JPH02606B2 - - Google Patents
Info
- Publication number
- JPH02606B2 JPH02606B2 JP56114085A JP11408581A JPH02606B2 JP H02606 B2 JPH02606 B2 JP H02606B2 JP 56114085 A JP56114085 A JP 56114085A JP 11408581 A JP11408581 A JP 11408581A JP H02606 B2 JPH02606 B2 JP H02606B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- oxygen
- temperature
- combustion
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 62
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 55
- 239000001301 oxygen Substances 0.000 claims description 55
- 229910052760 oxygen Inorganic materials 0.000 claims description 55
- 238000002485 combustion reaction Methods 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 239000002699 waste material Substances 0.000 claims description 23
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- 230000000630 rising effect Effects 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 19
- 230000001174 ascending effect Effects 0.000 claims description 18
- 239000002440 industrial waste Substances 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 5
- 239000003546 flue gas Substances 0.000 claims description 4
- 239000013462 industrial intermediate Substances 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 239000000428 dust Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 5
- 239000012768 molten material Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000013067 intermediate product Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229960004424 carbon dioxide Drugs 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004927 wastewater treatment sludge Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/08—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
- F23G5/085—High-temperature heating means, e.g. plasma, for partly melting the waste
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Incineration Of Waste (AREA)
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
Description
【発明の詳細な説明】
本発明は、下水汚泥などの各種の産業廃棄物
や、あるいはそれらを必要に応じて予め乾燥焼却
や粉砕処理した中間処理物を、埋立てに使用した
時に重金属が流出しないようにしたり、あるいは
建設骨材に利用できるようにする等のために焼
却、溶融する方法に関し、詳しくは、炭素系可燃
物質によつて形成した高温炉床の上部において、
前記高温炉床への燃焼用酸素含有ガスの供給によ
り産業廃棄物あるいはその中間処理物を焼却溶融
させると共に、燃焼排ガスを前記高温炉床の上方
に形成した上昇流路と前記高温炉床の下部に接続
した流路に排出させる廃棄物溶融方法に関し、そ
の目的は、高温炉床における燃焼、溶融物の下
降、及び、溶融物の取出しを安定して行なわせら
れ、しかも、ダスト飛散、及び、炉壁損傷を抑制
でき、そのうえ、燃焼排ガス中の臭気成分及び有
害成分の燃焼分解を安定して行なわせられ、さら
には、燃焼排ガス中のNOX(窒素酸化物)量を少
なくでき、全体として操炉トラブル防止面並びに
公害防止面で極めて有効な方法を提供する点にあ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to prevent heavy metals from flowing out when various industrial wastes such as sewage sludge, or intermediately processed products obtained by drying, incinerating or pulverizing them as necessary, are used in landfills. Regarding the method of incinerating and melting to prevent carbonaceous materials from burning or to make them available for use as construction aggregates, for example,
Industrial waste or its intermediate treatment is incinerated and melted by supplying oxygen-containing gas for combustion to the high-temperature hearth, and an ascending flow path formed above the high-temperature hearth and a lower part of the high-temperature hearth are used to direct combustion exhaust gas. The purpose of this method is to stably perform combustion in a high-temperature hearth, descend the melt, and take out the melt, while also preventing dust scattering and Damage to the furnace wall can be suppressed, and in addition, odor components and harmful components in the flue gas can be stably decomposed by combustion, and the amount of NOX (nitrogen oxides) in the flue gas can be reduced, improving overall operation. The purpose of the present invention is to provide an extremely effective method in terms of preventing furnace troubles and pollution.
次に、例示図により本発明の実施例を説明す
る。 Next, embodiments of the present invention will be described with reference to illustrative drawings.
キユポラタイプの溶融炉1に、炭素系可燃物質
から成る高温炉床2を形成し、ホツパー3から高
温炉床2に、ダンパー4a,4bを交互に開閉し
て、廃棄物あるいはその中間処理物を、炭素系可
燃物質と混合状態であるいは交互に供給し、炭素
系可燃物質と廃棄物あるいはその中間処理物の充
填層5を高温炉床2上に形成し、そして、下方の
第1羽口6から高温炉床2に空気等の酸素含有ガ
スを供給して、高温炉床2の上部において廃棄物
あるいはその中間処理物を燃焼、溶融し、そし
て、燃焼排ガスを高温炉床2の上方に形成した上
昇流路7と高温炉床2の下部に接続した下部流路
8とに排出させるようにし、そして、溶融物を前
記下部流路8を通して炉体9に取出すとともに、
炉体9に取出した溶融物を第1及び第2出滓口1
0a,10bから適宜回収させるようにし、そし
て、高温炉床2から発生した燃焼排ガスを、充填
層5を通過する際に生成される臭気成分及び有害
成分を燃焼分解させるよう、上昇流路7内におい
て、第2羽口11から供給される空気等の酸素含
有ガスによつて後燃焼させるようにしてある。 A high-temperature hearth 2 made of carbon-based combustible material is formed in a cupola-type melting furnace 1, and dampers 4a and 4b are alternately opened and closed to transport waste or intermediately processed materials from the hopper 3 to the high-temperature hearth 2. The carbon-based combustible material is supplied in a mixed state or alternately to form a packed bed 5 of the carbon-based combustible material and waste or an intermediate treatment thereof on the high-temperature hearth 2. Oxygen-containing gas such as air is supplied to the high-temperature hearth 2 to burn and melt the waste or its intermediate products in the upper part of the high-temperature hearth 2, and combustion exhaust gas is formed above the high-temperature hearth 2. The melt is discharged into the ascending flow path 7 and a lower flow path 8 connected to the lower part of the high temperature hearth 2, and the melt is taken out to the furnace body 9 through the lower flow path 8.
The molten material taken out into the furnace body 9 is passed through the first and second slag outlets 1
0a and 10b, and in order to burn and decompose the odor components and harmful components generated when the combustion exhaust gas generated from the high-temperature hearth 2 passes through the packed bed 5. In this case, after-combustion is performed using an oxygen-containing gas such as air supplied from the second tuyere 11.
前記上昇流路7からの燃焼排ガスを、炉頂部に
接続した排気ダクト12、ダスト除去用サイクロ
ン13、熱交換器14、第1ブロワ15を通して
大気中に放出させるようにし、又、前記下部流路
8を通つて炉体9内に流動した燃焼排ガスを、前
記熱交換器14及び第1ブロワ15を通して大気
中に放出させるようにしてある。さらに、前記第
1、第2羽口6,11に第2ブロワ16にて供給
する酸素含有ガスを、前記熱交換器14にて加加
温させるようにしてある。 The combustion exhaust gas from the ascending passage 7 is discharged into the atmosphere through an exhaust duct 12 connected to the top of the furnace, a dust removal cyclone 13, a heat exchanger 14, and a first blower 15. The combustion exhaust gas flowing into the furnace body 9 through the heat exchanger 14 and the first blower 15 is discharged into the atmosphere. Further, the oxygen-containing gas supplied to the first and second tuyeres 6 and 11 by the second blower 16 is heated by the heat exchanger 14.
又、前記第2ブロワ16と前記第1羽口6との
間に設けた流量制御弁V1、前記上昇流路7及び
前記下部流路8と前記第1ブロワ15との間に設
けた流量制御弁V2,V3による、高温炉床2への
燃焼用酸素含有ガス供給量、及び、上昇流路7と
下降流路8への排ガス分配比の調節によつて、前
記高温炉床2内の上昇ガス空塔速度を15〜60N
m3/m2・min(望ましくは20〜40Nm3/m2・min)
に維持し、且つ、前記下部流路8における排ガス
の温度を1350℃以上に維持させるようにしてあ
る。つまり、上昇ガス空塔速度が低過ぎた場合に
おいて、溶融物が高温炉床2内で粘稠するのを抑
制させ、下部流路8内の排ガス温度が低過ぎた場
合において、溶融物が下部流路8内で粘稠するの
を抑制させて、溶融物の下降及び取出しを安定し
て行なわせることができ、しかも、上昇ガス空塔
速度が高過ぎた場合において、ダストが上昇ガス
によつて飛散されるのを抑制させることができる
のである。 Further, a flow rate control valve V 1 provided between the second blower 16 and the first tuyere 6 , a flow rate control valve V 1 provided between the ascending flow path 7 and the lower flow path 8 and the first blower 15 The control valves V 2 and V 3 control the amount of oxygen-containing gas supplied to the high-temperature hearth 2 and the distribution ratio of exhaust gas to the ascending passage 7 and the descending passage 8, thereby controlling the high-temperature hearth 2. Rising gas superficial velocity within 15~60N
m 3 /m 2・min (preferably 20 to 40Nm 3 /m 2・min)
In addition, the temperature of the exhaust gas in the lower flow path 8 is maintained at 1350° C. or higher. In other words, when the rising gas superficial velocity is too low, the molten material is prevented from becoming viscous in the high-temperature hearth 2, and when the exhaust gas temperature in the lower flow path 8 is too low, the molten material is prevented from becoming viscous in the lower flow path 8. By suppressing viscosity in the flow path 8, it is possible to stably descend and take out the molten material.Moreover, when the superficial velocity of the rising gas is too high, dust is prevented by the rising gas. This can prevent the particles from getting scattered.
尚、前記高温炉床2の高さは50cm〜100cmであ
り、第1羽口6と下部流路8との上下間隔は20cm
〜50cmであり、前記下部流路8における排ガスの
流速は0.5〜3Nm3/minである。 The height of the high-temperature hearth 2 is 50 cm to 100 cm, and the vertical distance between the first tuyere 6 and the lower channel 8 is 20 cm.
50 cm, and the flow rate of the exhaust gas in the lower flow path 8 is 0.5 to 3 Nm 3 /min.
又、前記高温炉床2へ供給される酸素量が高温
炉床2に補給される炭素系可燃物質の燃焼用理論
酸素量の0.8〜1.2倍(望ましくは0.95〜1.05倍)
となるように、炭素系可燃物質の補給量を調節す
る。つまり、補給し過ぎた場合における、炭素と
2酸化炭素との還元反応による燃焼排ガス温度の
低下、及び、補給量が少な過ぎた場合における、
燃焼排ガスの温度低下を抑制するよう高温炉床2
を適正状態で燃焼させて、廃棄物あるいはその中
間処理物を能率良く処理できるのである。 Further, the amount of oxygen supplied to the high temperature hearth 2 is 0.8 to 1.2 times (preferably 0.95 to 1.05 times) the theoretical amount of oxygen for combustion of the carbon-based combustible material supplied to the high temperature hearth 2.
Adjust the amount of carbon-based combustible material supplied so that In other words, when the amount of replenishment is too low, the combustion exhaust gas temperature decreases due to the reduction reaction between carbon and carbon dioxide, and when the amount of replenishment is too small,
High-temperature hearth 2 to suppress the temperature drop of combustion exhaust gas
By burning it under appropriate conditions, waste or its intermediate products can be efficiently processed.
又、前記充填層5を通過した上昇ガスの温度が
400℃ないし1200℃(望ましくは700℃ないし1000
℃)になるように、廃棄物あるいは中間処理物の
供給量を調節する。つまり、ガス温度が高過ぎる
場合における、飛散ダストが炉壁へ融着して炉壁
を損傷させる不都合、及び、後述の上昇流路7内
での後燃焼にて発生する熱との相剰により炉壁を
熱損させる不都合を抑制でき、しかも、ガス温度
が低過ぎた場合における、前記後燃焼によつて排
ガス中の悪臭成分及び有害成分を安定して燃焼分
解できなくなる不都合を抑制できるのである。 Also, the temperature of the rising gas passing through the packed bed 5 is
400℃ to 1200℃ (preferably 700℃ to 1000℃)
℃), adjust the amount of waste or intermediate treatment materials supplied. In other words, if the gas temperature is too high, the scattered dust may fuse to the furnace wall and damage the furnace wall, and the additional heat generated by after-combustion in the ascending flow path 7, which will be described later, will cause the problem. It is possible to suppress the inconvenience of causing heat loss to the furnace wall, and furthermore, it is possible to suppress the inconvenience of not being able to stably burn and decompose the malodorous and harmful components in the exhaust gas due to the above-mentioned after-combustion when the gas temperature is too low. .
又、前記上昇流路7内に第2羽口11から供給
される酸素量と、前記第1羽口6かな高温炉床2
へ供給される酸素量との和が、前記補給される炭
素系可燃物質の燃焼用理論酸素量と前記産業廃棄
物あるいはその中間処理物の燃焼用理論酸素量と
の和の1.0〜1.2倍となるように、前記第2ブロワ
16と第2羽口11との間に設けた流量制御弁
V4によつて上昇流路7内への燃焼排ガス後燃焼
用酸素含有ガスの供給量を、高温炉床2への酸素
供給量と炭素系可燃物質補給量と廃棄物供給量に
見合つて調節する。つまり、第2羽口11に供給
される酸素量が少な過ぎた場合における、前記後
燃焼が良好に行なえなくなる不都合を抑制でき、
しかも、供給される酸素量が多過ぎた場合におけ
る、NOXが多量に発生し易いものとなる不都合
を抑制できるのである。 Also, the amount of oxygen supplied from the second tuyere 11 into the ascending flow path 7 and the amount of oxygen supplied from the second tuyere 6 to the high temperature hearth 2
The sum of the amount of oxygen supplied to is 1.0 to 1.2 times the sum of the theoretical amount of oxygen for combustion of the supplied carbon-based combustible material and the theoretical amount of oxygen for combustion of the industrial waste or its intermediate treatment product. The flow control valve provided between the second blower 16 and the second tuyere 11 so that
The amount of oxygen-containing gas for post-combustion of combustion exhaust gas supplied into the ascending flow path 7 is adjusted by V 4 in accordance with the amount of oxygen supplied to the high-temperature hearth 2, the amount of carbon-based combustible material supplied, and the amount of waste supplied. do. In other words, it is possible to suppress the inconvenience that the after-combustion cannot be performed satisfactorily when the amount of oxygen supplied to the second tuyere 11 is too small;
Moreover, it is possible to suppress the disadvantage that a large amount of NOX is likely to be generated when the amount of oxygen supplied is too large.
次に、上昇ガス空塔速度と排ガス温度の調節、
高温炉床2への酸素供給量の調節、充填層5での
上昇ガス温度の調節、上昇流路7への酸素供給量
の調節について、具体的調節手順を説明する。 Next, adjustment of the rising gas superficial velocity and exhaust gas temperature,
Specific adjustment procedures for adjusting the amount of oxygen supplied to the high-temperature hearth 2, the temperature of the rising gas in the packed bed 5, and the amount of oxygen supplied to the rising channel 7 will be described.
(1) 廃棄物処理量と溶融炉1の炉径に見合つて、
かつ、上昇流路7と下降流路8への排ガス分配
比に見合つて、高温炉床2内の上昇ガス空塔速
度が15〜60Nm3/m2・minになるように、高温
炉床2への燃焼用酸素含有ガス供給量を設定す
る。(1) Depending on the amount of waste to be treated and the diameter of melting furnace 1,
In addition, the high-temperature hearth 2 is adjusted so that the superficial velocity of the rising gas in the high-temperature hearth 2 is 15 to 60 Nm 3 /m 2 ·min, commensurate with the exhaust gas distribution ratio between the ascending flow path 7 and the descending flow path 8. Set the amount of oxygen-containing gas supplied for combustion.
その結果、コークスなどの炭素系可燃物質の
消費量が決まり、高温炉床2を1600〜1800℃に
維持でき、かつ、下部流路8における排ガス温
度を1350℃以上に維持できる。 As a result, the consumption amount of carbon-based combustible substances such as coke is determined, the high-temperature hearth 2 can be maintained at 1600 to 1800°C, and the exhaust gas temperature in the lower flow path 8 can be maintained at 1350°C or higher.
(2) 高温炉床2への燃焼用酸素含有ガス供給量に
見合つて、高温炉床2への供給酸素量が補給炭
素系可燃物質の燃焼用理論酸素量の0.8〜1.2倍
になるように、、炭素系可燃物質の補給量を設
定する。(2) In proportion to the amount of oxygen-containing gas supplied to the high-temperature hearth 2 for combustion, the amount of oxygen supplied to the high-temperature hearth 2 should be 0.8 to 1.2 times the theoretical amount of oxygen for combustion of the supplementary carbon-based combustible material. ,, Set the replenishment amount of carbon-based combustible material.
(3) 高温炉床2からのガス温度に見合つて、廃棄
物充填層5を通過した上昇ガス温度が400〜
1200℃になるように、廃棄物供給量を設定す
る。(3) In proportion to the gas temperature from the high-temperature hearth 2, the rising gas temperature that has passed through the waste filling bed 5 is 400~
Set the waste supply amount so that the temperature is 1200℃.
(4) 高温炉床2への酸素供給量と炭素系可燃物質
補給量と廃棄物供給量に見合つて、上昇流路7
への供給酸素量と高温炉床2への供給酸素量の
和が、炭素系可燃物質と廃棄物の燃焼用理論酸
素量の1〜1.2倍になるように、上昇流路7へ
の後燃焼用酸素含有ガス供給量を設定する。(4) In proportion to the amount of oxygen supplied to the high-temperature hearth 2, the amount of carbon-based combustible material replenishment, and the amount of waste supplied,
After-combustion is carried out to the ascending flow path 7 so that the sum of the amount of oxygen supplied to Set the amount of oxygen-containing gas supplied.
(5) 上記(4)項の後燃焼用酸素含有ガスの供給量設
定に伴つて上昇ガス温度が400〜1200℃の範囲
から外れる場合は、再び上記(3)項と同様に廃棄
物供給量を設定する。(5) If the rising gas temperature deviates from the range of 400 to 1200℃ due to the setting of the supply amount of oxygen-containing gas for after-combustion in paragraph (4) above, the waste supply amount should be changed again in the same manner as in paragraph (3) above. Set.
(6) 上記(5)項の廃棄物供給量設定に伴つて供給酸
素量の和が燃焼用理論酸素量の1〜1.2倍の範
囲から外れる場合は、再び上記(4)項と同様に後
燃焼用酸素含有ガス供給量を設定する。(6) If the sum of the supplied oxygen amounts deviates from the range of 1 to 1.2 times the theoretical combustion oxygen amount due to the waste supply amount setting in item (5) above, then the Set the oxygen-containing gas supply amount for combustion.
そして、上記(5)項と(6)項の調節を必要なだけ繰
返す。 Then, repeat the adjustments in items (5) and (6) above as many times as necessary.
また、上記(1)〜(4)項の調整を、必要に応じて上
記(5)項や(6)項の調整を併せて、適当なタイミング
で繰返す。 Further, the adjustments in items (1) to (4) above are repeated at appropriate timing, along with the adjustments in items (5) and (6) above, if necessary.
尚、本発明は、下水汚泥、し尿性汚泥、工場排
水処理汚泥、浄水場汚泥、活性処理汚泥等の処理
に好適であるが、その他、都市ゴミやその焼却
灰、各種産業廃棄物等、各種の廃棄物に適用で
き、そして、それらに紛砕、乾燥、造粒、調湿等
の処理を施して得られる中間処理物にも適用でき
る。 The present invention is suitable for the treatment of sewage sludge, human waste sludge, factory wastewater treatment sludge, water treatment plant sludge, activated treatment sludge, etc., but it is also suitable for treating various other types of waste, such as municipal garbage, its incineration ash, various industrial wastes, etc. It can be applied to waste materials, and also to intermediately processed products obtained by subjecting them to treatments such as crushing, drying, granulation, and humidity conditioning.
また、利用する溶融炉の具体的構成は、各種変
形可能である。第2図は、その一例を示し、高温
炉床2部分に対する側壁を、2重管構造に形成し
て水冷ジヤケツト17を構成したものである。 Furthermore, the specific configuration of the melting furnace used can be modified in various ways. FIG. 2 shows an example of this, in which the side wall for the two portions of the high-temperature hearth is formed into a double pipe structure to constitute a water-cooled jacket 17.
また、高温炉床2を形成する炭素系可燃物質と
しては、主としてコークスを用いるとよいが、無
煙炭等の練炭、黒鉛電極屑等の各種のものを利用
してもよい。 Further, as the carbon-based combustible material forming the high-temperature hearth 2, it is preferable to mainly use coke, but various materials such as briquettes such as anthracite coal, graphite electrode scraps, etc. may also be used.
また、前述のように、充填層5への炭素系可燃
物質の供給量、及び、廃棄物あるいはその中間処
理物の供給量、並びに、高温炉床2及び上昇流路
7への酸素ガス供給量等を調節するに、人為的に
調節操作しても、あるいは、適宜制御機構によつ
て自動的に行わせてもよい。 In addition, as described above, the amount of carbon-based combustible material supplied to the packed bed 5, the amount of waste or intermediate treatment thereof, and the amount of oxygen gas supplied to the high-temperature hearth 2 and the ascending channel 7. etc., may be adjusted manually or automatically by an appropriate control mechanism.
以上要するに本発明は、冒記廃棄物溶融方法に
おいて、前記高温炉床2への燃焼用酸素含有ガス
供給量の調節によつて、前記高温炉床2内の上昇
ガス空塔速度を15〜60Nm3/m2・minに維持する
と共に、前記下部流路8における排ガスの温度を
1350℃以上に維持し、
前記高温炉床2へ供給される酸素量が前記高温
炉床2に補給される炭素系可燃物質の燃焼用理論
酸素量の0.8〜1.2倍となるように、炭素系可燃物
質の補給量を調節し、
前記高温炉床2の上方に位置する産業廃棄物あ
るいは中間処理物の充填層5を通過した上昇ガス
の温度が400℃ないし1200℃になるように、産業
廃棄物あるいは中間処理物の供給量を調節し、
前記上昇流路7内への燃焼排ガス後燃焼用酸素
含有ガスの供給量を、前記高温炉床2への酸素供
給量と炭素系可燃物質補給量と産業廃棄物供給量
に見合つて調節することによつて、前記上昇流路
7内に供給される酸素量と前記高温炉床2へ供給
される酸素量との和を、前記炭素系可燃物質の燃
焼用理論酸素量と前記産業廃棄物あるいはその中
間処理物の燃焼用理論酸素量との和の1.0〜1.2倍
に維持することを特徴とする。 In summary, the present invention provides the aforementioned waste melting method by controlling the amount of oxygen-containing gas supplied to the high-temperature hearth 2 to increase the superficial velocity of the rising gas in the high-temperature hearth 2 from 15 to 60 Nm. 3 /m 2 ·min, and the temperature of the exhaust gas in the lower flow path 8 is maintained at
The carbon-based combustible material is maintained at 1350°C or higher, and the amount of oxygen supplied to the high-temperature hearth 2 is 0.8 to 1.2 times the theoretical amount of oxygen for combustion of the carbon-based combustible material supplied to the high-temperature hearth 2. The amount of replenishment of combustible material is adjusted so that the temperature of the rising gas that has passed through the packed bed 5 of industrial waste or intermediate treatment material located above the high-temperature hearth 2 is between 400°C and 1200°C. The amount of oxygen-containing gas for post-combustion of the flue gas into the ascending flow path 7 is adjusted to the amount of oxygen supplied to the high-temperature hearth 2 and the amount of carbon-based combustible material replenishment. The sum of the amount of oxygen supplied into the ascending passage 7 and the amount of oxygen supplied to the high temperature hearth 2 is adjusted according to the amount of supplied industrial waste. The amount of oxygen for combustion is maintained at 1.0 to 1.2 times the sum of the theoretical amount of oxygen for combustion of the industrial waste or its intermediate treatment product.
すなわち、高温炉床2内の上昇ガス空塔速度を
15〜60Nm3/m2・minに維持させることによつ
て、高温炉床2の温度を高温に保ちながら溶融物
の下降を良好に行なわせられ、しかも、上昇ガス
によつてダストが飛散されるのを抑制できるので
あり、又、下部流路8における排ガスの温度を
1350℃以上に維持させることによつて、溶融物の
取出しを良好に行なわすことができるのである。 In other words, the superficial velocity of the rising gas in the high-temperature hearth 2 is
By maintaining the temperature at 15 to 60 Nm 3 /m 2 ·min, the temperature of the high-temperature hearth 2 can be maintained at a high temperature while the molten material can descend smoothly, and the dust can be scattered by the rising gas. In addition, the temperature of the exhaust gas in the lower flow path 8 can be suppressed.
By maintaining the temperature at 1350°C or higher, the melt can be taken out effectively.
しかも、高温炉床2への供給される酸素量が高
温炉床2に補給される炭素系可燃物質の燃焼用理
論酸素量の0.8〜1.2倍となるように、炭素系可燃
物質の補給量を調節することによつて、燃焼排ガ
ス温度の低下を抑制し、廃棄物あるいはその中間
処理物を能率良く処理できるのである。 In addition, the amount of carbon-based combustible material supplied to the high-temperature hearth 2 is set so that the amount of oxygen supplied to the high-temperature hearth 2 is 0.8 to 1.2 times the theoretical amount of oxygen for combustion of the carbon-based combustible material supplied to the high-temperature hearth 2. By adjusting the temperature, it is possible to suppress a decrease in the temperature of the combustion exhaust gas and to efficiently treat waste or intermediate products thereof.
そのうえ、前記上昇流路7内に燃焼排ガス後燃
焼用酸素含有ガスを供給するとともに、その上昇
流路7内に供給される酸素量を、それと前記高温
炉床2へ供給される酸素量との和が、前記炭素系
可燃物質の燃焼用理論酸素量と前記産業廃棄物あ
るいはその中間処理物の燃焼用理論酸素量との和
の1.0〜1.2倍となるように調節することによつ
て、供給ガス中に窒素が含まれていても、燃焼排
ガス中のNOX量を極力減少させるようにしなが
ら、燃焼排ガスを、その中に含まれる臭気成分及
び有害成分(一酸化炭素、水素等)を燃焼分解さ
せるよう後燃焼させることができるのである。 Moreover, while supplying the oxygen-containing gas for post-combustion exhaust gas into the ascending passage 7, the amount of oxygen supplied into the ascending passage 7 is equal to the amount of oxygen supplied to the high-temperature hearth 2. supply by adjusting the sum to be 1.0 to 1.2 times the sum of the theoretical amount of oxygen for combustion of the carbon-based combustible material and the theoretical amount of oxygen for combustion of the industrial waste or its intermediate treatment product. Even if the gas contains nitrogen, it burns and decomposes the odor components and harmful components (carbon monoxide, hydrogen, etc.) contained in the combustion exhaust gas while reducing the amount of NOX in the combustion exhaust gas as much as possible. It is possible to perform post-combustion to achieve this.
さらに、前記高温炉床2の上方に位置する産業
廃棄物あるいは中間処理物の充填層5を通過した
上昇ガスの温度が400℃ないし1200℃になるよう
に、産業廃棄物あるいは中間処理物の供給量を調
節することによつて、上述の後燃焼を良好に行な
わせられ、しかも、炉壁がダストの融着により、
損傷されたり、炉壁が熱損されるのを抑制できる
のである。 Furthermore, the industrial waste or intermediate treatment material is supplied so that the temperature of the rising gas that has passed through the packed bed 5 of the industrial waste or intermediate treatment material located above the high temperature hearth 2 is 400°C to 1200°C. By adjusting the amount, the above-mentioned after-combustion can be performed satisfactorily, and the furnace wall is prevented by the fusion of dust.
This can prevent damage and heat loss to the furnace wall.
要するに、廃棄物の溶融処理を、公害防止面で
有利な状態で、且つ、操炉トラブル防止面で有利
な状態で、良好且つ安定的に行なわせることがで
きるようになつた。 In short, it has become possible to perform the melting treatment of waste in a favorable and stable manner in conditions that are advantageous in terms of pollution prevention and in conditions that are advantageous in terms of preventing furnace operation troubles.
図面は本発明に係る廃棄物溶融方法の実施例を
示し、第1図は使用する炉の概略断面図、第2図
は別構成の溶融炉の概略断面図である。
2…高温炉床、5…充填層、7…上昇流路、8
…下部流路。
The drawings show an embodiment of the waste melting method according to the present invention, and FIG. 1 is a schematic sectional view of a furnace used, and FIG. 2 is a schematic sectional view of a melting furnace with a different configuration. 2... High temperature hearth, 5... Filled bed, 7... Rising channel, 8
...Lower channel.
Claims (1)
の上部において、前記高温炉床2への燃焼用酸素
含有ガスの供給により産業廃棄物あるいはその中
間処理物を焼却溶融させると共に、燃焼排ガスを
前記高温炉床2の上方に形成した上昇流路7と前
記高温炉床2の下部に接続した流路8に排出させ
る廃棄物溶融方法であつて、 前記高温炉床2への燃焼用酸素含有ガス供給量
の調節によつて、前記高温炉床2内の上昇ガス空
塔速度を15〜60Nm3/m2・minに維持すると共
に、前記下部流路8における排ガスの温度を1350
℃以上に維持し、 前記高温炉床2へ供給される酸素量が前記高温
炉床2に補給される炭素系可燃物質の燃焼用理論
酸素量の0.8〜1.2倍となるように、炭素系可燃物
質の補給量を調節し、 前記高温炉床2の上方に位置する産業廃棄物あ
るいは中間処理物の充填層5を通過した上昇ガス
の温度が400℃ないし1200℃になるように、産業
廃棄物あるいは中間処理物の供給量を調節し、 前記上昇流路7内への燃焼排ガス後燃焼用酸素
含有ガスの供給量を、前記高温炉床2への酸素供
給量と炭素系可燃物質補給量と産業廃棄物供給量
に見合つて調節することによつて、前記上昇流路
7内に供給される酸素量と前記高温炉床2へ供給
される酸素量との和を、前記炭素系可燃物質の燃
焼用理論酸素量と前記産業廃棄物あるいはその中
間処理物の燃焼用理論酸素量との和の1.0〜1.2倍
に維持する廃棄物溶融方法。[Claims] 1. High-temperature hearth made of carbon-based combustible material 2
At the upper part of the high-temperature hearth 2, an ascending flow path 7 is provided in which industrial waste or its intermediate treatment material is incinerated and melted by supplying oxygen-containing gas for combustion to the high-temperature hearth 2, and combustion exhaust gas is formed above the high-temperature hearth 2. and a waste melting method in which the waste is discharged into a flow path 8 connected to a lower part of the high temperature hearth 2, the waste being melted by the high temperature hearth 2 by adjusting the amount of oxygen-containing gas for combustion supplied to the high temperature hearth 2. The superficial velocity of the rising gas in the lower flow path 8 is maintained at 15 to 60 Nm 3 /m 2 ·min, and the temperature of the exhaust gas in the lower flow path 8 is maintained at 1350 Nm 3 /m 2 ·min.
℃ or higher, and the amount of oxygen supplied to the high-temperature hearth 2 is 0.8 to 1.2 times the theoretical amount of oxygen for combustion of the carbon-based combustible material supplied to the high-temperature hearth 2. Adjust the amount of material replenishment so that the temperature of the rising gas that has passed through the packed bed 5 of industrial waste or intermediate treatment material located above the high-temperature hearth 2 is between 400°C and 1200°C. Alternatively, the supply amount of the intermediate treatment product is adjusted, and the supply amount of the oxygen-containing gas for post-combustion of flue gas into the ascending flow path 7 is adjusted to match the oxygen supply amount to the high-temperature hearth 2 and the carbon-based combustible material replenishment amount. The sum of the amount of oxygen supplied into the ascending passage 7 and the amount of oxygen supplied to the high-temperature hearth 2 is adjusted according to the amount of industrial waste supplied. A waste melting method that maintains the sum of the theoretical amount of oxygen for combustion and the theoretical amount of oxygen for combustion of the industrial waste or its intermediate treatment product at 1.0 to 1.2 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56114085A JPS5813916A (en) | 1981-07-20 | 1981-07-20 | Melting method for waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56114085A JPS5813916A (en) | 1981-07-20 | 1981-07-20 | Melting method for waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5813916A JPS5813916A (en) | 1983-01-26 |
JPH02606B2 true JPH02606B2 (en) | 1990-01-08 |
Family
ID=14628698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56114085A Granted JPS5813916A (en) | 1981-07-20 | 1981-07-20 | Melting method for waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5813916A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59158909A (en) * | 1983-02-28 | 1984-09-08 | Osaka Gas Co Ltd | Melting furnace for industrial waste |
JP2769623B2 (en) * | 1988-07-22 | 1998-06-25 | 月島機械株式会社 | Inclined horizontal circulation melting method and apparatus |
JP2601883B2 (en) * | 1988-09-13 | 1997-04-16 | 株式会社東洋製作所 | Animal waste incineration method and apparatus |
DE69724562T2 (en) | 1996-06-24 | 2004-04-08 | Nippon Steel Corp. | COMBUSTION / MELTING METHOD FOR A WASTE MELT |
JP3131163B2 (en) * | 1996-11-19 | 2001-01-31 | 新明和工業株式会社 | Melting equipment for incineration ash |
-
1981
- 1981-07-20 JP JP56114085A patent/JPS5813916A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5813916A (en) | 1983-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4346661A (en) | Furnace for treating industrial wastes | |
AU586494B2 (en) | Removing volatile contaminants from scrap metal | |
GB1007734A (en) | Disposal of waste sludges | |
US4280417A (en) | Incineration plant | |
JPH02606B2 (en) | ||
KR100654478B1 (en) | A method and apparatus for reducing a feed material in a rotary hearth furnace | |
JPS633207B2 (en) | ||
CN113446608A (en) | Dry cement preheating decomposition system | |
JP3742441B2 (en) | Method for adjusting combustion temperature in shaft furnace type waste melting furnace | |
JPH0331966B2 (en) | ||
JPH037697Y2 (en) | ||
JPS6143070Y2 (en) | ||
KR100568185B1 (en) | Method for processing waste by molten aeration | |
JP3575785B2 (en) | Method and apparatus for treating fall ash in secondary combustion chamber | |
JPS621549Y2 (en) | ||
JP3627768B2 (en) | Incineration ash treatment method | |
JP2768146B2 (en) | Operating method of waste melting furnace | |
JP2768144B2 (en) | Waste melting method | |
JPH01184314A (en) | Refuse melting furnace | |
JPS5866711A (en) | Melting method for refuse | |
JP2721424B2 (en) | Waste melting furnace | |
JPH06129618A (en) | Method of melting and processing waste material | |
JPH08254307A (en) | Waste treating method and waste treating device | |
JPS6229788Y2 (en) | ||
JPS6240607B2 (en) |