JPH0555182B2 - - Google Patents
Info
- Publication number
- JPH0555182B2 JPH0555182B2 JP61199336A JP19933686A JPH0555182B2 JP H0555182 B2 JPH0555182 B2 JP H0555182B2 JP 61199336 A JP61199336 A JP 61199336A JP 19933686 A JP19933686 A JP 19933686A JP H0555182 B2 JPH0555182 B2 JP H0555182B2
- Authority
- JP
- Japan
- Prior art keywords
- divalent
- trivalent iron
- salt
- alumina
- sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 159000000014 iron salts Chemical class 0.000 claims description 26
- 150000002505 iron Chemical class 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000012266 salt solution Substances 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 238000004332 deodorization Methods 0.000 description 4
- 230000005292 diamagnetic effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000011882 ultra-fine particle Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 230000036782 biological activation Effects 0.000 description 3
- -1 ferrous metals Chemical class 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000195628 Chlorophyta Species 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007970 homogeneous dispersion Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- WKPSFPXMYGFAQW-UHFFFAOYSA-N iron;hydrate Chemical compound O.[Fe] WKPSFPXMYGFAQW-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000013028 medium composition Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910006299 γ-FeOOH Inorganic materials 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical compound [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000005791 algae growth Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Treating Waste Gases (AREA)
- Compounds Of Iron (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、脱臭、防菌や生物活性化に有効な二
価三価鉄塩を含有した粉末状のアルミナ−鉄塩複
合体を製造する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention produces a powdered alumina-iron salt composite containing divalent and trivalent iron salts that are effective for deodorization, antibacterial and biological activation. It is about the method.
一般は二価三価鉄塩は、強磁性、酸素トラツプ
性、カチオン帯電性等の特異な性能を備えてお
り、脱臭、防菌、生物活性化等の多様な用途に用
いられている。
In general, divalent and trivalent iron salts have unique properties such as ferromagnetism, oxygen trapping properties, and cationic charging properties, and are used for a variety of purposes such as deodorization, antibacterial, and biological activation.
そして、この二価三価鉄塩はその形態が、各種
の反応系で生成される二価鉄塩と三価鉄塩の混合
した錯体であり、その反応系としては、従来よ
り、二価鉄塩を空気酸化や強酸により酸化する反
応系、三価鉄塩を強アルカリや発生機水素で還元
する反応系、及び二価鉄塩と三価鉄塩の混合溶液
にアルカリを添加する反応系等が知られている。
また、これらの反応系で生成される二価三価鉄塩
は、二価鉄塩と三価鉄塩の多様な比率の錯体であ
り、これらは出発液組成、温度PH等により左右さ
れる複雑な組成となつている。なお、これらのう
ち、典型的なものには、逆スピネル構造を採るマ
グネタイト(FeO・Fe2O3)とマグネタイトに遷
移する中間体、マグヘマイト(γ−Fe2O3)とマ
グヘマイトに遷移する中間体等の常磁性物質があ
り、これら常磁性物質の二価三価鉄塩は、特に、
磁性、酸化性、カチオン帯電性等に基づく触媒活
性化及び生物活性化の機能を備えている。 The form of this divalent and trivalent iron salt is a complex of divalent and trivalent iron salts produced in various reaction systems. Reaction systems that oxidize salts with air or strong acids, reaction systems that reduce trivalent iron salts with strong alkalis or generator hydrogen, reaction systems that add alkali to a mixed solution of divalent iron salts and trivalent iron salts, etc. It has been known.
In addition, the divalent and trivalent iron salts produced in these reaction systems are complexes with various ratios of divalent and trivalent iron salts, and these complexes vary depending on the starting liquid composition, temperature, PH, etc. The composition is as follows. Typical examples of these include magnetite (FeO Fe 2 O 3 ), which has an inverse spinel structure, and an intermediate that transitions to magnetite, and maghemite (γ-Fe 2 O 3 ), and an intermediate that transitions to maghemite. There are paramagnetic substances such as ferrous metals, and the divalent and trivalent iron salts of these paramagnetic substances are particularly
It has catalyst activation and biological activation functions based on magnetism, oxidation, cationic chargeability, etc.
ところで、上記した二価三価鉄塩はその活性機
能を発現する上で、第1鉄(Fe2+)の存在と、
その保持性、及び重合錯体が反強磁性の結合に移
行しない組成であることが重要となる。すなわ
ち、第1鉄(Fe2+)は酸素をトラツプして活性
化し、この活性酸素の放出により酸化触媒機能を
発現し、また生物体中に吸収されて、活性物質
(例えば、チトクローム等)を形成するという特
性をもつているからである。 By the way, the above-mentioned divalent and trivalent iron salts require the presence of ferrous iron (Fe 2+ ) and
It is important to maintain the properties and to have a composition in which the polymer complex does not shift to antiferromagnetic bonding. In other words, ferrous iron (Fe 2+ ) traps and activates oxygen, exhibits an oxidation catalytic function by releasing this active oxygen, and is also absorbed into living organisms to produce active substances (e.g., cytochromes, etc.). This is because it has the property of forming.
しかし、この第1鉄(Fe2+)はきわめて不安
定な存在であるため、空気中や水溶液中におかれ
ると、容易に酸化されて第2鉄(Fe3+)となり、
上記した酸化触媒機能等の酸化活性が失われてし
まう。そこで、従来よりこの改善法として、第1
鉄(Fe2+)とL−アスコルビン酸やフタロシア
ニン、或いは、生体物質系の脂体(例えば、グル
コース、グルタミン酸等)とを複合することによ
り第1鉄(Fe2+)を保護する方法と、この第1
鉄(Fe2+)から二価三価鉄塩を製造する方法と
が知られていた。 However, this ferrous iron (Fe 2+ ) is extremely unstable, so when placed in the air or in an aqueous solution, it is easily oxidized to become ferric iron (Fe 3+ ).
The oxidation activity such as the oxidation catalyst function described above will be lost. Therefore, the first method of improvement has been
A method of protecting ferrous iron (Fe 2+ ) by complexing iron (Fe 2+ ) with L-ascorbic acid, phthalocyanine, or a biological substance-based fat (e.g., glucose, glutamic acid, etc.); This first
A method for producing divalent and trivalent iron salts from iron (Fe 2+ ) was known.
しかしながら、前者の方法ではその複合方法が
難しく、また温度(100℃前後)や酸化環境下で
第1鉄(Fe2+)が不安定となり、経時的に第2
塩鉄化するという問題点があつた。一方、第1鉄
(Fe2+)から二価三価鉄塩を製造する後者の方法
では含有二価鉄は安定しているが、その製造時に
基準単量体FeOH
OHFeを主体とする重合錯体の
形成のしかたにおいて、化学活性の少ない反磁性
的な構造の重合錯体を形成しやすいという問題点
があつた。すなわち、反磁性的な重合を起こす
と、二価三価鉄塩は第1鉄(Fe2+)の活性が封
殺され、酸素トラツプ性が著しく阻害されるた
め、活性物質としての特性が欠如するという問題
があつた。 However, the former method is difficult to combine, and ferrous iron (Fe 2+ ) becomes unstable at temperature (around 100°C) and in an oxidizing environment, and ferrous iron (Fe 2+ ) becomes unstable over time.
There was a problem that it turned into iron salt. On the other hand, in the latter method of producing divalent and trivalent iron salts from ferrous iron (Fe 2+ ), the divalent iron contained is stable, but during its production, a polymer complex mainly composed of the reference monomer FeOH OHFe is In the method of formation, there was a problem in that a polymeric complex with a diamagnetic structure with little chemical activity was likely to be formed. In other words, when diamagnetic polymerization occurs, the activity of ferrous iron (Fe 2+ ) in divalent and trivalent iron salts is suppressed, and the oxygen trapping property is significantly inhibited, resulting in a lack of properties as an active substance. There was a problem.
本発明の目的は、活性物質である二価三価鉄塩
とアルミナゾルを並行して生成させることによ
り、二価三価鉄塩を超微粒子の状態でアルミナゾ
ル中に分散担持させ、もつて二価三価鉄塩の反磁
性的な錯体重合を防止するとともに、その均質分
散状態を保持して乾燥することにより、強磁性の
二価三価鉄塩を確実に収率よく得ることにある。
The purpose of the present invention is to produce divalent and trivalent iron salts, which are active substances, and alumina sol in parallel, thereby allowing the divalent and trivalent iron salts to be dispersed and supported in the alumina sol in the form of ultrafine particles, thereby achieving divalent and trivalent iron salts. The objective is to reliably obtain a ferromagnetic divalent iron salt in a good yield by preventing diamagnetic complex polymerization of the trivalent iron salt and drying it while maintaining its homogeneous dispersion state.
上記した目的を達成するために、本発明では、
三価鉄塩溶液に塩基性アルミニウム塩および金属
アルミニウムを添加し、生成された二価三価鉄塩
が、共成されたベーマイト質アルミナ水和物ゾル
中に均質に分散した混合ゾルを形成する工程と、
その混合ゾルを脱水して粉末化する工程とを含む
アルミナ−鉄塩複合体の製造方法をその要旨とし
ている。
In order to achieve the above-mentioned object, in the present invention,
A basic aluminum salt and metal aluminum are added to a trivalent iron salt solution, and the generated divalent and trivalent iron salts are homogeneously dispersed in the co-formed boehmite alumina hydrate sol to form a mixed sol. process and
The gist of this invention is a method for producing an alumina-iron salt composite, which includes a step of dehydrating and powdering the mixed sol.
すなわち、この方法は、三価鉄塩を用いてアル
ミナ−鉄塩複合体を製造するものであり、三価鉄
塩の一部を二価鉄塩に還元して二価三価鉄塩を生
成すると同時に、ベーマイト質アルミナゾルを共
成するものである。そして、常磁性を示すオキシ
水酸化鉄(例えば、γ−FeOOH、δ−FeOOH)
やFe3O4の形態の二価三価鉄塩が、ベーマイト質
アルミナ(γAl2O3・H2O)を主体とする繊維状
粒子(径3〜10mμ、長さ2〜3mμ)の搦み合
いによる粉体(表面積100m2/g以上)に均質に
分散される工程と、その均質分散担持状態にある
混合ゾルを脱水して粉末化する工程とを含むもの
である。 That is, this method produces an alumina-iron salt composite using a trivalent iron salt, and a part of the trivalent iron salt is reduced to a divalent iron salt to produce a divalent iron salt. At the same time, it co-forms a boehmite alumina sol. and iron oxyhydroxide (e.g., γ-FeOOH, δ-FeOOH) that exhibits paramagnetic properties.
Divalent and trivalent iron salts in the form of This process includes a step of homogeneously dispersing the sol into a powder (surface area of 100 m 2 /g or more) by mixing, and a step of dehydrating the mixed sol in the homogeneously dispersed supported state and turning it into powder.
上記構成における三価鉄塩としては、塩化物
(FeCl3、FeCl3・6H2O)、硝酸塩〔Fe(NO3)3・
9H2O〕、硫酸塩〔Fe(SO4)3・nH2O、KFe
(SO4)3・12H2O、NH4Fe(SO4)2・12H2O〕等が
用いられるが、水溶性塩であれば特に限定はしな
い。 The trivalent iron salts in the above structure include chlorides (FeCl 3 , FeCl 3 .6H 2 O), nitrates [Fe(NO 3 ) 3 .
9H 2 O], sulfate [Fe(SO 4 ) 3・nH 2 O, KFe
(SO 4 ) 3 ·12H 2 O, NH 4 Fe(SO 4 ) 2 ·12H 2 O], etc., but there is no particular limitation as long as it is a water-soluble salt.
塩基性アルミニウム塩は、三価鉄塩と同質塩酸
のものを用いる。組成は、アルミニウム塩と酸根
の比が、1.8〜2.2:1.0のもので、予め塩化アルミ
ニウム、硫酸アルミニウム、硝酸アルミニウム、
酢酸アルミニウム等の0.5〜1.5モル程度の溶液を
加温し、撹拌しながら所定量の金属アルミニウム
を溶解することにより調製する。 The basic aluminum salt used is a trivalent iron salt and a homogeneous hydrochloric acid salt. The composition has a ratio of aluminum salt to acid radical of 1.8 to 2.2:1.0, and aluminum chloride, aluminum sulfate, aluminum nitrate,
It is prepared by heating a solution of about 0.5 to 1.5 moles of aluminum acetate, etc., and dissolving a predetermined amount of metal aluminum while stirring.
まず、三価鉄塩の溶液(1N)を100部(重量)
に対し塩基性アルミニウム塩溶液(濃度5%)50
〜70部を添加し、次いで金属アルミニウム粉末2
〜5部を添加し、常温〜80℃で約1時間撹拌す
る。
First, add 100 parts (by weight) of a solution (1N) of trivalent iron salt.
Basic aluminum salt solution (concentration 5%) 50
Add ~70 parts then metallic aluminum powder 2
Add ~5 parts and stir at room temperature ~80°C for about 1 hour.
すると、三価鉄塩溶液と塩基性アルミニウム塩
の加水分解による酸と金属アルミニウムの反応か
ら発生する発生機の水素により、三価鉄塩の一部
はFe3+がFe2+に還元され、更に[Fe(OH、Cl、
NO3、1/2SO4)2O]2+や[Fe2(OH、Cl、NO3、
1/2SO4)2O]3+等の錯イオンを配して、2量体
FeOH
OHFeを主体とする二価三価鉄形態の重合
錯体が形成される。 Then, due to the hydrogen in the generator generated from the reaction between the acid and metal aluminum due to the hydrolysis of the trivalent iron salt solution and the basic aluminum salt, Fe 3+ in the trivalent iron salt is partially reduced to Fe 2+ , Furthermore, [Fe(OH, Cl,
NO 3 , 1/2SO 4 ) 2 O] 2+ and [Fe 2 (OH, Cl, NO 3 ,
By placing a complex ion such as 1/2SO 4 ) 2 O] 3+ , a dimer is formed.
A polymeric complex in the form of divalent and trivalent iron mainly composed of FeOH OHFe is formed.
そして、最終的にはγ−FeOOHを多く含んだ
二価三価鉄塩の微粒子(30〜50Å)が形成され
る。 Finally, fine particles (30 to 50 Å) of divalent and trivalent iron salt containing a large amount of γ-FeOOH are formed.
また、塩基性アルミニウムは同時に加水分解し
てベーマイト質アルミナ(γ−Al2O3・H2O)を
主体とする繊維状粒子(径3〜10mμ、長さ2〜
3mμ)のアルミナゾルを生成する。アルミナゾ
ルは液中で多量の水分子を引きつけており、高粘
度(例 濃度3%8000センチポアズPH3)を呈す
る。 In addition, basic aluminum is simultaneously hydrolyzed to form fibrous particles (diameter 3-10 mμ , length 2-2
3 mμ) alumina sol is produced. Alumina sol attracts a large amount of water molecules in the liquid and exhibits high viscosity (e.g., concentration 3%, 8000 centipoise PH3).
また、アルミナゾルはチクソトロピツク性であ
り、撹拌により急速に低粘度となり、撹拌を停止
すると直ちに高粘度に復帰するので、二価三価鉄
塩をアルミナゾル中に均質に分散させることがで
きる。一方、分散後は再び高粘度となり、二価三
価鉄塩とアルミナの正電荷による反発等の因子に
より比重差分離や凝集を起こすことがない。 In addition, alumina sol is thixotropic and rapidly becomes low in viscosity when stirred, and immediately returns to high viscosity when stirring is stopped, so that divalent and trivalent iron salts can be homogeneously dispersed in alumina sol. On the other hand, after dispersion, the viscosity becomes high again, and due to factors such as repulsion due to positive charges between the divalent and trivalent iron salts and alumina, separation and aggregation due to differences in specific gravity do not occur.
次いで、ゾルは透析等の常法的な手段により洗
浄された後、不活性雰囲気(窒素気流中)で24時
間以上静置され、さらに減圧濃縮により脱水乾燥
されて粉末化する。すると、二価三価鉄塩を含有
した粉末状のアルミナ−鉄塩複合体が得られる。 Next, the sol is washed by a conventional method such as dialysis, left to stand in an inert atmosphere (in a nitrogen stream) for 24 hours or more, and further dehydrated and dried by vacuum concentration to form a powder. Then, a powdered alumina-iron salt composite containing a divalent and trivalent iron salt is obtained.
次に、本発明の実施例を示す。 Next, examples of the present invention will be shown.
例 1
試料の調製
塩化第二鉄の溶液(1N、FeCl3)を100倍(重
量)に対し、予め調製した塩化アルミニウム溶液
(Al:Cl=2.2:1.0の5%溶液)50部に金属アル
ミニウム粉末(120メツシユ)2.5部を添加しなが
ら約1時間撹拌をして二価三価鉄塩とアルミナの
混合ゾルを生成した。次いで、電気透析により洗
浄した後、窒素封入容器中に24時間放置し、その
後、減圧濃縮により脱水乾燥して試料を粉末化し
た。Example 1 Preparation of sample A solution of ferric chloride (1N, FeCl 3 ) was added 100 times (by weight) to 50 parts of a previously prepared aluminum chloride solution (5% solution of Al:Cl=2.2:1.0) and metallic aluminum. 2.5 parts of powder (120 mesh) was added and stirred for about 1 hour to produce a mixed sol of divalent and trivalent iron salt and alumina. Next, after washing by electrodialysis, the sample was left in a nitrogen-filled container for 24 hours, and then dehydrated and dried by vacuum concentration to powder the sample.
例 2
脱臭試験
前記例1により得た試料を用いて脱臭テストを
行つた。Example 2 Deodorization test A deodorization test was conducted using the sample obtained in Example 1 above.
試料粉末0.5gをテスト管(NRK)に充填配置
し、臭気ガスを50ml、約0.5ml/secの条件で吸引
し検知管方式により測定した。 A test tube (NRK) was filled with 0.5 g of sample powder, and 50 ml of odor gas was sucked in at a rate of approximately 0.5 ml/sec, and the measurement was performed using a detection tube method.
その結果、臭気ガスとして硫化水素(70PPM)
を用いた場合には5回目の吸引で破過点となり、
同じく臭気ガスとしてメチルメルカプタン
(40PPM)を用いた場合も5回目の吸引で破過点
となつた。しかし、臭気ガスとしてアンモニアを
用いた場合には6回目の吸引で破過点となつた。 As a result, hydrogen sulfide (70PPM) as an odor gas
When using , the breakthrough point is reached at the fifth suction,
Similarly, when methyl mercaptan (40PPM) was used as the odor gas, the breakthrough point was reached at the fifth inhalation. However, when ammonia was used as the odor gas, the breakthrough point was reached at the sixth suction.
例 3
藻類増殖試験
前記例1により得た試料を用いて緑藻(セラス
トラム)の培養テストを行つた。Example 3 Algal Growth Test Using the sample obtained in Example 1 above, a culture test of green algae (Celastorum) was conducted.
培地組成[(単位mg/)NaNO325.5、
K2HPO41.0、MgCl25.7、MgSO4・7H2O14.7、
CaCl2・2H2O4.4、NaHCO315.0、蒸留水1〕
に試料を100mg/添加し分散させたものと、無
添加の培地液とをつくつた。そして、各々をフラ
スコ中に50mlずつ採取し、その中にセラストラム
初期濃度500cell/mlを接種し、培地温度25℃、
照度4000Luxで8日間の緑藻細胞類を顕微鏡で計
数した。結果は、無添加の培地液の方が1.0×
106cell/mlとなつたのに対し、例1で得た試料
を添加したものの方は2.0×107cell/mlとなり、
培地組成に試料を添加し分散させた場合の増殖促
進性を示した。 Medium composition [(unit: mg/) NaNO 3 25.5,
K2HPO4 1.0 , MgCl2 5.7, MgSO4・7H2O14.7 ,
CaCl2・2H2O4.4 , NaHCO3 15.0, distilled water 1]
A medium solution was prepared in which 100 mg of the sample was added and dispersed, and a medium solution without any additives. Then, 50 ml of each was collected into a flask, and an initial concentration of 500 cells/ml of celastrum was inoculated into the flask, and the culture medium temperature was 25°C.
Green algae cells were counted using a microscope under a light intensity of 4000 Lux for 8 days. The result was that the medium solution without additives was 1.0×
10 6 cells/ml, whereas the sample obtained in Example 1 was 2.0×10 7 cells/ml,
The growth promoting effect was shown when the sample was added to the medium composition and dispersed.
以上詳述したように本発明によると、還元法に
より生成された二価三価鉄塩は、共成されたベー
マイト質アルミナ水和物ゾル中に超微粒子の状態
で均質に分散担持されるので、反磁性的重合や、
酸化による変質を経時的に起こすことがなく、活
性物質としての特性を安定保持できるとともに、
そのアルミナゾル中における均質分散状態を保持
したまま脱水粉末化されるので、強磁性の二価三
価鉄塩を確実にかつ収率よく得られるという優れ
た効果を奏する。
As detailed above, according to the present invention, the divalent and trivalent iron salts produced by the reduction method are homogeneously dispersed and supported in the co-formed boehmite alumina hydrate sol in the form of ultrafine particles. , diamagnetic polymerization,
It does not deteriorate over time due to oxidation, and can stably maintain its properties as an active substance.
Since the alumina sol is dehydrated and powdered while maintaining its homogeneous dispersion state in the alumina sol, it has the excellent effect of reliably obtaining a ferromagnetic divalent and trivalent iron salt in a high yield.
そして、本発明により製造されるアルミナ−鉄
塩複合体は、二価値三価鉄塩が活性のある超微粒
子の状態に保たれるので、次のような機能を発揮
する。 The alumina-iron salt composite produced according to the present invention exhibits the following functions because the divalent and trivalent iron salt is maintained in an active ultrafine particle state.
(1) 二価三価鉄塩の微粒子は経時的に変質しない
活性酸素トラツプ性を備えており、トラツプし
た活性酸素の作用により臭気、例えばアンモニ
ア、メチルメルカプタン、硫化水素等の悪臭成
分を分解するしくみの脱臭剤機能をもつ。(1) Fine particles of divalent and trivalent iron salts have active oxygen trapping properties that do not deteriorate over time, and decompose odor components such as ammonia, methyl mercaptan, and hydrogen sulfide through the action of trapped active oxygen. It has a deodorizing function.
(2) 組成内容である二価三価鉄塩及びアルミナは
人畜無害成分であり、脱酸素性(トラツプ性)
に基づく制菌作用を利用して生鮮食料の鮮度保
持剤として利用できる。(2) The divalent and trivalent iron salts and alumina in the composition are harmless to humans and animals, and have oxygen scavenging properties (trap properties).
It can be used as a freshness-preserving agent for fresh foods by utilizing its antibacterial action.
(3) 二価鉄(Fe2+)含有物である二価三価鉄塩
は水溶液中でアルミナとともに再分散し、植物
体に吸収され易い超微粒子の状態で植物の増殖
促進物である二価鉄(Fe2+)分を供給するこ
とができる。(3) Divalent and trivalent iron salts, which contain divalent iron (Fe 2+ ), are redispersed together with alumina in an aqueous solution, and form Fe 2+ , which is a plant growth promoter, in the form of ultrafine particles that are easily absorbed by plants. It can supply valence iron (Fe 2+ ).
Claims (1)
金属アルミニウムを添加し、生成された二価三価
鉄塩が、共成されたベーマイト質アルミナ水和物
ゾル中に均質に分散した混合ゾルを形成する工程
と、 その混合ゾルを脱水して粉末化する工程と を含むアルミナ−鉄塩複合体の製造方法。[Claims] 1. Basic aluminum salt and metal aluminum are added to a trivalent iron salt solution, and the generated divalent and trivalent iron salts are homogeneously formed in the co-formed boehmite alumina hydrate sol. A method for producing an alumina-iron salt composite comprising a step of forming a dispersed mixed sol, and a step of dehydrating and powdering the mixed sol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61199336A JPS6354936A (en) | 1986-08-25 | 1986-08-25 | Activated material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61199336A JPS6354936A (en) | 1986-08-25 | 1986-08-25 | Activated material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5012036A Division JPH06339630A (en) | 1993-01-27 | 1993-01-27 | Preparation of alumina-iron salt composite body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6354936A JPS6354936A (en) | 1988-03-09 |
JPH0555182B2 true JPH0555182B2 (en) | 1993-08-16 |
Family
ID=16406095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61199336A Granted JPS6354936A (en) | 1986-08-25 | 1986-08-25 | Activated material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6354936A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2797279B2 (en) * | 1988-06-08 | 1998-09-17 | 有限会社アイ・ビー・イー | Air treatment method |
JPH01311007A (en) * | 1988-06-08 | 1989-12-15 | I B Ii:Kk | Method for treating plant |
WO2007013217A1 (en) * | 2005-07-29 | 2007-02-01 | Aichi Steel Corporation | Iron(i) oxide-containing composition and plant growth promoter comprising the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54128994A (en) * | 1978-03-31 | 1979-10-05 | Hitachi Ltd | Uranium collecting magnetic adsorbent |
JPS59190226A (en) * | 1983-04-11 | 1984-10-29 | Shoji Yamashita | Bivalent and trivalent iron salt and their preparation |
-
1986
- 1986-08-25 JP JP61199336A patent/JPS6354936A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54128994A (en) * | 1978-03-31 | 1979-10-05 | Hitachi Ltd | Uranium collecting magnetic adsorbent |
JPS59190226A (en) * | 1983-04-11 | 1984-10-29 | Shoji Yamashita | Bivalent and trivalent iron salt and their preparation |
Also Published As
Publication number | Publication date |
---|---|
JPS6354936A (en) | 1988-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ventura et al. | Superparamagnetic MOF@ GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents | |
Zahid et al. | Metal ferrites and their graphene-based nanocomposites: synthesis, characterization, and applications in wastewater treatment | |
CN110589894A (en) | Preparation method of hollow metal oxide nano material | |
Nadar et al. | Recent progress in nanostructured magnetic framework composites (MFCs): synthesis and applications | |
Ojemaye et al. | Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: Progress and prospects | |
CN108176414B (en) | Catalyst MnFe2O4-MIL-53(Al) magnetic composite material, preparation method and application thereof | |
Bakr et al. | Removal of ferrous ions from their aqueous solutions onto NiFe2O4–alginate composite beads | |
Venkateswarlu et al. | An environmentally benign synthesis of Fe3O4 nanoparticles to Fe3O4 nanoclusters: Rapid separation and removal of Hg (II) from an aqueous medium | |
JP6715450B2 (en) | Production method for producing a suspension in which individual nanoparticles of a metal or a metal oxide are surrounded by a liquid organic compound and dispersed in the organic compound | |
CN106256765B (en) | A kind of magnetic carboxymethyl chitosan nano material and preparation method thereof | |
Teng et al. | Ligand exchange triggered controlled-release targeted drug delivery system based on core–shell superparamagnetic mesoporous microspheres capped with nanoparticles | |
Shalaby et al. | Preparation and characterization of iron oxide nanoparticles coated with chitosan for removal of Cd (II) and Cr (VI) from aqueous solution | |
US10850233B2 (en) | Fluid for purifying heat engines using stable suspensions of metal colloidal particles, and methods for preparing said fluid | |
Hessien et al. | Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol–gel driven NiFe2O4 | |
Garg et al. | Effect of CTAB coating on structural, magnetic and peroxidase mimic activity of ferric oxide nanoparticles | |
CN113231104B (en) | Amino acid modified nano zero-valent iron material and preparation method thereof | |
JPH0555182B2 (en) | ||
CN111383812A (en) | Novel liquid metal magnetofluid and preparation method thereof | |
Mousavi et al. | Preparation and characterization of magnetic keratin nanocomposite | |
Park et al. | Facile synthesis of silica–manganese oxide nanocomposites with core–shell structure using surfactant and cosurfactant | |
JPH06339630A (en) | Preparation of alumina-iron salt composite body | |
CN112973738B (en) | Magnetic self-assembly MoS 2 @Fe 3 O 4 @Cu 2 Preparation method and application of O photocatalyst | |
CN104387535A (en) | Amphipathic superparamagnetic composite hollow microsphere and preparation method thereof | |
Liu et al. | Sulfur-doped Fe–Cu–La trimetallic oxides as a novel magnetic adsorbent for efficient removal of As (iii) and As (v) from aqueous solution | |
Ismail et al. | Compatibility of Concentrated NaOH as a Precipitation Agent in the Synthesis of Maghemite (γ-Fe2O3) Nanoparticles via Co-precipitation Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |