JPS6354969B2 - - Google Patents

Info

Publication number
JPS6354969B2
JPS6354969B2 JP55040917A JP4091780A JPS6354969B2 JP S6354969 B2 JPS6354969 B2 JP S6354969B2 JP 55040917 A JP55040917 A JP 55040917A JP 4091780 A JP4091780 A JP 4091780A JP S6354969 B2 JPS6354969 B2 JP S6354969B2
Authority
JP
Japan
Prior art keywords
sludge
temperature
combustion
exhaust gas
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55040917A
Other languages
Japanese (ja)
Other versions
JPS56137011A (en
Inventor
Naomichi Kakihara
Kenji Nagayasu
Muneharu Ueno
Shojiro Sasaki
Shigehiko Otonari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4091780A priority Critical patent/JPS56137011A/en
Publication of JPS56137011A publication Critical patent/JPS56137011A/en
Publication of JPS6354969B2 publication Critical patent/JPS6354969B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 本発明は、水分調整した汚泥を、炭素系可燃物
質で形成した高温炉床に供給して、燃焼溶融さ
せ、前記高温炉床の上方からの燃焼排ガスを後燃
焼部に供給して、燃焼排ガス中のCOをCO2に酸
化させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves supplying sludge whose moisture content has been adjusted to a high-temperature hearth made of carbon-based combustible material, burning and melting it, and directing combustion exhaust gas from above the high-temperature hearth to a post-combustion section. oxidizes CO in combustion exhaust gas to CO 2 .

上記方法は、近年極めて大量に発生する各種汚
泥を、十数分の1に体積減小させて埋立用地面等
において有利にした状態で、かつ、有害重金属が
溶出しない安全な状態で、さらに、近年コスト面
及び省資源面で問題の多い石油系燃料をほとんど
必要としない状態で処理でき、極めて有用な汚泥
処理方法である。
The above method reduces the volume of various types of sludge, which have been generated in extremely large quantities in recent years, to a tenth of a tenth, making it advantageous for use in landfill sites, etc., and in a safe state where no harmful heavy metals are eluted. This is an extremely useful sludge treatment method that can be treated with almost no need for petroleum-based fuels, which have recently been problematic in terms of cost and resource conservation.

しかし、従来上記方法において、燃焼排ガス中
に含まれる5%ないし10%のCOをCO2に酸化さ
せて大気汚染を防止するために、後燃焼部でバー
ナを常に燃焼させていた。
However, in the conventional method described above, a burner was always used to combust in the after-combustion section in order to prevent air pollution by oxidizing 5% to 10% of CO contained in the combustion exhaust gas into CO2 .

そのために、補助バーナでの石油系燃料の消費
がかなり膨大になつて、運転経費が高価になり、
また、後燃焼部からの燃焼排ガスが極めて高温に
なつて熱エネルギーロスや耐火物損傷などを生じ
る危険性が大きく、一層の改良の余地があつた。
Therefore, the consumption of petroleum-based fuel in the auxiliary burner becomes quite large, and the operating costs become expensive.
Furthermore, there was a great risk that the combustion exhaust gas from the post-combustion section would reach an extremely high temperature, causing loss of thermal energy and damage to the refractories, leaving room for further improvement.

本発明の目的は、燃焼排ガス中のCOの酸化を、
補助バーナによる助燃を必要とせずに、かつ、熱
エネルギーロスや耐火物損傷などを極力抑制した
状態で確実に行わせられるようにする点にある。
The purpose of the present invention is to reduce the oxidation of CO in combustion exhaust gas,
The aim is to ensure that combustion can be carried out without requiring auxiliary combustion using an auxiliary burner, and with thermal energy loss and damage to refractories suppressed as much as possible.

本発明の特徴手段は、高温炉床に供給する前の
汚泥の水分調整により、汚泥の水分を40%ないし
65%にして、前記高温炉床から後燃焼部に供給す
る燃焼排ガスの温度を800℃ないし1100℃に維持
し、前記後燃焼部におけるCOの酸化を、補助バ
ーナ無しの空気供給によるCOの自燃で行わせる
ことにあり、その作用効果は次の通りである。
The characteristic means of the present invention is to reduce the water content of sludge to 40% or more by adjusting the water content of the sludge before supplying it to the high-temperature hearth.
65%, the temperature of the flue gas supplied from the high-temperature hearth to the after-combustion section is maintained at 800°C to 1100°C, and the oxidation of CO in the after-combustion section is controlled by self-combustion of CO by supplying air without an auxiliary burner. The functions and effects are as follows.

つまり、各種実験の結果、コークスなどの炭素
系可燃物質で形成した高温炉床で汚泥を燃焼溶遊
させる場合、汚泥の水分を40%ないし65%に調整
すると、炭素系可燃物質の消費をできるだけ少な
くしながら、高温炉床から後燃焼部に供給する燃
焼排ガスの温度を、COの自燃に必要な800℃以上
に維持できることを見出したのである。
In other words, as a result of various experiments, when sludge is burnt and dissolved in a high-temperature hearth made of carbon-based combustible materials such as coke, the consumption of carbon-based combustible materials can be minimized by adjusting the moisture content of the sludge to 40% to 65%. They discovered that it is possible to maintain the temperature of the flue gas supplied from the high-temperature hearth to the after-combustion section at 800°C or higher, which is necessary for the self-combustion of CO, while reducing the temperature.

そして、この新知見に基づいて、COの酸化に
必要なだけの空気を後燃焼部に供給するだけで、
補助バーナによる助燃を必要とせずにCOを確実
にCO2に酸化させることができるようにしたので
ある。
Based on this new knowledge, by simply supplying the amount of air necessary for CO oxidation to the after-combustion section,
This makes it possible to reliably oxidize CO to CO 2 without the need for auxiliary combustion using an auxiliary burner.

また、後燃焼部に供給する燃焼排ガスの温度を
1100℃以下に抑えることによつて、不必要な昇温
による熱エネルギーロスや耐火物損傷などのトラ
ブルを十分に防止できる。
In addition, the temperature of the flue gas supplied to the after-combustion section is
By keeping the temperature below 1100℃, problems such as thermal energy loss and damage to refractories due to unnecessary temperature rise can be sufficiently prevented.

その結果、大気汚染防止のための燃焼排ガス中
のCOの酸化を、後燃焼バーナに起因する運転経
費増大の無い状態で、かつ、燃焼排ガスによる熱
損失や耐火物損傷を十分に抑制した状態で確実に
行えて、排気公害防止面のみならず運転経費面、
維持経費面においても一段と有利に汚泥を溶融処
理できるようになつた。
As a result, the oxidation of CO in flue gas to prevent air pollution can be achieved without increasing operating costs due to post-combustion burners, and while sufficiently suppressing heat loss and damage to refractories due to flue gas. It can be done reliably and is not only effective in preventing exhaust pollution but also in terms of operating costs.
It has become possible to melt and process sludge even more advantageously in terms of maintenance costs.

次に、第1図及び第2図により実施例を示す。 Next, an example will be shown with reference to FIGS. 1 and 2.

水処理設備や前処理装置によつて濃縮あるいは
脱水処理された下水汚泥、し尿性汚泥、工場排水
処理汚泥、浄水場汚泥、活性処理汚泥等の各種汚
泥を、ロータリキルンタイプの乾燥機1に供給し
て、水分が40%ないし65%、望ましくは50%ない
し60%になるように調製すると共に、粒径が2mm
ないし10mmになるように造粒処理し、そして、乾
燥機1から連続的あるいは間歇的に取出される粒
状汚泥を、適宜コンベア2によつてキユポラタイ
プの溶融炉3の投入ホツパー4に供給する。
Various types of sludge, such as sewage sludge, night soil sludge, factory wastewater treatment sludge, water treatment plant sludge, and activated sludge, which have been concentrated or dehydrated using water treatment equipment or pre-treatment equipment, are supplied to the rotary kiln type dryer 1. The moisture content is adjusted to 40% to 65%, preferably 50% to 60%, and the particle size is 2 mm.
The granulated sludge is granulated to a size of 10 mm to 10 mm, and the granular sludge is continuously or intermittently taken out from the dryer 1 and supplied to an input hopper 4 of a cupola type melting furnace 3 by a conveyor 2 as appropriate.

そして、ホツパー4からの汚泥を、ダンパー6
a,6bを交互に開閉操作しながら、溶融炉3内
に充填した炭素系可燃物質から成る高温炉床5
に、炭素系可燃物質と混合状態であるいは交互に
供給し、そして、高温炉床5において汚泥を燃
焼、溶融させ、さらに、溶融物を溶融炉3の底部
近くに接続した取出路7から回収すると共に、溶
融炉3の頂部からの燃焼排ガスを、排気ダクト
8、ダスト除去用サイクロン9及び後燃焼部10
等を通して大気中に放出する。尚、前記後燃焼部
10において、単に高温排ガス中に空気を導入路
10aから供給するだけで、高温排ガス中の一酸
化炭素を自燃させる。
Then, the sludge from hopper 4 is transferred to damper 6.
A and 6b are alternately opened and closed to open and close the high-temperature hearth 5 made of carbon-based combustible material filled in the melting furnace 3.
The sludge is supplied in a mixed state or alternately with a carbon-based combustible substance, and the sludge is burned and melted in the high-temperature hearth 5, and the molten material is recovered from the take-out passage 7 connected near the bottom of the melting furnace 3. At the same time, the combustion exhaust gas from the top of the melting furnace 3 is transferred to an exhaust duct 8, a dust removal cyclone 9, and an after-combustion section 10.
released into the atmosphere through etc. In the after-combustion section 10, carbon monoxide in the high-temperature exhaust gas is caused to self-combust simply by simply supplying air into the high-temperature exhaust gas through the introduction passage 10a.

すなわち、上述のように、高温炉床5に供給す
る前に汚泥の水分を40%ないし65%にすると、冒
記したような燃焼排ガスの温度降下及び上昇に伴
う多くの問題発生を確実に防止できる事を、種々
の研究及び実験によつて見出したのである。
That is, as mentioned above, by reducing the water content of the sludge to 40% to 65% before supplying it to the high-temperature hearth 5, many of the problems associated with the temperature drop and rise of the combustion exhaust gas mentioned above can be reliably prevented. Through various research and experiments, we discovered that this is possible.

さらに詳述すると、汚泥の灰分量や発熱量は発
生地域や時期等によつて種々変化するが、標準的
な汚泥、つまり灰分が50%で乾燥基準の発熱量が
2300Kcal/Kgのものを、標準的なキユポラタイ
プの溶融炉3の高温コークス炉床5において空気
比1.0で燃焼溶融させ、かつ、炉床5に供給する
汚泥の水分を変化させて、燃焼排ガス温度の変化
を確認したところ、第2図に実線で示す結果が得
られ、また、汚泥の灰分量や発熱量の現実におけ
る変化から、汚泥の性状変化があつても、上記第
2図実線に対して±100℃程度の範囲(鎖線間)
に燃焼排ガス温度が収まる事を見出したのであ
る。
To explain in more detail, the ash content and calorific value of sludge vary depending on the region and time of occurrence, but the calorific value of standard sludge, that is, 50% ash and dry standard, is
2300Kcal/Kg is burned and melted in the high-temperature coke hearth 5 of a standard cupola type melting furnace 3 at an air ratio of 1.0, and the water content of the sludge supplied to the hearth 5 is varied to adjust the flue gas temperature. When we checked the changes, we obtained the results shown by the solid line in Figure 2.Also, based on actual changes in the ash content and calorific value of sludge, even if there are changes in the properties of sludge, the results shown by the solid line in Figure 2 above are Range of approximately ±100℃ (between chain lines)
They found that the combustion exhaust gas temperature was within the range of .

そして、上記新知見に基いて、単に高温炉床5
に供給する前に汚泥の水分を調節するだけの簡単
な手段を付加するだけで、高温炉床5からの燃焼
排ガスの温度を冒記のごとき各種の問題を生じな
い好適な範囲、つまり800℃ないし1100℃程度に、
確実に維持できるところの有効な汚泥の溶融処理
技術を確立したのである。
Based on the above new findings, we simply developed a high-temperature hearth 5
By simply adding a simple means to adjust the water content of the sludge before supplying it to the furnace, the temperature of the flue gas from the high-temperature hearth 5 can be adjusted to a suitable range that does not cause the various problems mentioned above, that is, 800°C. to about 1100℃,
They established an effective sludge melting treatment technology that can be reliably maintained.

尚、汚泥の水分調節を前述のようにロータリキ
ルンタイプの乾燥機によつて行うと、乾燥及び燃
焼速度が大でかつダスト飛散を効果的に抑制でき
る粒径、つまり2mmないし10mmの粒径に、汚泥を
造粒できる利点があるが、水分調節工程とは別に
造粒工程を入れてもよく、また造粒工程を省略し
てもよい。
Furthermore, if the water content of the sludge is adjusted using a rotary kiln type dryer as described above, the particle size will be 2 mm to 10 mm, which has a high drying and combustion rate and can effectively suppress dust scattering. , there is an advantage that the sludge can be granulated, but a granulation step may be added separately from the moisture adjustment step, or the granulation step may be omitted.

また、利用する溶融炉3の具体的構成は、各種
変更可能であり、そして、高温炉床5を形成する
炭素系可燃物質として、例えばコークス、石炭、
黒鉛電極屑等の各種のものが利用できる。
Further, the specific configuration of the melting furnace 3 to be used can be changed in various ways, and the carbon-based combustible material forming the high-temperature hearth 5 may be, for example, coke, coal,
Various materials such as graphite electrode scraps can be used.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る汚泥の溶融方法の実施例を
示し、第1図は使用する装置の概略説明図、第2
図は汚泥の水分と燃焼排ガス温度の相関を示すグ
ラフである。 5……高温炉床、10……後燃焼部。
The drawings show an embodiment of the sludge melting method according to the present invention, and FIG. 1 is a schematic explanatory diagram of the apparatus used, and FIG.
The figure is a graph showing the correlation between sludge moisture and combustion exhaust gas temperature. 5...High-temperature hearth, 10...After-combustion section.

Claims (1)

【特許請求の範囲】 1 水分調整した汚泥を、炭素系可燃物質で形成
した高温炉床5に供給して、燃焼溶融させ、前記
高温炉床5の上方からの燃焼排ガスを後燃焼部1
0に供給して、燃焼排ガス中のCOをCO2に酸化
させる汚泥の溶融方法であつて、前記汚泥の水分
調整により汚泥の水分を40%ないし65%にして、
前記後燃焼部10に供給する燃焼排ガスの温度を
800℃ないし1100℃に維持し、前記後燃焼部10
におけるCOの酸化を、補助バーナ無しの空気供
給によるCOの自燃で行わせる汚泥の溶融方法。 2 前記汚泥の水分調整により水分を50%ないし
60%にする特許請求の範囲第1項に記載の方法。
[Scope of Claims] 1. Water-adjusted sludge is supplied to a high-temperature hearth 5 made of a carbon-based combustible material, where it is burned and melted, and the combustion exhaust gas from above the high-temperature hearth 5 is sent to the after-combustion section 1.
A method for melting sludge in which CO in combustion exhaust gas is oxidized to CO 2 by supplying CO 2 to CO 2 , the method comprising adjusting the water content of the sludge to make the water content of the sludge 40% to 65%,
The temperature of the combustion exhaust gas supplied to the after-combustion section 10 is
The temperature is maintained at 800°C to 1100°C, and the after-burning section 10
A sludge melting method in which CO oxidation is carried out by self-combustion of CO by supplying air without an auxiliary burner. 2 Adjust the water content of the sludge to reduce the water content to 50% or
60% method according to claim 1.
JP4091780A 1980-03-28 1980-03-28 Method of melting sludge Granted JPS56137011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091780A JPS56137011A (en) 1980-03-28 1980-03-28 Method of melting sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091780A JPS56137011A (en) 1980-03-28 1980-03-28 Method of melting sludge

Publications (2)

Publication Number Publication Date
JPS56137011A JPS56137011A (en) 1981-10-26
JPS6354969B2 true JPS6354969B2 (en) 1988-10-31

Family

ID=12593845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091780A Granted JPS56137011A (en) 1980-03-28 1980-03-28 Method of melting sludge

Country Status (1)

Country Link
JP (1) JPS56137011A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438672A (en) * 1977-08-31 1979-03-23 Osaka Gas Co Ltd Industrial refuse treating furnace
JPS557531A (en) * 1978-06-30 1980-01-19 Okawara Mfg Treatment of combustible sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438672A (en) * 1977-08-31 1979-03-23 Osaka Gas Co Ltd Industrial refuse treating furnace
JPS557531A (en) * 1978-06-30 1980-01-19 Okawara Mfg Treatment of combustible sludge

Also Published As

Publication number Publication date
JPS56137011A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
CA2222819C (en) Method and device for producing and utilizing gas from waste materials
CA2073192A1 (en) Hazardous waste multi-sectional rotary kiln incinerator
US6183242B1 (en) Rotary kiln for forming lightweight aggregate from flyash and sewage sludge
JP3034467B2 (en) Direct-type incineration ash melting treatment equipment and treatment method
JPS6243092B2 (en)
US4036753A (en) Pyrolysis process for treating sewage sludge containing chromium
JPS6354969B2 (en)
JP2007254863A (en) Sintered material with the use of organic waste, method for producing the sintered material, and refining method
JP3525078B2 (en) Separate incineration ash melting equipment and its operation control method
JPH11248358A (en) Metal reducing apparatus
JPS6370014A (en) Combustion-melting furnace of cyclone type for sewage sludge
JPH02606B2 (en)
JPH116019A (en) Treatment of oil-containing sludge and device thereof
JPS633207B2 (en)
JPH0481692B2 (en)
JPS6349126B2 (en)
JPS6249988A (en) Melting treatment for waste
JPS6011766B2 (en) Combustion support gas injection method in waste melting type pyrolysis furnace
JPS6143070Y2 (en)
JPH01184314A (en) Refuse melting furnace
JPH037697Y2 (en)
SU1151768A1 (en) Method of recovering oil-sinter-containing waste
JPH04150984A (en) Waste melting equipment
JP2000080386A (en) Preparation of fuel from sludge
JP2001317717A (en) Oil-containing sludge incinerator and method for calcining oil-containing sludge