JPS6354936A - Activated material - Google Patents

Activated material

Info

Publication number
JPS6354936A
JPS6354936A JP61199336A JP19933686A JPS6354936A JP S6354936 A JPS6354936 A JP S6354936A JP 61199336 A JP61199336 A JP 61199336A JP 19933686 A JP19933686 A JP 19933686A JP S6354936 A JPS6354936 A JP S6354936A
Authority
JP
Japan
Prior art keywords
salt
divalent
trivalent iron
ferrous
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61199336A
Other languages
Japanese (ja)
Other versions
JPH0555182B2 (en
Inventor
Masami Oe
大江 昌巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61199336A priority Critical patent/JPS6354936A/en
Publication of JPS6354936A publication Critical patent/JPS6354936A/en
Publication of JPH0555182B2 publication Critical patent/JPH0555182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To impact ferromagnetism, oxygen trapping and cationic electrifying properties, etc., by homogeneously dispersing and depositing ferrous-ferric salt on alumina produced by using basic aluminum salt as a starting substance and forming an activated material. CONSTITUTION:Ferrous-ferric salt is formed by adding basic aluminum salt and aluminum powder to a ferric salt soln. and reducing one part of tervalent iron to bivalent iron with hydrogen generated by the reaction of acid obtained by hydrolysis and aluminum. Then after homogeneously dispersing it in the sol of alumina hydrate being coexistent boemite, leaving it to stand and aging it, a powdery activated material is obtained by concentrating and dehydrating it. As another method, the following method may be adopted wherein ferrous- ferric salt is produced by adding basic aluminum salt to a ferrous salt soln. and thereafter adding alkali to neutralize the mixture and blowing air to oxidize a part of bivalent iron.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、脱臭、防菌や生物活性化に有効な化学活性を
有する二価三価鉄塩を含有した活性材料の組成および、
その製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a composition of an active material containing a divalent and trivalent iron salt having chemical activity effective for deodorization, antibacterial and biological activation, and
The present invention relates to a manufacturing method thereof.

(従来の技術) 二価三価鉄塩は、強磁性、酸素トラップ性、カチオン帯
電性等の特異な性能を備えており、脱臭、防菌、生物活
性化等の多様な用途に用いられている。
(Prior art) Divalent and trivalent iron salts have unique properties such as ferromagnetism, oxygen trapping properties, and cationic charging properties, and are used for a variety of purposes such as deodorization, antibacterial, and biological activation. There is.

二価三価鉄塩の形態は、二価鉄塩を空気酸化や強酸によ
る酸化する反応系や、三酸鉄塩を強アルカリや発生機水
素で還元する反応系、または二価鉄塩と三価鉄塩の混合
溶液にアルカリを添加する反応系等の各反応系で生成す
る二価鉄塩と三価鉄塩の混合した錯体であり、典型的な
ものとしては。
The form of divalent and trivalent iron salts is a reaction system in which divalent iron salt is oxidized by air oxidation or strong acid, a reaction system in which trivalent iron salt is reduced with strong alkali or generator hydrogen, or a reaction system in which divalent iron salt and trivalent iron salt are oxidized with strong acid. A typical complex is a mixture of divalent iron salts and trivalent iron salts that is produced in reaction systems such as those in which an alkali is added to a mixed solution of valent iron salts.

逆スピネル構造をとるマグネタイト(FeO・Fe20
3)とマグネタイトに遷移する中間体、マグヘマイト(
γ−Fe、 O,)等マグヘマイトに遷移する中間体等
の常磁性物質があり、この他は二価鉄塩と三価鉄塩の多
様な比率の錯体であり、これらは出発液組成、温度pH
等により左右され複雑な組成となっている。
Magnetite with an inverse spinel structure (FeO/Fe20
3) and maghemite (
There are paramagnetic substances such as intermediates that transition to maghemite such as γ-Fe, O,), etc., and others are complexes of divalent and trivalent iron salts in various ratios, which vary depending on the starting liquid composition and temperature. pH
It has a complex composition, depending on various factors.

こうした二価三価鉄塩においてマグネタイト又はマグネ
タイトに遷移する中間体で、常磁性の物質が本発明活性
材料として適している。これらの二価三価鉄塩は、磁性
、酸化性、カチオン帯電性等に基づく触媒活性及び生物
活成化の機能を備えている。
Paramagnetic substances that are magnetite or intermediates that transition to magnetite in these divalent and trivalent iron salts are suitable as active materials of the present invention. These divalent and trivalent iron salts have catalytic activity and biological activation functions based on magnetism, oxidizing property, cationic chargeability, and the like.

二価三価鉄塩が活性機能を発現する上で重要なことは、
第1鉄(Fe”)の存在とその保持性及び重合錯体が反
強磁性の結合に移行しない組成であることである。第1
鉄(Fe”)は酸素をトラップして活性化し、この活性
酸素の放出により酸化触媒機能を発現し、また生物体中
に吸収されて、活性物質(例えばチトクローム等)を形
成する特性をもっているが、第1鉄はきわめて不安定で
あり、空気中および水溶液中で容易に酸化されて第2鉄
(Fe’つとなり酸化活性を失ってしまう。この改善法
としてL−アスコルビン酸やフタロシアニン、或は、生
体物質系の指体(たとえば グルコース、グルタミン等
)と複合して第1鉄を保護する方法及び二価三価鉄塩と
する方法があるが、前者は複合方法が難しく、また温度
(100℃前後)や酸化環境下で不安定となり経時的に
第2鉄塩化する問題点がある。又、二価三価鉄塩は、含
有二価鉄が安定しているが製造時に基準単量体Feぐ8
H〕Feを主体とする重合錯体の形成のしかたが化学活
性の少ない反磁性的な構造の重合錯体を形成しやすいと
いう欠点がある0反磁性的な重合をしている二価三価鉄
塩はFe” ”の活性が封殺され酸素トラップ性が著し
く阻害され、活性材料としての特性が欠如する。
What is important for divalent and trivalent iron salts to express their active functions is that
The presence of ferrous iron (Fe"), its retention, and the composition of the polymer complex that does not shift to antiferromagnetic bonding.
Iron (Fe") has the property of trapping and activating oxygen, releasing this active oxygen to exhibit an oxidation catalytic function, and being absorbed into living organisms to form active substances (such as cytochromes). Ferrous iron is extremely unstable and is easily oxidized in the air and in aqueous solutions, becoming ferric iron (Fe') and losing its oxidizing activity. There are two methods: protecting ferrous iron by combining it with biomaterials (e.g., glucose, glutamine, etc.) and converting it into divalent and trivalent iron salts. However, the former method is difficult to combine, and the temperature (100 There is a problem that it becomes unstable in oxidizing environments (around 30°F) and turns into ferric chloride over time.Furthermore, divalent and trivalent iron salts have the problem that the divalent iron contained in them is stable, but when the standard monomer is Fegu8
H] A divalent trivalent iron salt that undergoes diamagnetic polymerization, which has the disadvantage that the method of forming a polymer complex mainly composed of Fe tends to form a polymer complex with a diamagnetic structure with little chemical activity. The activity of Fe'' is suppressed, the oxygen trapping property is significantly inhibited, and the properties as an active material are lacking.

(本発明による解決手段とその構成) 本発明は上記した問題点に対して活性物質である二価三
価鉄塩とアルミナゾルを並行して生成させる方法により
、二価三価鉄塩を超微粒子の状態でアルミナゾル中に分
散させ、二価三価鉄塩が反磁性的な錯体重合を防止し、
さらに均質分散状態を保持して乾燥して活性材料をうる
ことにより解決したものである。
(Solving means according to the present invention and its structure) The present invention solves the above-mentioned problems by producing ultrafine particles of divalent and trivalent iron salts by a method of simultaneously producing divalent and trivalent iron salts, which are active substances, and alumina sol. Dispersed in alumina sol in the state of divalent and trivalent iron salt prevents diamagnetic complex polymerization,
Furthermore, this problem was solved by maintaining the homogeneous dispersion state and drying to obtain the active material.

本発明は次のように構成されている。The present invention is configured as follows.

(1)二価三価鉄塩が塩基性アルミニウム塩を出発物質
として生成されたアルミナに均質に分散担持されている
活性材料。
(1) An active material in which a divalent and trivalent iron salt is homogeneously dispersed and supported on alumina produced using a basic aluminum salt as a starting material.

(2)三価鉄塩の溶液に塩基性アルミニウム塩及びアル
ミニウム粉末を添加し、加水分解した酸とアルミニウム
との反応により発生する水素により、三価鉄の一部を二
価鉄に還元して二価三価鉄塩を生成させるとともに、共
成するベーマイト質のアルミナ水和物のゾル中に均質に
分散させ、次いで静置熟成後、濃縮脱水して粉末状の活
性材料を製造する方法。
(2) Basic aluminum salt and aluminum powder are added to a solution of trivalent iron salt, and a portion of the trivalent iron is reduced to divalent iron by the hydrogen generated by the reaction between the hydrolyzed acid and aluminum. A method of producing a powdered active material by producing a divalent and trivalent iron salt and homogeneously dispersing it in a co-formed boehmite alumina hydrate sol, followed by static aging and concentration dehydration.

(3)二価鉄塩の溶液に塩基性アルミニウム塩を添加し
、次いでアルカリを添加してpHを中性域にするととも
に、空気吸込みまたは酸化剤により二価鉄の一部を酸化
して二価三価鉄塩を生成させるとともに、共成するベー
マイト質アルミナ水和物ゾル中に均質に分散させ、次い
で静置熟成後、濃縮脱水して粉末状の活性材料を得る方
法。
(3) Add a basic aluminum salt to a solution of divalent iron salt, then add an alkali to bring the pH to the neutral range, and oxidize some of the divalent iron with air suction or an oxidizing agent. A method of producing a trivalent iron salt and homogeneously dispersing it in a co-formed boehmite alumina hydrate sol, followed by static aging and concentration dehydration to obtain a powdered active material.

(本発明実施の具体的な説明) 構成(1)は本発明の活性材料の組成である。すなわち
常磁性を示すオキシ水酸化鉄(例えばy −F eOO
H*δ−Fe001()やFe、 04の形態の二価三
価鉄塩が、ベーマイト質アルミナ(γAQ、O,・H2
O)を主体とする繊維状粒子(径3〜10mμ、長さ2
〜3!!1μ)の搦み合いによる粉体(表面積Loom
/(以上)に均質分散して担持したしくみの組成に関す
るものである。
(Specific description of implementation of the present invention) Configuration (1) is the composition of the active material of the present invention. That is, iron oxyhydroxide (e.g. y -F eOO
Divalent and trivalent iron salts in the form of H*δ-Fe001(), Fe, 04,
Fibrous particles mainly composed of O) (diameter 3-10 mμ, length 2
~3! ! Powder (surface area Loom
/ (or more) and is related to the composition of the mechanism in which it is homogeneously dispersed and supported.

構成(2)は三価鉄塩を用いて活性材料を製造する方法
である。この方法は、三価鉄塩の一部を二価鉄塩に還元
し、二価三価鉄塩を生成させることと同時に、ベーマイ
ト質アルミナゾルを共成させることを要件としており、
三価鉄塩に塩基性アルミニウム塩及び必要に応じて、全
屈アルミニウムを添加して二価三価鉄塩を生成させ、均
質分散状態で乾燥し粉末化するものである。三価鉄塩と
しては、塩化物CFeCn 3.FeCQ 、−6H,
O)硝酸塩(Fa(Now )a ・9H20) 、硫
酸塩(Fe (So、 )3 ・nH,O、KFe (
SO4)3 ・12)1,0.NH4Fa(No4)、
−12H,O)等が用いられるが水溶性塩であればとく
に限定はしない。
Configuration (2) is a method of producing an active material using a trivalent iron salt. This method requires reducing a portion of trivalent iron salt to divalent iron salt to generate divalent and trivalent iron salt, and at the same time co-forming boehmite alumina sol.
A basic aluminum salt and, if necessary, total aluminum are added to a trivalent iron salt to produce a divalent and trivalent iron salt, which is dried and powdered in a homogeneously dispersed state. As the trivalent iron salt, chloride CFeCn 3. FeCQ, -6H,
O) nitrate (Fa(Now)a ・9H20), sulfate (Fe (So, )3 ・nH,O, KFe (
SO4)3 ・12)1,0. NH4Fa (No4),
-12H,O) etc., but there is no particular limitation as long as it is a water-soluble salt.

塩基性アルミニウム塩は、三価鉄塩と同質酸塩のものを
用いる0組成は、アルミニウムと酸根の比が1.8−2
.2:1.0のもので、予め塩化アルミニウム、硫酸ア
ルミニウム、硝酸アルミニウム、酢酸アルミニウム等の
0.5〜1.5モル程度の溶液を加温し、撹拌しながら
所定量の金属アルミニウムを溶解することにより調製す
る。
The basic aluminum salt used is a trivalent iron salt and a homogeneous acid salt.The basic aluminum salt has a composition in which the ratio of aluminum to acid radicals is 1.8-2.
.. 2:1.0, heat a solution of about 0.5 to 1.5 moles of aluminum chloride, aluminum sulfate, aluminum nitrate, aluminum acetate, etc. in advance, and dissolve a predetermined amount of metal aluminum while stirring. Prepared by:

この方法の基準工程を説明すると、三価鉄塩の溶液(I
N)を100部(重量)に対し塩基性アルミニウム塩溶
液(濃度5%)50〜70部を添加し、次いで金属アル
ミニウム粉末2〜5部添加し、常温〜80℃で約1時間
撹拌する。この操作により、三価鉄塩溶液と塩基性アル
ミニウム塩の加水分解による酸と金属アルミニウムの反
応から発生する発生機の水素により、三価鉄塩の一部は
Fe1がFe”+に還元され、ざらに(Fe(OH,C
Q 、NO3tl/2SOJzO)”+や(Fa、 (
0!(。
To explain the standard steps of this method, a solution of trivalent iron salt (I
50 to 70 parts of a basic aluminum salt solution (concentration 5%) are added to 100 parts (weight) of N), followed by 2 to 5 parts of metal aluminum powder, and the mixture is stirred at room temperature to 80°C for about 1 hour. Through this operation, part of Fe1 in the trivalent iron salt is reduced to Fe''+ by the hydrogen in the generator generated from the reaction between the acid and metal aluminum caused by the hydrolysis of the trivalent iron salt solution and the basic aluminum salt. Rani (Fe(OH,C
Q, NO3tl/2SOJzO)”+ya(Fa, (
0! (.

CQ 、 No、 、 1/2SO,)! ]’+等の
錯イオン等を配して、2量体Fe=H>Feを主体とす
る二価三価鉄形層の重合錯体が形成され、最終的にはγ
−Fe00Hを多く含んだ二価三価鉄塩の微粒子(30
〜50人)が形成される。また塩基性アルミニウム塩は
同時に加水分解してベーマイト(γ−AΩ203・H2
O)を主体とする繊維状粒子(径3〜11μ、長さ2〜
301μ)のアルミナゾルを生成する。アルミナゾルは
液中で多量の水分子を引きつけており、高粘度(例濃度
3% 8000センチポアズ、 pH3)を呈する。
CQ, No, , 1/2SO,)! ]'+ complex ions, etc., to form a polymeric complex of a divalent and trivalent iron layer mainly composed of dimer Fe=H>Fe, and finally γ
- Fine particles of divalent and trivalent iron salt containing a large amount of Fe00H (30
~50 people) will be formed. In addition, the basic aluminum salt is simultaneously hydrolyzed to form boehmite (γ-AΩ203・H2
Fibrous particles mainly composed of O) (diameter 3-11μ, length 2-
301μ) alumina sol is produced. Alumina sol attracts a large amount of water molecules in the liquid and exhibits high viscosity (eg, 8000 centipoise at 3% concentration, pH 3).

またアルミナゾルはチクソトロピック性であり、撹拌に
より急速に低粘度となり、撹拌を停止すると直ちに高粘
度に復帰するので、二価三価鉄塩をアルミナゾル中に均
質に分散させることができ、分散後も高粘度と、二価三
価鉄塩とアルミナの正電荷による反発等の因子により比
重差分離や凝集を起こすことがない、この混合ゾルは次
いで透析等の常法的な手段により洗浄した後、不活性雰
囲気(窒素気流中)で24時間以上静置し1次いで減圧
濃縮により脱水乾燥して、活性材料粉末を完成する。
In addition, alumina sol is thixotropic, and its viscosity rapidly decreases when stirred, and immediately returns to high viscosity when stirring is stopped. Therefore, divalent and trivalent iron salts can be uniformly dispersed in alumina sol, and even after dispersion, This mixed sol, which does not cause specific gravity separation or aggregation due to factors such as high viscosity and repulsion due to the positive charge of divalent and trivalent iron salts and alumina, is then washed by conventional means such as dialysis, and then The mixture is allowed to stand for at least 24 hours in an inert atmosphere (in a nitrogen stream), and then dehydrated and dried by vacuum concentration to complete an active material powder.

構成(3)は二価鉄塩を用いて活性材料を製造する方法
である。この方法は、二価鉄塩の溶液に塩基性アルミニ
ウムの溶液を添加し、次いでアリカリで混合液を中性域
(pH7〜8)にして、アルミナゾルを生成させるとと
もに、空気吹込みや過酸化酸素の添加により二価鉄塩の
一部を三価鉄として二価三価鉄塩を形成させ、均質分散
状態で乾燥し粉末化するものである。
Configuration (3) is a method for producing active materials using divalent iron salts. In this method, a solution of basic aluminum is added to a solution of divalent iron salt, and then the mixture is brought to a neutral range (pH 7 to 8) with alkali to generate an alumina sol. By adding , a part of the divalent iron salt is converted into trivalent iron to form a divalent and trivalent iron salt, which is dried and powdered in a homogeneously dispersed state.

二価鉄塩としては、塩化物(FeCfl 、 、FeC
Q □・6H。
As divalent iron salts, chlorides (FeCfl, , FeC
Q □・6H.

0)硫酸塩(FeS04・7H,O,Fe50.・H,
O,(NH4)2So4・Fe50、−614,03硝
酸塩(Fa(NOx)z−61(,03等が用いられる
が、水溶性塩であればとくに限定はしない。
0) Sulfate (FeS04.7H, O, Fe50..H,
O, (NH4)2So4.Fe50, -614,03 nitrate (Fa(NOx)z-61(,03), etc. are used, but there is no particular limitation as long as it is a water-soluble salt.

塩基性アルミニウム塩は構成(2)と同様のものである
。この方法の基準工程を説明すると、二価鉄塩の溶液(
IN) 100部(重量)に対し塩基性アルミニウム塩
溶液(濃度5%)を70〜100部添加した後、苛性ソ
ーダ(IN、Na0H)をp)Iが7.0−8.0の中
性域になるまで撹拌しながら添加すると、Fe(OH)
zとベーマイト質アルミナゾルが共成した混合ゾルとな
る。
The basic aluminum salt is the same as in configuration (2). To explain the standard process of this method, a solution of divalent iron salt (
After adding 70 to 100 parts of a basic aluminum salt solution (concentration 5%) to 100 parts (by weight) of IN), add caustic soda (IN, NaOH) to a neutral range with an I of 7.0 to 8.0. When added while stirring until Fe(OH)
A mixed sol is formed by co-forming Z and boehmite alumina sol.

このゾルを常温〜90℃の加温で撹拌しながら空気を約
1〜2時間ゾルIQ当り空気60〜10Qで吹き込んで
、二価鉄塩の一部を三価鉄に酸化し二価三価鉄塩を生成
させる。
While stirring the sol at room temperature to 90°C, air is blown in at a rate of 60 to 10 Q per sol IQ for about 1 to 2 hours to oxidize a part of the divalent iron salt to trivalent iron. Produces iron salts.

また酸化手段として混合ゾルに過酸化水素(H,02)
5〜10部添加し約20分急速に撹拌してFe (OH
) 、を酸化する方法をとってもよい。また二価鉄塩と
塩基性アルミニウム塩が硝酸塩である場合には加水分解
の過程で酸化が行われる。この方法で生成する二価三価
鉄塩は’/ ・Fe0OH,δ−FeOOH、Fe、 
O,等を主体とする強磁性の微粒子(粒径30〜80人
)である。
Additionally, hydrogen peroxide (H,02) is added to the mixed sol as an oxidation means.
Add 5 to 10 parts and stir rapidly for about 20 minutes to prepare Fe (OH
) , may be oxidized. Further, when the divalent iron salt and the basic aluminum salt are nitrates, oxidation occurs during the hydrolysis process. The divalent and trivalent iron salts produced by this method are '/ ・Fe0OH, δ-FeOOH, Fe,
These are ferromagnetic fine particles (particle size: 30 to 80 particles) mainly composed of O, etc.

二価三価鉄塩を(2)項と同様にアルミナゾル中に均質
に分散し、次いで透析等の常法的な手段により洗浄した
後不活性雰囲気(窒素気流中)で24時間以上静置し、
次いで減圧濃縮により脱水乾燥して活性材料粉末を完成
する。
The divalent and trivalent iron salts are homogeneously dispersed in alumina sol in the same manner as in item (2), and then washed by a conventional method such as dialysis, and then allowed to stand for 24 hours or more in an inert atmosphere (in a nitrogen stream). ,
Then, it is dehydrated and dried by vacuum concentration to complete the active material powder.

(作用) 上記したように本発明の活性材料は、化学活性を備えた
二価三価鉄塩が超微粒子の状態でアルミナに均質に分散
担持されており、また製造工程から製品粉末でのアルミ
ナの持つ体質により反磁性的重合や、酸化による変質が
経時的に起こさず活性状態を保持しうるちのである0本
発明による活性材料粉末は次のような性質と機能をもっ
ている。
(Function) As described above, in the active material of the present invention, a chemically active divalent and trivalent iron salt is homogeneously dispersed and supported on alumina in the form of ultrafine particles, and the alumina is dispersed in the product powder from the manufacturing process. The active material powder according to the present invention has the following properties and functions.The active material powder of the present invention has the following properties and functions.

(1)二価三価鉄塩の微粒子は経時的に変質しない活性
酸素トラップ性を備えており、トラップした活性酸素の
作用により臭気、たとえばアンモニア、メチルメルカプ
タン、硫化水素等の悪臭成分を分解するしくみの脱臭剤
機能をもつ。
(1) Fine particles of divalent and trivalent iron salts have active oxygen trapping properties that do not deteriorate over time, and the trapped active oxygen decomposes malodorous components such as ammonia, methyl mercaptan, and hydrogen sulfide. It has a deodorizing function.

(2)組成内容である二価三価鉄塩及びアルミナは人蓄
無害成分であり、脱酸素性(トラップ性)にもとづく制
菌作用を利用して生鮮食料の鮮度保持剤として利用でき
る。
(2) The divalent and trivalent iron salts and alumina in the composition are harmless ingredients that can be stored and can be used as a freshness-preserving agent for fresh foods by utilizing their antibacterial action based on oxygen scavenging (trapping) properties.

(3)二価鉄(Fe12)含有物であり、担持体のアル
ミナは可逆的に水溶液に再分散するので植物の増殖促進
物質として微粒子の二価鉄を供給する活性剤として利用
できる。
(3) It is a material containing divalent iron (Fe12), and since the alumina of the carrier is reversibly redispersed in an aqueous solution, it can be used as an activator that supplies fine particles of divalent iron as a plant growth promoting substance.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

例−1(活性材料の調製) 試料A:(三価鉄塩を用いる方法)塩化第二鉄の溶液(
INtFsCQ3)を100部(重量)に対し、予め調
製した塩化アルミニウム溶液(1:Cu =2.2 :
 1.0(7)5%溶液)50部に金属アルミニウム粉
末(120メツシユ)2.5部を添加しながら約1時間
急速撹拌をして二価三価鉄塩とアルミナの混合ゾルを作
成し、次いで電気透析により洗浄した後、窒素封入容器
中に24時間放置した後、減圧濃縮により脱水乾燥して
活性材料粉末を調製する。
Example-1 (Preparation of active material) Sample A: (Method using trivalent iron salt) Solution of ferric chloride (
A pre-prepared aluminum chloride solution (1:Cu = 2.2:
While adding 2.5 parts of metallic aluminum powder (120 mesh) to 50 parts of 1.0 (7) 5% solution, the mixture was rapidly stirred for about 1 hour to create a mixed sol of divalent and trivalent iron salt and alumina. Then, after washing by electrodialysis, it is left in a nitrogen-filled container for 24 hours, and then dehydrated and dried by vacuum concentration to prepare an active material powder.

試料B:(二価鉄塩を用いる方法)硫酸第一鉄溶液(I
N、Fe50.)を100部(重量)に対し塩基性硫酸
アルミニウム(A I2: SO2:1,8 : 1濃
度5幻を70部添加し、次に苛性ソーダ(IN、Na0
H)を添加し液のPHが7〜7.5になるようにしてF
e(OH)zとアルミナの混合ゾルを得る。
Sample B: (Method using divalent iron salt) Ferrous sulfate solution (I
N, Fe50. ) to 100 parts (by weight) of basic aluminum sulfate (A I2: SO2:1, 8:1 concentration 5) was added, and then caustic soda (IN, Na0
Add H) so that the pH of the solution becomes 7 to 7.5, and then
A mixed sol of e(OH)z and alumina is obtained.

混合ゾルに過酸化水素水を15部添加し約30分急速撹
拌して、二価三価鉄塩を生成しアルミナとの混合ゾルを
作成し、以後試料Aと同一手段で活性材料粉末を調製す
る。、 例−2(脱臭試験) 例−1による活性材料の試料を用いて脱臭テストを行っ
た。試料AおよびBの粉末0.5gをテスト管(NHK
)に充填配置し、臭気ガスを50mfl、約0.5mQ
/secの条件で吸引し検知管方式により測定した。
Add 15 parts of hydrogen peroxide solution to the mixed sol and stir rapidly for about 30 minutes to generate divalent and trivalent iron salt, create a mixed sol with alumina, and then prepare active material powder using the same method as Sample A. do. , Example-2 (Deodorization Test) A deodorization test was conducted using a sample of the active material according to Example-1. 0.5g of sample A and B powder was placed in a test tube (NHK
), and 50 mfl of odor gas, about 0.5 mQ
The sample was sucked under the condition of /sec and measured using a detection tube method.

その結果を表−1に示す。The results are shown in Table-1.

表−1 例−3(藻類増殖試験) 例−1による活性材料の試料を用いて緑藻(セラストラ
ム)の培養テストを行った6 培地組成[(単位mg/ 2 )  NaNO325,
5+ K2 HPO41,0,MgCl125.7. 
Mg5O,”7H,014,7,CaCf1.”2H,
04,4,NaHCO,15,0,蒸留水IQ]に試料
を100mg/2添加し分散させたものと無添加の培地
液をつくり、フラスコ中に50m Q採取し、その中に
セラストラム初期濃度500cell/m n接種し、
培養温度25℃照度約4000Luxで8日間の緑藻細
胞類を顕微鏡で計数した。結果は無添加のもの1.OX
 10’cell/m Qに対し、試料A 5 X 1
0’cell/m 12、試料Bは2.0×10’ c
ell/m Qであり試料を添加したものは、いづれも
増殖促進性を示した。
Table 1 Example 3 (Algal growth test) A culture test of green algae (Celastorum) was carried out using the sample of the active material according to Example 1.6 Medium composition [(unit: mg/2) NaNO325,
5+ K2 HPO41.0, MgCl125.7.
Mg5O,"7H,014,7,CaCf1."2H,
04,4, NaHCO, 15,0, distilled water IQ] with 100 mg/2 of the sample added and dispersed, and a culture medium without any additives were prepared, and 50 m Q of the sample was collected in a flask, and 500 cells of celastrum at an initial concentration of 500 cells were collected in a flask. /m n inoculation,
Green algal cells were counted using a microscope under a culture temperature of 25° C. and illuminance of about 4000 Lux for 8 days. The results are for additive-free 1. OX
For 10'cell/m Q, sample A 5 x 1
0'cell/m 12, sample B is 2.0×10'c
ell/m Q to which the sample was added all showed proliferation promoting properties.

Claims (3)

【特許請求の範囲】[Claims] (1)二価三価鉄塩が、アルミナ水和物に分散担持され
てなる活性材料。
(1) An active material in which a divalent and trivalent iron salt is dispersed and supported on an alumina hydrate.
(2)三価鉄塩溶液に塩基性アルミニウム塩および金属
アルミニウムを添加し、生成した二 価三価鉄塩が共成したアルミナ水和物ゾル に均質に分散した混合ゾルを脱水し、粉末 状の活性材料を製造する方法。
(2) Basic aluminum salt and metal aluminum are added to the trivalent iron salt solution, and the resulting mixed sol in which the divalent and trivalent iron salts are homogeneously dispersed in the co-formed alumina hydrate sol is dehydrated to form a powder. A method of producing an active material.
(3)二価鉄塩溶液に塩基性アルミニウム塩を添加し、
空気酸化または酸化剤の添加により 生成した二価三価鉄塩が共成したアルミナ 水和物ゾルに均質に分散した混合ゾルを脱 水し、粉末状の活性材料を製造する方法。
(3) Adding a basic aluminum salt to the divalent iron salt solution,
A method for producing a powdered active material by dehydrating a mixed sol in which divalent and trivalent iron salts produced by air oxidation or addition of an oxidizing agent are homogeneously dispersed in a co-formed alumina hydrate sol.
JP61199336A 1986-08-25 1986-08-25 Activated material Granted JPS6354936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199336A JPS6354936A (en) 1986-08-25 1986-08-25 Activated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199336A JPS6354936A (en) 1986-08-25 1986-08-25 Activated material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5012036A Division JPH06339630A (en) 1993-01-27 1993-01-27 Preparation of alumina-iron salt composite body

Publications (2)

Publication Number Publication Date
JPS6354936A true JPS6354936A (en) 1988-03-09
JPH0555182B2 JPH0555182B2 (en) 1993-08-16

Family

ID=16406095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199336A Granted JPS6354936A (en) 1986-08-25 1986-08-25 Activated material

Country Status (1)

Country Link
JP (1) JPS6354936A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310736A (en) * 1988-06-08 1989-12-14 I B Ii:Kk Treatment of air
JPH01311007A (en) * 1988-06-08 1989-12-15 I B Ii:Kk Method for treating plant
WO2007013217A1 (en) * 2005-07-29 2007-02-01 Aichi Steel Corporation Iron(i) oxide-containing composition and plant growth promoter comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128994A (en) * 1978-03-31 1979-10-05 Hitachi Ltd Uranium collecting magnetic adsorbent
JPS59190226A (en) * 1983-04-11 1984-10-29 Shoji Yamashita Bivalent and trivalent iron salt and their preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128994A (en) * 1978-03-31 1979-10-05 Hitachi Ltd Uranium collecting magnetic adsorbent
JPS59190226A (en) * 1983-04-11 1984-10-29 Shoji Yamashita Bivalent and trivalent iron salt and their preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310736A (en) * 1988-06-08 1989-12-14 I B Ii:Kk Treatment of air
JPH01311007A (en) * 1988-06-08 1989-12-15 I B Ii:Kk Method for treating plant
WO2007013217A1 (en) * 2005-07-29 2007-02-01 Aichi Steel Corporation Iron(i) oxide-containing composition and plant growth promoter comprising the same
JPWO2007013217A1 (en) * 2005-07-29 2009-02-05 愛知製鋼株式会社 Composition containing ferrous oxide for promoting plant growth

Also Published As

Publication number Publication date
JPH0555182B2 (en) 1993-08-16

Similar Documents

Publication Publication Date Title
CN108176414B (en) Catalyst MnFe2O4-MIL-53(Al) magnetic composite material, preparation method and application thereof
Ventura et al. Superparamagnetic MOF@ GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents
CN110589894A (en) Preparation method of hollow metal oxide nano material
Mu et al. Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals
Song et al. Magnetic hard/soft nanocomposite ferrite aligned hollow microfibers and remanence enhancement
CN110280308A (en) A kind of sodium tartrate Modified Cu ferro-cobalt houghite load carbon quantum dot nanocomposite and its preparation method and application
CN115845870B (en) Ternary catalyst and preparation method and application thereof
CN106256765B (en) A kind of magnetic carboxymethyl chitosan nano material and preparation method thereof
CN105741996A (en) Low-temperature plasma based preparation method for superparamagnetism nanoparticles
CN114425305A (en) Mercury adsorption material, preparation method thereof and application thereof in flue gas or solution demercuration
JPS6354936A (en) Activated material
CN111383812A (en) Novel liquid metal magnetofluid and preparation method thereof
Wang et al. Solvothermal fabrication and growth behavior study of spherical MnFe 2 O 4 through a bottom-up method on wood substrate with effective microwave absorption
Mousavi et al. Preparation and characterization of magnetic keratin nanocomposite
JPH0122204B2 (en)
Lakshmi et al. Synthesis and characterization of nano-crystaline CaFe2O4 via solution combustion method from solid waste egg shells as source of calcium
JPH06339630A (en) Preparation of alumina-iron salt composite body
Park et al. Facile synthesis of silica–manganese oxide nanocomposites with core–shell structure using surfactant and cosurfactant
CN115228440A (en) Sulfydryl functionalized magnetic metal organic framework material and preparation method and application thereof
Aoi et al. Synthesis of nanostructured metal oxide by liquid-phase deposition
CN111389373A (en) Preparation method of bimetal-loaded lignin magnetic adsorption material
CN100461309C (en) High saturation and magnetic intensity magnetic powder and its preparing method and use
CN116237048B (en) Preparation method and application of magnetic nitriding biochar catalytic material based on steel rolling pickling waste liquid
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JP2579177B2 (en) Composite iron oxide particle powder and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees