸気S9、S10として排出され、同じくボイラ給水D2を加熱する。また、低圧蒸気タービン8の途中の1ケ所からSTD加熱用蒸気S11が抽気され、スチームチューブドライヤ1に供給される。この際のSTD加熱用蒸気S11の圧力は、3MPa以下望むらくはO.3MPa〜1.5MPaの範囲とされる。このSTD加熱用蒸気S11はスチームチューブドライヤ1で石炭Cを加熱して乾燥させ、凝縮してドレインD3となり排出される。このドレインD3は、STDキャリアガス加熱器10において外部から取り込んだ空気A3を加熱してキャリアガスCGとした後、ドレインD4となってボイラ給水D2の加熱に利用される。   Part of the steam is discharged from the middle of the low-pressure steam turbine 8 as extracted steam S9, S10, and similarly heats the boiler feed water D2. Further, STD heating steam S <b> 11 is extracted from one place in the middle of the low-pressure steam turbine 8 and supplied to the steam tube dryer 1. The pressure of the STD heating steam S11 at this time is 3 MPa or less, preferably O.D. The range is 3 MPa to 1.5 MPa. The STD heating steam S11 is heated by the steam tube dryer 1 to dry the coal C, condensed, and discharged as a drain D3. The drain D3 is heated to the air A3 taken from the outside in the STD carrier gas heater 10 to become the carrier gas CG, and then becomes the drain D4 and is used for heating the boiler feed water D2.

低圧蒸気タービン8の排気蒸気S5は復水器9で復水した後、熱交換機11で乾燥排ガスDEGから熱回収されて再加熱された後、ドレインD4と混合されて昇温し、さらに、前述のように高圧蒸気タービン7及び低圧蒸気タービン8の抽気蒸気S7〜S10で加熱され、ボイラ給水D2となりボイラ3に給水する。   The exhaust steam S5 of the low-pressure steam turbine 8 is condensed by the condenser 9, then recovered from the dried exhaust gas DEG by the heat exchanger 11 and reheated, and then mixed with the drain D4 to increase the temperature. As described above, the steam is heated by the extracted steam S7 to S10 of the high-pressure steam turbine 7 and the low-pressure steam turbine 8, and becomes boiler feed water D2 to supply water to the boiler 3.

他方、再過熱器5から排出された出口燃焼排ガスEG6は、空気加熱器6でボイラ燃焼空気A1を加熱した後、燃焼排ガスEG1となって、大部分は図示していない排ガス処埋設備で処理された後、放出される。尚、空気加熱器6の代わりにボイラ給水を加熱する節炭器とすることもできる。   On the other hand, after the boiler combustion air A1 is heated by the air heater 6, the outlet combustion exhaust gas EG6 discharged from the resuperheater 5 becomes the combustion exhaust gas EG1, and most of it is processed by an exhaust gas treatment facility (not shown). And then released. In addition, it can also be set as the economizer which heats boiler feed water instead of the air heater 6. FIG.

次に、本実施の形態に係る石炭乾燥装置及び石炭乾燥方法の作用を以下に説明する。
本実施の形態によれば、石炭Cを装入して加熱することで乾燥した乾燥石炭DCをスチームチューブドライヤ1が排出し、この乾燥された乾燥石炭DCをボイラ3が燃焼して蒸気である熱媒体を発生する。また、ボイラ3で発生した蒸気により蒸気タービン7,8を駆動し蒸気の温度が低下して復水となるが、スチームチューブドライヤ1から排出された乾燥排ガスDEGより熱回収手段である熱交換機11が熱回収して、復水とされるこの熱媒体を再加熱する。
Next, the operation of the coal drying apparatus and the coal drying method according to the present embodiment will be described below.
According to the present embodiment, the steam tube dryer 1 discharges the dry coal DC that has been dried by charging and heating the coal C, and the boiler 3 burns the dry coal DC that has been dried to form steam. Generate heat medium. Further, the steam turbines 7 and 8 are driven by the steam generated in the boiler 3 to lower the steam temperature and become condensate, but the heat exchanger 11 is a heat recovery means from the dry exhaust gas DEG discharged from the steam tube dryer 1. Recovers heat and reheats this heat medium, which is condensate.

従って、本実施の形態によれば、蒸気タービン7,8を駆動して温度が低下した復水を熱交換機11が乾燥排ガスDEGより熱回収して再加熱することで、従来用いられずに捨てられていた熱を有効利用できるようになった。このことから、単位発電量当たりの石炭消費量やCO2排出量を削減することが可能となるのに伴い、例えば石炭火力発電所等の石炭火力発電設備においてより効率的な発電が出来るようになった。 Therefore, according to the present embodiment, the heat exchanger 11 recovers heat from the dry exhaust gas DEG and reheats the condensate whose temperature has been lowered by driving the steam turbines 7 and 8 and is discarded without being used conventionally. The heat that had been used can now be used effectively. As a result, coal consumption per unit power generation and CO 2 emissions can be reduced, so that more efficient power generation is possible in coal-fired power generation facilities such as coal-fired power plants. became.

さらに、スチームチューブドライヤ1から排出される乾燥排ガスDEGの露点が、通常80℃(0.546kg−H2O/kg−air)〜95℃であるのに対して、復水器9での復水の温度は通常30℃〜35℃とされている。この為、スチームチューブドライヤ1の乾燥排ガスDEGは、露点が40℃(0.04884kg−H2O/kg−air)程度まで復水で凝縮潜熱を回収する事ができる。 Furthermore, the dew point of the dry exhaust gas DEG discharged from the steam tube dryer 1 is normally 80 ° C. (0.546 kg-H 2 O / kg-air) to 95 ° C., whereas the dew point in the condenser 9 is The temperature of water is usually 30 ° C to 35 ° C. For this reason, the dry exhaust gas DEG of the steam tube dryer 1 can recover the condensation latent heat by condensate until the dew point is about 40 ° C. (0.04884 kg-H 2 O / kg-air).

すなわち、スチームチューブドライヤ1から排出される乾燥排ガスDEGと復水との間で熱交換する間接型熱交換器である熱交換機11により構成され、この乾燥排ガスDEGと復水との間で熱交換するという簡単な装置で、この乾燥排ガスDEGの凝縮潜熱の約90%が回収できる。   That is, the heat exchanger 11 is an indirect heat exchanger that exchanges heat between the dry exhaust gas DEG discharged from the steam tube dryer 1 and the condensate, and heat is exchanged between the dry exhaust gas DEG and the condensate. About 90% of the condensation latent heat of this dry exhaust gas DEG can be recovered with a simple device.

以上より、上記方法で、スチームチューブドライヤ1に供給した熱量の大部分を回収できるので、ボイラ3で発生させる必要蒸気量は、ほとんど増加する必要がない。さらに、大気放散しているボイラ燃焼排ガス(通常120℃〜200℃)の一部をスチームチューブドライヤ1のキャリアガスCGとして使用すれば、40℃程度まで顕熱も回収できる。   As described above, since most of the heat supplied to the steam tube dryer 1 can be recovered by the above method, the required amount of steam generated in the boiler 3 does not need to be increased. Furthermore, if a part of the boiler combustion exhaust gas (usually 120 ° C. to 200 ° C.) diffused into the atmosphere is used as the carrier gas CG of the steam tube dryer 1, sensible heat can be recovered up to about 40 ° C.

次に、本発明に係る石炭乾燥装置及び石炭乾燥方法の第2の実施の形態を、図3を参照しつつ説明する。尚、第1の実施の形態で説明した部材には同一の符号を付し、重複した説明を省略する。
第1の実施の形態ではSTDキャリアガス加熱器10により空気A3を加熱したが、本実施の形態では、ボイラ燃焼排ガスEG1の一部である排ガスEG7をキャリアガスCGとして用いるようにした。このことでも、排ガスの有効利用ができて、単位発電量当たりの石炭消費量やCO2排出量を削減することが可能となる。
Next, a second embodiment of the coal drying apparatus and the coal drying method according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member demonstrated in 1st Embodiment, and the overlapping description is abbreviate | omitted.
In the first embodiment, the air A3 is heated by the STD carrier gas heater 10, but in this embodiment, the exhaust gas EG7 that is a part of the boiler combustion exhaust gas EG1 is used as the carrier gas CG. This also makes it possible to effectively use the exhaust gas, and to reduce the coal consumption and CO 2 emission amount per unit power generation amount.

次に、本発明に係る石炭乾燥装置及び石炭乾燥方法の第3の実施の形態を、図4を参照しつつ説明する。尚、第1の実施の形態で説明した部材には同一の符号を付し、重複した説明を省略する。
第1の実施の形態では、ドレインD1が熱交換機11に送り込まれて、この熱交換機11で乾燥排ガスDEGと熱交換されて、乾燥排ガスDEGから熱回収するようになっていたが、本実施の形態では、スチームチューブドライヤ1から排出される乾燥排ガスDEGが乾燥排ガススクラバー12に投入されるようになっている。
Next, a third embodiment of the coal drying apparatus and the coal drying method according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member demonstrated in 1st Embodiment, and the overlapping description is abbreviate | omitted.
In the first embodiment, the drain D1 is sent to the heat exchanger 11 and is heat-exchanged with the dry exhaust gas DEG by the heat exchanger 11, and heat is recovered from the dry exhaust gas DEG. In the embodiment, the dry exhaust gas DEG discharged from the steam tube dryer 1 is input to the dry exhaust gas scrubber 12.

そして、乾燥排ガススクラバー12の循環液と復水との間で熱交換する間接型熱交換機13が、この乾燥排ガススクラバー12に隣り合って配置されている。従って、本実施の形態によれば、熱交換器が乾燥排ガススクラバー12及び間接型熱交換機13という簡単な熱交換器により、乾燥排ガスDEGの凝縮潜熱の約90%が回収できるようになる。   An indirect heat exchanger 13 that exchanges heat between the circulating fluid of the dry exhaust gas scrubber 12 and the condensate is disposed adjacent to the dry exhaust gas scrubber 12. Therefore, according to this embodiment, the heat exchanger can recover about 90% of the condensation latent heat of the dry exhaust gas DEG by a simple heat exchanger such as the dry exhaust gas scrubber 12 and the indirect heat exchanger 13.

次に、本発明に係る実施の形態による効果の一例を以下に説明する。
下記の表1には、各条件について石炭の水分を25%、15%、10%、5%にそれぞれ乾燥させた場合の発電端効率の値を示す。尚、この際の主蒸気条件は、10MPaで540℃であり、再過熱・再生方式を採用した。
Next, an example of the effect by embodiment which concerns on this invention is demonstrated below.
Table 1 below shows the values of the power generation efficiency when the moisture of the coal is dried to 25%, 15%, 10%, and 5% for each condition. The main steam conditions at this time were 10 MPa and 540 ° C., and the reheating / regeneration system was adopted.

(表1)
水分率 25% 15% 10% 5%
STD 35.9% 36.2% 36.3% 36.4%
潜熱回収 36.3% 36.8% 37.0% 37.2%
潜熱回収+排ガス 36.4% 37.0% 37.2% 37.3%
(Table 1)
Moisture content 25% 15% 10% 5%
STD 35.9% 36.2% 36.3% 36.4%
Latent heat recovery 36.3% 36.8% 37.0% 37.2%
Latent heat recovery + exhaust gas 36.4% 37.0% 37.2% 37.3%

ここで、下記に各条件の内容を説明する。
「STD」とは、タービンの抽気蒸気を加熱源としてSTDを通常に用いて石炭を乾燥した場合である。
「潜熱回収」とは、STDの乾燥排ガスDEGから熱回収(潜熱回収)しこれを熱源として、復水を加熱した場合である。
「潜熱回収+排ガス」とは、上記潜熱回収だけでなく、大気放出前のボイラ排ガスをSTDのキャリアガスCGとして使用することを付加した場合である。
Here, the contents of each condition will be described below.
“STD” is a case where the coal is dried using STD as a heat source from the extracted steam of the turbine.
“Latent heat recovery” refers to the case where heat is recovered from STD dry exhaust gas DEG (latent heat recovery) and the condensed water is heated using this as a heat source.
“Latent heat recovery + exhaust gas” means not only the above-described latent heat recovery but also the use of boiler exhaust gas before being released into the atmosphere as STD carrier gas CG.

上記のように、石炭を予備乾燥する事で発電端効率が向上することで、「STD」と比較して、「潜熱回収」や「潜熱回収+排ガス」の条件では、発電端効率が約O.5%〜1.0%程度向上していることが確認された。   As described above, the power generation end efficiency is improved by pre-drying the coal, so that the power generation end efficiency is about O under the conditions of “latent heat recovery” and “latent heat recovery + exhaust gas” compared to “STD”. . It was confirmed that the improvement was about 5% to 1.0%.

以上、本発明に係る実施の形態を説明したが、本発明は係る実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、乾燥機のキャリアガスとしては、空気やボイラ燃焼排ガスの一部だけでなく、窒素ガス等の不活性ガスの何れか、もしくはこれらの混合したガスから選ぶことができる。   The embodiment according to the present invention has been described above, but the present invention is not limited to the embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the carrier gas of the dryer can be selected from not only a part of air and boiler combustion exhaust gas, but also any one of inert gases such as nitrogen gas, or a mixed gas thereof.

本発明は、樹脂、食品、有機物などの乾燥をはじめとして、木質バイオマスや有機廃棄物などの乾燥などを目的とした乾燥に応用できる他、他の産業用機械に適用可能となる。   The present invention can be applied not only to drying resins, foods, organic substances, etc., but also to drying for the purpose of drying woody biomass, organic waste, etc., and can also be applied to other industrial machines.

1 スチームチューブドライヤ(間接加熱型乾燥機)
2 微粉砕機(微粉砕手段)
3 ボイラ(石炭燃焼ボイラ)
7 高圧蒸気タービン
8 低圧蒸気タービン
9 復水器
11 熱交換機(熱回収手段)
12 乾燥排ガススクラバー(熱回収手段、湿式スクラバー)
13 間接型熱交換機(熱回収手段)
30 回転筒(ケーシング)
31 加熱管(加熱路)
1 Steam tube dryer (indirect heating dryer)
2 Fine grinding machine (fine grinding means)
3 Boiler (Coal fired boiler)
7 High-pressure steam turbine 8 Low-pressure steam turbine 9 Condenser 11 Heat exchanger (heat recovery means)
12 Dry exhaust gas scrubber (heat recovery means, wet scrubber)
13 Indirect heat exchanger (heat recovery means)
30 Rotating cylinder (casing)
31 Heating tube (heating path)

Claims (8)

ケーシング内に装入した石炭を、ケーシング内に設けた加熱用蒸気を流通させる加熱路の壁面を通して間接加熱するのに伴い乾燥排ガスを排出する間接加熱型乾燥機と、
乾燥後の石炭を燃料とする石炭燃焼ボイラと、
該石炭燃焼ボイラが発生する蒸気により駆動する蒸気タービンと、
蒸気タービンの復水器と、
前記間接加熱型乾燥機からの乾燥排ガスと前記復水器の復水を接触させて復水を加熱することで、乾燥排ガスのもっている熱を回収すると共に、この復水を前記石炭燃焼ボイラに送る熱回収手段と、
を備えることを特徴とする石炭乾燥装置。
An indirect heating type dryer that discharges dry exhaust gas as it indirectly heats the coal charged in the casing through the wall surface of the heating path for circulating the heating steam provided in the casing;
A coal-fired boiler that uses dried coal as fuel,
A steam turbine driven by steam generated by the coal-fired boiler;
A steam turbine condenser,
By heating the condensate by contacting the dry exhaust gas from the indirect heating dryer with the condensate of the condenser, the heat of the dry exhaust gas is recovered, and this condensate is supplied to the coal combustion boiler. Heat recovery means to send,
A coal drying apparatus comprising:
前記熱回収手段が、前記乾燥排ガスと前記復水との間で間接的に熱交換する間接型熱交換器とされる請求項1記載の石炭乾燥装置。   The coal drying apparatus according to claim 1, wherein the heat recovery means is an indirect heat exchanger for indirectly exchanging heat between the dry exhaust gas and the condensate. 前記熱回収手段が、乾燥排ガスが送り込まれる湿式スクラバーと、この湿式スクラバーの循環液と復水との間で熱交換する間接型熱交換器を含む請求項1記載の石炭乾燥装置。   The coal drying apparatus according to claim 1, wherein the heat recovery means includes a wet scrubber into which dry exhaust gas is fed, and an indirect heat exchanger that exchanges heat between a circulating liquid of the wet scrubber and condensate. 前記間接加熱型乾燥機内に送り込まれるキャリアガスと前記加熱用蒸気のドレインを熱交換してキャリアガスを加熱した後、前記ドレインを前記加熱された復水と一緒に前記石炭燃焼ボイラに送る請求項1記載の石炭乾燥装置。   The carrier gas sent into the indirectly heated dryer and the drain of the heating steam are heat-exchanged to heat the carrier gas, and then the drain is sent to the coal combustion boiler together with the heated condensate. The coal drying apparatus according to 1. 前記石炭燃焼ボイラの排ガスを、前記間接加熱型乾燥機内に吹き込むキャリアガスとして利用する請求項1記載の石炭乾燥装置。   The coal drying apparatus according to claim 1, wherein the exhaust gas of the coal combustion boiler is used as a carrier gas blown into the indirect heating dryer. 石炭を装入して間接加熱型乾燥機で加熱することで、乾燥した石炭を排出すると共に乾燥排ガスを排出し、
次に乾燥された石炭を石炭燃焼ボイラで燃焼して蒸気を発生し、
この後、この蒸気で蒸気タービンを駆動し、
間接加熱型乾燥機から排出された乾燥排ガスより熱回収手段が熱回収して、蒸気タービンを駆動し温度が低下し、復水器で復水となったこの復水を再加熱すると共に、この加熱された復水を石炭燃焼ボイラに送る、
ことを含む石炭乾燥方法。
By charging coal and heating it with an indirect heating dryer, it discharges dry coal and exhausts dry exhaust gas,
Next, the dried coal is burned in a coal-fired boiler to generate steam,
After this, the steam turbine is driven by this steam,
The heat recovery means recovers the heat from the dry exhaust gas discharged from the indirect heating dryer, drives the steam turbine to lower the temperature, and reheats the condensate that has become condensate in the condenser. Sending heated condensate to a coal fired boiler,
Coal drying method including that.
石炭を装入して間接加熱型乾燥機で加熱する際に間接加熱型乾燥機からドレインが排出され、このドレインにより、間接加熱型乾燥機に送り込まれるキャリアガスを加熱した後、
乾燥排ガスから熱回収した後の復水とこのドレインを混合する請求項6記載の石炭乾燥方法。
When the coal is charged and heated with the indirect heating dryer, the drain is discharged from the indirect heating dryer, and by this drain, the carrier gas sent to the indirect heating dryer is heated,
The coal drying method according to claim 6, wherein the condensate after heat recovery from the dried exhaust gas and the drain are mixed.
ボイラで石炭を燃焼する際に燃焼排ガスが排出され、
この燃焼排ガスの一部を間接加熱型乾燥機に送り込まれるキャリアガスとして使用する請求項6記載の石炭乾燥方法。
Combustion exhaust gas is discharged when coal is burned in a boiler,
The coal drying method according to claim 6, wherein a part of the combustion exhaust gas is used as a carrier gas fed into an indirect heating type dryer.
JP2010229925A 2010-10-12 2010-10-12 Coal drying apparatus and coal drying method Active JP5509024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229925A JP5509024B2 (en) 2010-10-12 2010-10-12 Coal drying apparatus and coal drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229925A JP5509024B2 (en) 2010-10-12 2010-10-12 Coal drying apparatus and coal drying method

Publications (2)

Publication Number Publication Date
JP2012083031A true JP2012083031A (en) 2012-04-26
JP5509024B2 JP5509024B2 (en) 2014-06-04

Family

ID=46242088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229925A Active JP5509024B2 (en) 2010-10-12 2010-10-12 Coal drying apparatus and coal drying method

Country Status (1)

Country Link
JP (1) JP5509024B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759259A (en) * 2012-07-12 2012-10-31 西安交通大学 Brown coal upgrading-power generation co-production system
CN103206848A (en) * 2013-03-29 2013-07-17 华润电力控股有限公司 System integration method for reducing coal consumption and water consumption in brown coal power plant
WO2014112075A1 (en) * 2013-01-17 2014-07-24 バブコック日立株式会社 Drying conveyor device, drying plant, thermal power generation system, method for operating drying conveyor device, and method for operating thermal power plant
CN104165373A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104165375A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104165371A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104165374A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104329667A (en) * 2014-11-13 2015-02-04 上海理工大学 Superheated steam drying power-making coal-fired power generation system
CN104373163A (en) * 2013-08-16 2015-02-25 冯伟忠 Method for expanding application of steam extracted by steam turbine
CN104373949A (en) * 2014-11-13 2015-02-25 上海理工大学 Superheated steam drying powder making type coal-fired power generation system
WO2015064996A1 (en) * 2013-10-30 2015-05-07 주식회사 한국테크놀로지 Apparatus for drying coal using reheat steam
JP5736471B1 (en) * 2014-01-10 2015-06-17 月島機械株式会社 Solid-liquid separation / drying equipment and method for metal fine powder slurry
JP2015117867A (en) * 2013-12-17 2015-06-25 三菱日立パワーシステムズ株式会社 Boiler system and power generation plant with boiler system
WO2015104990A1 (en) * 2014-01-10 2015-07-16 月島機械株式会社 Equipment for solid-liquid separation and drying of fine-powder slurry, and method therefor
CN105157398A (en) * 2015-07-13 2015-12-16 华北电力大学 Two-stage raw coal drying system and method applied to air cooling unit
JP2016090091A (en) * 2014-10-31 2016-05-23 株式会社大川原製作所 Drying system
CN104373949B (en) * 2014-11-13 2017-01-04 上海理工大学 Superheat steam drying powder process type coal generating system
CN107838010A (en) * 2017-11-10 2018-03-27 无锡宇能选煤机械厂 The vibratory sieve coal picker of built-in material drying device
JP2020079674A (en) * 2018-11-13 2020-05-28 千代田化工建設株式会社 Woody biomass power generation system and power generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329666B (en) * 2014-11-13 2016-08-17 上海理工大学 Superheat steam drying powder process type coal generating system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119416A (en) * 1980-02-25 1981-09-19 Tsukishima Kikai Co Ltd Sludge drying and incinerating appatatus
JP2002322902A (en) * 2001-04-25 2002-11-08 Tsukishima Kikai Co Ltd Thermal decomposition gasification power generating system of sewage sludge thermal decomposition
JP2009028672A (en) * 2007-07-30 2009-02-12 Nippon Steel Engineering Co Ltd Treatment method of high water-content waste and treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119416A (en) * 1980-02-25 1981-09-19 Tsukishima Kikai Co Ltd Sludge drying and incinerating appatatus
JP2002322902A (en) * 2001-04-25 2002-11-08 Tsukishima Kikai Co Ltd Thermal decomposition gasification power generating system of sewage sludge thermal decomposition
JP2009028672A (en) * 2007-07-30 2009-02-12 Nippon Steel Engineering Co Ltd Treatment method of high water-content waste and treatment apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759259A (en) * 2012-07-12 2012-10-31 西安交通大学 Brown coal upgrading-power generation co-production system
WO2014112075A1 (en) * 2013-01-17 2014-07-24 バブコック日立株式会社 Drying conveyor device, drying plant, thermal power generation system, method for operating drying conveyor device, and method for operating thermal power plant
CN103206848A (en) * 2013-03-29 2013-07-17 华润电力控股有限公司 System integration method for reducing coal consumption and water consumption in brown coal power plant
CN104373163A (en) * 2013-08-16 2015-02-25 冯伟忠 Method for expanding application of steam extracted by steam turbine
WO2015064996A1 (en) * 2013-10-30 2015-05-07 주식회사 한국테크놀로지 Apparatus for drying coal using reheat steam
AU2014340859B2 (en) * 2013-10-30 2016-11-24 Hankook Technology Inc. Apparatus for drying coal using reheat steam
JP2015117867A (en) * 2013-12-17 2015-06-25 三菱日立パワーシステムズ株式会社 Boiler system and power generation plant with boiler system
US10279287B2 (en) 2014-01-10 2019-05-07 Tsukishima Kikai Co., Ltd. Equipment for solid-liquid separation and drying of fine-powder slurry, and method therfor
WO2015104990A1 (en) * 2014-01-10 2015-07-16 月島機械株式会社 Equipment for solid-liquid separation and drying of fine-powder slurry, and method therefor
JP5736471B1 (en) * 2014-01-10 2015-06-17 月島機械株式会社 Solid-liquid separation / drying equipment and method for metal fine powder slurry
CN104165374A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104165373B (en) * 2014-08-19 2016-06-08 上海理工大学 The open weary gas heating type boiler controller system of powder process
CN104165373A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104165371A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104165375A (en) * 2014-08-19 2014-11-26 上海理工大学 Exhaust warm air type boiler unit for open coal pulverization
CN104165375B (en) * 2014-08-19 2016-06-08 上海理工大学 The open weary gas heating type boiler controller system of powder process
CN104165371B (en) * 2014-08-19 2016-06-08 上海理工大学 The open weary gas heating type boiler controller system of powder process
JP2016090091A (en) * 2014-10-31 2016-05-23 株式会社大川原製作所 Drying system
CN104373949B (en) * 2014-11-13 2017-01-04 上海理工大学 Superheat steam drying powder process type coal generating system
CN104373949A (en) * 2014-11-13 2015-02-25 上海理工大学 Superheated steam drying powder making type coal-fired power generation system
CN104329667A (en) * 2014-11-13 2015-02-04 上海理工大学 Superheated steam drying power-making coal-fired power generation system
CN105157398A (en) * 2015-07-13 2015-12-16 华北电力大学 Two-stage raw coal drying system and method applied to air cooling unit
CN105157398B (en) * 2015-07-13 2018-05-25 华北电力大学 It is a kind of suitable for the two-stage raw coal drying system of air cooling unit and raw coal drying means
CN107838010A (en) * 2017-11-10 2018-03-27 无锡宇能选煤机械厂 The vibratory sieve coal picker of built-in material drying device
JP2020079674A (en) * 2018-11-13 2020-05-28 千代田化工建設株式会社 Woody biomass power generation system and power generation method

Also Published As

Publication number Publication date
JP5509024B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509024B2 (en) Coal drying apparatus and coal drying method
JP5535112B2 (en) Coal thermal power generation facility and coal thermal power generation method
JP5461100B2 (en) Thermal power plant using low-grade coal as fuel
KR101761319B1 (en) System and method for drying lignite
JP2012202607A5 (en)
JP2013217588A (en) Method of drying low grade coal and thermal power plant using low grade coal as fuel
WO2013061743A1 (en) Power generating facility
CN102353237A (en) High-moisture-content lignite predrying method and system integrated with thermal power plant
JPH03504151A (en) Methods of generating electrical energy and/or heating and process heat
JP5852252B2 (en) Coal-fired boiler equipment, coal drying method in coal-fired boiler equipment
JP5502698B2 (en) Heat treatment equipment and method
CN102859304B (en) The method of driving steam turbine generating equipment and the device by brown coal generation steam
JPS6261861B2 (en)
CN107131018A (en) Waste heat boiler excess steam driving load equipment and the system and implementation method of generating
CN103983088A (en) System and method for predrying lignite and recycling water by using waste heat of power station
KR20150074096A (en) Fuel preparation apparatus and method
CN104775933B (en) A kind of generating afterheat of IC engine cascade utilization system
JP2012078017A (en) Biomass storage unit, and pretreatment unit
JP2011214818A (en) Fluidized bed drying equipment
JP2014070847A (en) Power generating facility
JP5897821B2 (en) Steam utilization system in sludge incineration plant.
JP5591268B2 (en) Heat treatment equipment and method
KR101696297B1 (en) Combined Heat and Power System for Energy-saving type
CN213480200U (en) Water-saving system for full-chain water taking of lignite machine set
CN214468540U (en) Sludge mixed combustion system utilizing condensate water of thermal power generating unit for pre-drying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5509024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350