JPH0555182B2 - - Google Patents

Info

Publication number
JPH0555182B2
JPH0555182B2 JP61199336A JP19933686A JPH0555182B2 JP H0555182 B2 JPH0555182 B2 JP H0555182B2 JP 61199336 A JP61199336 A JP 61199336A JP 19933686 A JP19933686 A JP 19933686A JP H0555182 B2 JPH0555182 B2 JP H0555182B2
Authority
JP
Japan
Prior art keywords
divalent
trivalent iron
salt
alumina
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61199336A
Other languages
Japanese (ja)
Other versions
JPS6354936A (en
Inventor
Masami Ooe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANYO KAGAKU KK
Original Assignee
HANYO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANYO KAGAKU KK filed Critical HANYO KAGAKU KK
Priority to JP61199336A priority Critical patent/JPS6354936A/en
Publication of JPS6354936A publication Critical patent/JPS6354936A/en
Publication of JPH0555182B2 publication Critical patent/JPH0555182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、脱臭、防菌や生物活性化に有効な二
価三価鉄塩を含有した粉末状のアルミナ−鉄塩複
合体を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention produces a powdered alumina-iron salt composite containing divalent and trivalent iron salts that are effective for deodorization, antibacterial and biological activation. It is about the method.

〔従来の技術〕[Conventional technology]

一般は二価三価鉄塩は、強磁性、酸素トラツプ
性、カチオン帯電性等の特異な性能を備えてお
り、脱臭、防菌、生物活性化等の多様な用途に用
いられている。
In general, divalent and trivalent iron salts have unique properties such as ferromagnetism, oxygen trapping properties, and cationic charging properties, and are used for a variety of purposes such as deodorization, antibacterial, and biological activation.

そして、この二価三価鉄塩はその形態が、各種
の反応系で生成される二価鉄塩と三価鉄塩の混合
した錯体であり、その反応系としては、従来よ
り、二価鉄塩を空気酸化や強酸により酸化する反
応系、三価鉄塩を強アルカリや発生機水素で還元
する反応系、及び二価鉄塩と三価鉄塩の混合溶液
にアルカリを添加する反応系等が知られている。
また、これらの反応系で生成される二価三価鉄塩
は、二価鉄塩と三価鉄塩の多様な比率の錯体であ
り、これらは出発液組成、温度PH等により左右さ
れる複雑な組成となつている。なお、これらのう
ち、典型的なものには、逆スピネル構造を採るマ
グネタイト(FeO・Fe2O3)とマグネタイトに遷
移する中間体、マグヘマイト(γ−Fe2O3)とマ
グヘマイトに遷移する中間体等の常磁性物質があ
り、これら常磁性物質の二価三価鉄塩は、特に、
磁性、酸化性、カチオン帯電性等に基づく触媒活
性化及び生物活性化の機能を備えている。
The form of this divalent and trivalent iron salt is a complex of divalent and trivalent iron salts produced in various reaction systems. Reaction systems that oxidize salts with air or strong acids, reaction systems that reduce trivalent iron salts with strong alkalis or generator hydrogen, reaction systems that add alkali to a mixed solution of divalent iron salts and trivalent iron salts, etc. It has been known.
In addition, the divalent and trivalent iron salts produced in these reaction systems are complexes with various ratios of divalent and trivalent iron salts, and these complexes vary depending on the starting liquid composition, temperature, PH, etc. The composition is as follows. Typical examples of these include magnetite (FeO Fe 2 O 3 ), which has an inverse spinel structure, and an intermediate that transitions to magnetite, and maghemite (γ-Fe 2 O 3 ), and an intermediate that transitions to maghemite. There are paramagnetic substances such as ferrous metals, and the divalent and trivalent iron salts of these paramagnetic substances are particularly
It has catalyst activation and biological activation functions based on magnetism, oxidation, cationic chargeability, etc.

ところで、上記した二価三価鉄塩はその活性機
能を発現する上で、第1鉄(Fe2+)の存在と、
その保持性、及び重合錯体が反強磁性の結合に移
行しない組成であることが重要となる。すなわ
ち、第1鉄(Fe2+)は酸素をトラツプして活性
化し、この活性酸素の放出により酸化触媒機能を
発現し、また生物体中に吸収されて、活性物質
(例えば、チトクローム等)を形成するという特
性をもつているからである。
By the way, the above-mentioned divalent and trivalent iron salts require the presence of ferrous iron (Fe 2+ ) and
It is important to maintain the properties and to have a composition in which the polymer complex does not shift to antiferromagnetic bonding. In other words, ferrous iron (Fe 2+ ) traps and activates oxygen, exhibits an oxidation catalytic function by releasing this active oxygen, and is also absorbed into living organisms to produce active substances (e.g., cytochromes, etc.). This is because it has the property of forming.

しかし、この第1鉄(Fe2+)はきわめて不安
定な存在であるため、空気中や水溶液中におかれ
ると、容易に酸化されて第2鉄(Fe3+)となり、
上記した酸化触媒機能等の酸化活性が失われてし
まう。そこで、従来よりこの改善法として、第1
鉄(Fe2+)とL−アスコルビン酸やフタロシア
ニン、或いは、生体物質系の脂体(例えば、グル
コース、グルタミン酸等)とを複合することによ
り第1鉄(Fe2+)を保護する方法と、この第1
鉄(Fe2+)から二価三価鉄塩を製造する方法と
が知られていた。
However, this ferrous iron (Fe 2+ ) is extremely unstable, so when placed in the air or in an aqueous solution, it is easily oxidized to become ferric iron (Fe 3+ ).
The oxidation activity such as the oxidation catalyst function described above will be lost. Therefore, the first method of improvement has been
A method of protecting ferrous iron (Fe 2+ ) by complexing iron (Fe 2+ ) with L-ascorbic acid, phthalocyanine, or a biological substance-based fat (e.g., glucose, glutamic acid, etc.); This first
A method for producing divalent and trivalent iron salts from iron (Fe 2+ ) was known.

しかしながら、前者の方法ではその複合方法が
難しく、また温度(100℃前後)や酸化環境下で
第1鉄(Fe2+)が不安定となり、経時的に第2
塩鉄化するという問題点があつた。一方、第1鉄
(Fe2+)から二価三価鉄塩を製造する後者の方法
では含有二価鉄は安定しているが、その製造時に
基準単量体FeOH OHFeを主体とする重合錯体の
形成のしかたにおいて、化学活性の少ない反磁性
的な構造の重合錯体を形成しやすいという問題点
があつた。すなわち、反磁性的な重合を起こす
と、二価三価鉄塩は第1鉄(Fe2+)の活性が封
殺され、酸素トラツプ性が著しく阻害されるた
め、活性物質としての特性が欠如するという問題
があつた。
However, the former method is difficult to combine, and ferrous iron (Fe 2+ ) becomes unstable at temperature (around 100°C) and in an oxidizing environment, and ferrous iron (Fe 2+ ) becomes unstable over time.
There was a problem that it turned into iron salt. On the other hand, in the latter method of producing divalent and trivalent iron salts from ferrous iron (Fe 2+ ), the divalent iron contained is stable, but during its production, a polymer complex mainly composed of the reference monomer FeOH OHFe is In the method of formation, there was a problem in that a polymeric complex with a diamagnetic structure with little chemical activity was likely to be formed. In other words, when diamagnetic polymerization occurs, the activity of ferrous iron (Fe 2+ ) in divalent and trivalent iron salts is suppressed, and the oxygen trapping property is significantly inhibited, resulting in a lack of properties as an active substance. There was a problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、活性物質である二価三価鉄塩
とアルミナゾルを並行して生成させることによ
り、二価三価鉄塩を超微粒子の状態でアルミナゾ
ル中に分散担持させ、もつて二価三価鉄塩の反磁
性的な錯体重合を防止するとともに、その均質分
散状態を保持して乾燥することにより、強磁性の
二価三価鉄塩を確実に収率よく得ることにある。
The purpose of the present invention is to produce divalent and trivalent iron salts, which are active substances, and alumina sol in parallel, thereby allowing the divalent and trivalent iron salts to be dispersed and supported in the alumina sol in the form of ultrafine particles, thereby achieving divalent and trivalent iron salts. The objective is to reliably obtain a ferromagnetic divalent iron salt in a good yield by preventing diamagnetic complex polymerization of the trivalent iron salt and drying it while maintaining its homogeneous dispersion state.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明では、
三価鉄塩溶液に塩基性アルミニウム塩および金属
アルミニウムを添加し、生成された二価三価鉄塩
が、共成されたベーマイト質アルミナ水和物ゾル
中に均質に分散した混合ゾルを形成する工程と、
その混合ゾルを脱水して粉末化する工程とを含む
アルミナ−鉄塩複合体の製造方法をその要旨とし
ている。
In order to achieve the above-mentioned object, in the present invention,
A basic aluminum salt and metal aluminum are added to a trivalent iron salt solution, and the generated divalent and trivalent iron salts are homogeneously dispersed in the co-formed boehmite alumina hydrate sol to form a mixed sol. process and
The gist of this invention is a method for producing an alumina-iron salt composite, which includes a step of dehydrating and powdering the mixed sol.

すなわち、この方法は、三価鉄塩を用いてアル
ミナ−鉄塩複合体を製造するものであり、三価鉄
塩の一部を二価鉄塩に還元して二価三価鉄塩を生
成すると同時に、ベーマイト質アルミナゾルを共
成するものである。そして、常磁性を示すオキシ
水酸化鉄(例えば、γ−FeOOH、δ−FeOOH)
やFe3O4の形態の二価三価鉄塩が、ベーマイト質
アルミナ(γAl2O3・H2O)を主体とする繊維状
粒子(径3〜10mμ、長さ2〜3mμ)の搦み合
いによる粉体(表面積100m2/g以上)に均質に
分散される工程と、その均質分散担持状態にある
混合ゾルを脱水して粉末化する工程とを含むもの
である。
That is, this method produces an alumina-iron salt composite using a trivalent iron salt, and a part of the trivalent iron salt is reduced to a divalent iron salt to produce a divalent iron salt. At the same time, it co-forms a boehmite alumina sol. and iron oxyhydroxide (e.g., γ-FeOOH, δ-FeOOH) that exhibits paramagnetic properties.
Divalent and trivalent iron salts in the form of This process includes a step of homogeneously dispersing the sol into a powder (surface area of 100 m 2 /g or more) by mixing, and a step of dehydrating the mixed sol in the homogeneously dispersed supported state and turning it into powder.

上記構成における三価鉄塩としては、塩化物
(FeCl3、FeCl3・6H2O)、硝酸塩〔Fe(NO33
9H2O〕、硫酸塩〔Fe(SO43・nH2O、KFe
(SO43・12H2O、NH4Fe(SO42・12H2O〕等が
用いられるが、水溶性塩であれば特に限定はしな
い。
The trivalent iron salts in the above structure include chlorides (FeCl 3 , FeCl 3 .6H 2 O), nitrates [Fe(NO 3 ) 3 .
9H 2 O], sulfate [Fe(SO 4 ) 3・nH 2 O, KFe
(SO 4 ) 3 ·12H 2 O, NH 4 Fe(SO 4 ) 2 ·12H 2 O], etc., but there is no particular limitation as long as it is a water-soluble salt.

塩基性アルミニウム塩は、三価鉄塩と同質塩酸
のものを用いる。組成は、アルミニウム塩と酸根
の比が、1.8〜2.2:1.0のもので、予め塩化アルミ
ニウム、硫酸アルミニウム、硝酸アルミニウム、
酢酸アルミニウム等の0.5〜1.5モル程度の溶液を
加温し、撹拌しながら所定量の金属アルミニウム
を溶解することにより調製する。
The basic aluminum salt used is a trivalent iron salt and a homogeneous hydrochloric acid salt. The composition has a ratio of aluminum salt to acid radical of 1.8 to 2.2:1.0, and aluminum chloride, aluminum sulfate, aluminum nitrate,
It is prepared by heating a solution of about 0.5 to 1.5 moles of aluminum acetate, etc., and dissolving a predetermined amount of metal aluminum while stirring.

〔作用〕[Effect]

まず、三価鉄塩の溶液(1N)を100部(重量)
に対し塩基性アルミニウム塩溶液(濃度5%)50
〜70部を添加し、次いで金属アルミニウム粉末2
〜5部を添加し、常温〜80℃で約1時間撹拌す
る。
First, add 100 parts (by weight) of a solution (1N) of trivalent iron salt.
Basic aluminum salt solution (concentration 5%) 50
Add ~70 parts then metallic aluminum powder 2
Add ~5 parts and stir at room temperature ~80°C for about 1 hour.

すると、三価鉄塩溶液と塩基性アルミニウム塩
の加水分解による酸と金属アルミニウムの反応か
ら発生する発生機の水素により、三価鉄塩の一部
はFe3+がFe2+に還元され、更に[Fe(OH、Cl、
NO3、1/2SO42O]2+や[Fe2(OH、Cl、NO3
1/2SO42O]3+等の錯イオンを配して、2量体
FeOH OHFeを主体とする二価三価鉄形態の重合
錯体が形成される。
Then, due to the hydrogen in the generator generated from the reaction between the acid and metal aluminum due to the hydrolysis of the trivalent iron salt solution and the basic aluminum salt, Fe 3+ in the trivalent iron salt is partially reduced to Fe 2+ , Furthermore, [Fe(OH, Cl,
NO 3 , 1/2SO 4 ) 2 O] 2+ and [Fe 2 (OH, Cl, NO 3 ,
By placing a complex ion such as 1/2SO 4 ) 2 O] 3+ , a dimer is formed.
A polymeric complex in the form of divalent and trivalent iron mainly composed of FeOH OHFe is formed.

そして、最終的にはγ−FeOOHを多く含んだ
二価三価鉄塩の微粒子(30〜50Å)が形成され
る。
Finally, fine particles (30 to 50 Å) of divalent and trivalent iron salt containing a large amount of γ-FeOOH are formed.

また、塩基性アルミニウムは同時に加水分解し
てベーマイト質アルミナ(γ−Al2O3・H2O)を
主体とする繊維状粒子(径3〜10mμ、長さ2〜
3mμ)のアルミナゾルを生成する。アルミナゾ
ルは液中で多量の水分子を引きつけており、高粘
度(例 濃度3%8000センチポアズPH3)を呈す
る。
In addition, basic aluminum is simultaneously hydrolyzed to form fibrous particles (diameter 3-10 , length 2-2
3 mμ) alumina sol is produced. Alumina sol attracts a large amount of water molecules in the liquid and exhibits high viscosity (e.g., concentration 3%, 8000 centipoise PH3).

また、アルミナゾルはチクソトロピツク性であ
り、撹拌により急速に低粘度となり、撹拌を停止
すると直ちに高粘度に復帰するので、二価三価鉄
塩をアルミナゾル中に均質に分散させることがで
きる。一方、分散後は再び高粘度となり、二価三
価鉄塩とアルミナの正電荷による反発等の因子に
より比重差分離や凝集を起こすことがない。
In addition, alumina sol is thixotropic and rapidly becomes low in viscosity when stirred, and immediately returns to high viscosity when stirring is stopped, so that divalent and trivalent iron salts can be homogeneously dispersed in alumina sol. On the other hand, after dispersion, the viscosity becomes high again, and due to factors such as repulsion due to positive charges between the divalent and trivalent iron salts and alumina, separation and aggregation due to differences in specific gravity do not occur.

次いで、ゾルは透析等の常法的な手段により洗
浄された後、不活性雰囲気(窒素気流中)で24時
間以上静置され、さらに減圧濃縮により脱水乾燥
されて粉末化する。すると、二価三価鉄塩を含有
した粉末状のアルミナ−鉄塩複合体が得られる。
Next, the sol is washed by a conventional method such as dialysis, left to stand in an inert atmosphere (in a nitrogen stream) for 24 hours or more, and further dehydrated and dried by vacuum concentration to form a powder. Then, a powdered alumina-iron salt composite containing a divalent and trivalent iron salt is obtained.

〔実施例〕〔Example〕

次に、本発明の実施例を示す。 Next, examples of the present invention will be shown.

例 1 試料の調製 塩化第二鉄の溶液(1N、FeCl3)を100倍(重
量)に対し、予め調製した塩化アルミニウム溶液
(Al:Cl=2.2:1.0の5%溶液)50部に金属アル
ミニウム粉末(120メツシユ)2.5部を添加しなが
ら約1時間撹拌をして二価三価鉄塩とアルミナの
混合ゾルを生成した。次いで、電気透析により洗
浄した後、窒素封入容器中に24時間放置し、その
後、減圧濃縮により脱水乾燥して試料を粉末化し
た。
Example 1 Preparation of sample A solution of ferric chloride (1N, FeCl 3 ) was added 100 times (by weight) to 50 parts of a previously prepared aluminum chloride solution (5% solution of Al:Cl=2.2:1.0) and metallic aluminum. 2.5 parts of powder (120 mesh) was added and stirred for about 1 hour to produce a mixed sol of divalent and trivalent iron salt and alumina. Next, after washing by electrodialysis, the sample was left in a nitrogen-filled container for 24 hours, and then dehydrated and dried by vacuum concentration to powder the sample.

例 2 脱臭試験 前記例1により得た試料を用いて脱臭テストを
行つた。
Example 2 Deodorization test A deodorization test was conducted using the sample obtained in Example 1 above.

試料粉末0.5gをテスト管(NRK)に充填配置
し、臭気ガスを50ml、約0.5ml/secの条件で吸引
し検知管方式により測定した。
A test tube (NRK) was filled with 0.5 g of sample powder, and 50 ml of odor gas was sucked in at a rate of approximately 0.5 ml/sec, and the measurement was performed using a detection tube method.

その結果、臭気ガスとして硫化水素(70PPM)
を用いた場合には5回目の吸引で破過点となり、
同じく臭気ガスとしてメチルメルカプタン
(40PPM)を用いた場合も5回目の吸引で破過点
となつた。しかし、臭気ガスとしてアンモニアを
用いた場合には6回目の吸引で破過点となつた。
As a result, hydrogen sulfide (70PPM) as an odor gas
When using , the breakthrough point is reached at the fifth suction,
Similarly, when methyl mercaptan (40PPM) was used as the odor gas, the breakthrough point was reached at the fifth inhalation. However, when ammonia was used as the odor gas, the breakthrough point was reached at the sixth suction.

例 3 藻類増殖試験 前記例1により得た試料を用いて緑藻(セラス
トラム)の培養テストを行つた。
Example 3 Algal Growth Test Using the sample obtained in Example 1 above, a culture test of green algae (Celastorum) was conducted.

培地組成[(単位mg/)NaNO325.5、
K2HPO41.0、MgCl25.7、MgSO4・7H2O14.7、
CaCl2・2H2O4.4、NaHCO315.0、蒸留水1〕
に試料を100mg/添加し分散させたものと、無
添加の培地液とをつくつた。そして、各々をフラ
スコ中に50mlずつ採取し、その中にセラストラム
初期濃度500cell/mlを接種し、培地温度25℃、
照度4000Luxで8日間の緑藻細胞類を顕微鏡で計
数した。結果は、無添加の培地液の方が1.0×
106cell/mlとなつたのに対し、例1で得た試料
を添加したものの方は2.0×107cell/mlとなり、
培地組成に試料を添加し分散させた場合の増殖促
進性を示した。
Medium composition [(unit: mg/) NaNO 3 25.5,
K2HPO4 1.0 , MgCl2 5.7, MgSO47H2O14.7 ,
CaCl22H2O4.4 , NaHCO3 15.0, distilled water 1]
A medium solution was prepared in which 100 mg of the sample was added and dispersed, and a medium solution without any additives. Then, 50 ml of each was collected into a flask, and an initial concentration of 500 cells/ml of celastrum was inoculated into the flask, and the culture medium temperature was 25°C.
Green algae cells were counted using a microscope under a light intensity of 4000 Lux for 8 days. The result was that the medium solution without additives was 1.0×
10 6 cells/ml, whereas the sample obtained in Example 1 was 2.0×10 7 cells/ml,
The growth promoting effect was shown when the sample was added to the medium composition and dispersed.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によると、還元法に
より生成された二価三価鉄塩は、共成されたベー
マイト質アルミナ水和物ゾル中に超微粒子の状態
で均質に分散担持されるので、反磁性的重合や、
酸化による変質を経時的に起こすことがなく、活
性物質としての特性を安定保持できるとともに、
そのアルミナゾル中における均質分散状態を保持
したまま脱水粉末化されるので、強磁性の二価三
価鉄塩を確実にかつ収率よく得られるという優れ
た効果を奏する。
As detailed above, according to the present invention, the divalent and trivalent iron salts produced by the reduction method are homogeneously dispersed and supported in the co-formed boehmite alumina hydrate sol in the form of ultrafine particles. , diamagnetic polymerization,
It does not deteriorate over time due to oxidation, and can stably maintain its properties as an active substance.
Since the alumina sol is dehydrated and powdered while maintaining its homogeneous dispersion state in the alumina sol, it has the excellent effect of reliably obtaining a ferromagnetic divalent and trivalent iron salt in a high yield.

そして、本発明により製造されるアルミナ−鉄
塩複合体は、二価値三価鉄塩が活性のある超微粒
子の状態に保たれるので、次のような機能を発揮
する。
The alumina-iron salt composite produced according to the present invention exhibits the following functions because the divalent and trivalent iron salt is maintained in an active ultrafine particle state.

(1) 二価三価鉄塩の微粒子は経時的に変質しない
活性酸素トラツプ性を備えており、トラツプし
た活性酸素の作用により臭気、例えばアンモニ
ア、メチルメルカプタン、硫化水素等の悪臭成
分を分解するしくみの脱臭剤機能をもつ。
(1) Fine particles of divalent and trivalent iron salts have active oxygen trapping properties that do not deteriorate over time, and decompose odor components such as ammonia, methyl mercaptan, and hydrogen sulfide through the action of trapped active oxygen. It has a deodorizing function.

(2) 組成内容である二価三価鉄塩及びアルミナは
人畜無害成分であり、脱酸素性(トラツプ性)
に基づく制菌作用を利用して生鮮食料の鮮度保
持剤として利用できる。
(2) The divalent and trivalent iron salts and alumina in the composition are harmless to humans and animals, and have oxygen scavenging properties (trap properties).
It can be used as a freshness-preserving agent for fresh foods by utilizing its antibacterial action.

(3) 二価鉄(Fe2+)含有物である二価三価鉄塩
は水溶液中でアルミナとともに再分散し、植物
体に吸収され易い超微粒子の状態で植物の増殖
促進物である二価鉄(Fe2+)分を供給するこ
とができる。
(3) Divalent and trivalent iron salts, which contain divalent iron (Fe 2+ ), are redispersed together with alumina in an aqueous solution, and form Fe 2+ , which is a plant growth promoter, in the form of ultrafine particles that are easily absorbed by plants. It can supply valence iron (Fe 2+ ).

Claims (1)

【特許請求の範囲】 1 三価鉄塩溶液に塩基性アルミニウム塩および
金属アルミニウムを添加し、生成された二価三価
鉄塩が、共成されたベーマイト質アルミナ水和物
ゾル中に均質に分散した混合ゾルを形成する工程
と、 その混合ゾルを脱水して粉末化する工程と を含むアルミナ−鉄塩複合体の製造方法。
[Claims] 1. Basic aluminum salt and metal aluminum are added to a trivalent iron salt solution, and the generated divalent and trivalent iron salts are homogeneously formed in the co-formed boehmite alumina hydrate sol. A method for producing an alumina-iron salt composite comprising a step of forming a dispersed mixed sol, and a step of dehydrating and powdering the mixed sol.
JP61199336A 1986-08-25 1986-08-25 Activated material Granted JPS6354936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199336A JPS6354936A (en) 1986-08-25 1986-08-25 Activated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199336A JPS6354936A (en) 1986-08-25 1986-08-25 Activated material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5012036A Division JPH06339630A (en) 1993-01-27 1993-01-27 Preparation of alumina-iron salt composite body

Publications (2)

Publication Number Publication Date
JPS6354936A JPS6354936A (en) 1988-03-09
JPH0555182B2 true JPH0555182B2 (en) 1993-08-16

Family

ID=16406095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199336A Granted JPS6354936A (en) 1986-08-25 1986-08-25 Activated material

Country Status (1)

Country Link
JP (1) JPS6354936A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797279B2 (en) * 1988-06-08 1998-09-17 有限会社アイ・ビー・イー Air treatment method
JPH01311007A (en) * 1988-06-08 1989-12-15 I B Ii:Kk Method for treating plant
WO2007013217A1 (en) * 2005-07-29 2007-02-01 Aichi Steel Corporation Iron(i) oxide-containing composition and plant growth promoter comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128994A (en) * 1978-03-31 1979-10-05 Hitachi Ltd Uranium collecting magnetic adsorbent
JPS59190226A (en) * 1983-04-11 1984-10-29 Shoji Yamashita Bivalent and trivalent iron salt and their preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128994A (en) * 1978-03-31 1979-10-05 Hitachi Ltd Uranium collecting magnetic adsorbent
JPS59190226A (en) * 1983-04-11 1984-10-29 Shoji Yamashita Bivalent and trivalent iron salt and their preparation

Also Published As

Publication number Publication date
JPS6354936A (en) 1988-03-09

Similar Documents

Publication Publication Date Title
Ventura et al. Superparamagnetic MOF@ GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents
Zahid et al. Metal ferrites and their graphene-based nanocomposites: synthesis, characterization, and applications in wastewater treatment
CN110589894A (en) Preparation method of hollow metal oxide nano material
Nadar et al. Recent progress in nanostructured magnetic framework composites (MFCs): synthesis and applications
Ojemaye et al. Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: Progress and prospects
CN108176414B (en) Catalyst MnFe2O4-MIL-53(Al) magnetic composite material, preparation method and application thereof
Bakr et al. Removal of ferrous ions from their aqueous solutions onto NiFe2O4–alginate composite beads
Venkateswarlu et al. An environmentally benign synthesis of Fe3O4 nanoparticles to Fe3O4 nanoclusters: Rapid separation and removal of Hg (II) from an aqueous medium
JP6715450B2 (en) Production method for producing a suspension in which individual nanoparticles of a metal or a metal oxide are surrounded by a liquid organic compound and dispersed in the organic compound
CN106256765B (en) A kind of magnetic carboxymethyl chitosan nano material and preparation method thereof
Teng et al. Ligand exchange triggered controlled-release targeted drug delivery system based on core–shell superparamagnetic mesoporous microspheres capped with nanoparticles
Shalaby et al. Preparation and characterization of iron oxide nanoparticles coated with chitosan for removal of Cd (II) and Cr (VI) from aqueous solution
US10850233B2 (en) Fluid for purifying heat engines using stable suspensions of metal colloidal particles, and methods for preparing said fluid
Hessien et al. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol–gel driven NiFe2O4
Garg et al. Effect of CTAB coating on structural, magnetic and peroxidase mimic activity of ferric oxide nanoparticles
CN113231104B (en) Amino acid modified nano zero-valent iron material and preparation method thereof
JPH0555182B2 (en)
CN111383812A (en) Novel liquid metal magnetofluid and preparation method thereof
Mousavi et al. Preparation and characterization of magnetic keratin nanocomposite
Park et al. Facile synthesis of silica–manganese oxide nanocomposites with core–shell structure using surfactant and cosurfactant
JPH06339630A (en) Preparation of alumina-iron salt composite body
CN112973738B (en) Magnetic self-assembly MoS 2 @Fe 3 O 4 @Cu 2 Preparation method and application of O photocatalyst
CN104387535A (en) Amphipathic superparamagnetic composite hollow microsphere and preparation method thereof
Liu et al. Sulfur-doped Fe–Cu–La trimetallic oxides as a novel magnetic adsorbent for efficient removal of As (iii) and As (v) from aqueous solution
Ismail et al. Compatibility of Concentrated NaOH as a Precipitation Agent in the Synthesis of Maghemite (γ-Fe2O3) Nanoparticles via Co-precipitation Method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees