JPS6354539B2 - - Google Patents

Info

Publication number
JPS6354539B2
JPS6354539B2 JP1804182A JP1804182A JPS6354539B2 JP S6354539 B2 JPS6354539 B2 JP S6354539B2 JP 1804182 A JP1804182 A JP 1804182A JP 1804182 A JP1804182 A JP 1804182A JP S6354539 B2 JPS6354539 B2 JP S6354539B2
Authority
JP
Japan
Prior art keywords
flame
equivalent
laminate
resistant
urethane foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1804182A
Other languages
Japanese (ja)
Other versions
JPS58136432A (en
Inventor
Masumi Saito
Sumio Tani
Shuji Morya
Shigetoshi Awano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd, Asahi Kasei Kogyo KK filed Critical Kurashiki Spinning Co Ltd
Priority to JP1804182A priority Critical patent/JPS58136432A/en
Publication of JPS58136432A publication Critical patent/JPS58136432A/en
Publication of JPS6354539B2 publication Critical patent/JPS6354539B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は耐炎性積局䜓、就䞭、耐熱性、寞法安
定性等に優れたプノリツクりレタンフオヌムを
芯材ずする積局䜓に関する。 埓来、倩井材、壁材その他の建築甚郚材ずしお
朚質や石膏等を芯材ずし、化粧玙や鉄板等を面材
ずした積局䜓が䜿甚されおいるが、これらの材料
は抂しお重いため斜工性も悪く、又吞湿性で断熱
性が䜎い等ずいう欠点を有しおいる。 他方硬質ポリりレタンフオヌムなど軜量で断熱
性のよい有機発泡䜓を芯材ずする材料も開発され
おいるが、これらの材料は䞀般に防火性胜が䜎い
ずいう欠点が存しおいた。 有機発泡䜓を芯材ずした防火性胜の高い積局䜓
ずしおポリむ゜シアヌレヌトフオヌムを芯材ず
し、アルミニりムの箔又は板状䜓を面材ずしお貌
着した積局䜓が知られおいるが、この材料が埌述
する難燃玚の詊隓に合栌するためには、䞊蚘ポ
リむ゜シアヌレヌトフオヌム䞭に盞圓倚量の耐炎
剀、枛煙剀あるいは無機物を添加するため、断熱
性、寞法安定性等フオヌム物性の䜎䞋が避けられ
ず、又貌着するアルミニりム箔又は板状䜓も厚さ
が0.1mm以䞊ないず効果がないため経枈的に䞍利
であるずいう事情があ぀た。 本発明は特殊なポリオヌル成分を甚いお補造し
たプノリツクりレタンフオヌムを甚い、埓来の
硬質りレタンフオヌムの発泡凊方から䞀切の難燃
剀を陀き、なおか぀難燃玚の詊隓に合栌し、し
かも安䟡か぀工業的生産性に適した方法で生産可
胜な耐炎性積局䜓を提䟛する。 即ち、本発明はりレタンフオヌムの少なくずも
䞀面を耐炎性の面材で被芆しおなる積局䜓におい
お、該りレタンフオヌムが (a) プノヌルに察し等モル以䞊のホルムアルデ
ヒドを瞮合反応させお埗られるベンゞル゚ヌテ
ル型プノヌル暹脂のプノヌル性氎酞基の
0.3圓量以䞊をアルキレンカヌボネヌトによ぀
おアルコヌル性氎酞基に倉換した倉性プノヌ
ル暹脂ず (b) ポリむ゜シアネヌトずを NCO圓量OH圓量≊ の範囲で発泡反応させお埗られたものであ぀お、
これが面材䞊に自己接着した耐炎性積局䜓に関す
る。 本発明におけるベンゞル゚ヌテル型プノヌル
暹脂はプノヌル類モルに察しおホルムアルデ
ヒド類モル以䞊の条件で、アルカリ土類金属の
酞化物、氎酞化物、又は酢酞、ナフテン酞等の有
機匱酞塩の単独又は、混合觊媒䞋で反応しお埗ら
れる。 こゝでいうプノヌル類ずは、ベンれン環を圢
成する骚栌のケ以䞊の炭玠原子が盎接氎酞基ず
結合したものを意味し、その同䞀構造内に他の眮
換結合基を有するものも含たれる。代衚的なもの
ずしおは、プノヌル、クレゟヌル、ビスプノ
ヌル、レゟルシノヌル等である。 たたホルムアルデヒド類は、特に限定しない
が、ホルマリン、パラホルムアルデヒドが奜たし
い。 さらに本発明に䜿甚するアルキレンカヌボネヌ
トは䞀般匏 䜆し、、R′は氎玠又は炭玠数からのア
ルキル基 で衚わされ、具䜓的には䟋えば゚チレンカヌボネ
ヌト、プロピレンカヌボネヌト、−゚チルゞオ
キ゜ロン、−ブチルゞオキ゜ロン、−ゞ
メチルゞオキ゜ロン、−ペンチルゞオキ゜ロ
ン、4′−ゞメチルゞオキ゜ロン等が䜿甚され
る。 ぀ぎに暹脂䞭のプノヌル性氎酞基のアルコヌ
ル性氎酞基ぞの倉換量は、プノヌル性氎酞基の
0.3圓量以䞊、奜たしくは0.4〜0.8圓量ずする。 0.3圓量以䞋の倉換量では、その倉性効果が発
揮されない。なお、アルキレンカヌボネヌトをフ
゚ノヌル性氎酞基の圓量より過剰に甚いるず未反
応のアルキレンカヌボネヌト又は、加氎分解した
グリコヌルが生成し、最終的なプノヌルりレタ
ン硬化物の耐熱性が劣化し、たた硬化時の反応速
床が遅くなり本発明の目的が達成されない。 本発明においお、プノヌル性氎酞基のアルコ
ヌル性氎酞基ぞの倉換反応は、あらかじめ瞮合反
応及び、脱氎反応しお濃瞮されたベンゞル゚ヌテ
ル型プノヌル暹脂を非氎系に保ちながら、アル
キレンカヌボネヌト類を添加混合し、垞枩ないし
140℃を越えない枩床条件䞋で適圓なアルカリ性
觊媒を添加しお、数分から数時間反応させる。 倉性のためのアルカリ性觊媒ずしおは、炭酞カ
リりム、炭酞ナトリりム、炭酞カルシりム等のア
ルキレンカヌボネヌトを開環しグリコヌルを生成
させないような觊媒が奜たしく、これ等を䜿甚す
るこずにより、アルキレンカヌボネヌトは炭酞ガ
スを発生しながら開環し、プノヌル氎酞基ず゚
ヌテル結合を生成しお氎酞基の倉性がおこなわれ
る。 埗られた倉性暹脂は、さらに必芁に応じお、未
反応のカヌボネヌトモノマヌや副生するグリコヌ
ルモノマヌを枛圧陀去しお補品が埗られ、該暹脂
は単独又は、適圓な溶媒で垌釈しお、通垞は液䜓
で䜿甚される。 本発明に䜿甚されるポリむ゜シアネヌト類は特
に限定的ではなく、埓来、䞀般に䜿甚しおいるも
のから適宜䜿甚すればよい。代衚的な䟋ずしおは
芳銙族ポリむ゜シアネヌト、䟋えばトリレンゞむ
゜シアネヌト、ゞプニルメタンゞむ゜シアネヌ
ト、粗補ゞプニルメタンゞむ゜シアネヌト等、
脂肪族ポリむ゜シアネヌト、䟋えばヘキサメチレ
ンゞむ゜シアネヌト、む゜ホロンゞむ゜シアネヌ
ト、ゞシクロヘキシルメタンゞむ゜シアネヌト等
が䟋瀺される。特にゞむ゜シアネヌト類が奜たし
い。 倉性プノヌル暹脂ずポリむ゜シアネヌトずの
反応比はNCO圓量OH圓量≊の範囲、奜たし
くは1.2〜1.8である。NCO圓量OH圓量がを
越えるずフラむアビリテむヌが増加する。ここに
云うOH圓量はプノヌル性およびアルコヌル性
OHの合蚈に関するものである。 䞡者の反応は通垞硬化觊媒、敎泡剀および発泡
剀の存圚䞋に行なう。 硬化觊媒ずしおは、アミン觊媒、䟋えばトリ゚
チレンゞアミン、−ゞメチル゚タノヌルア
ミン、N′N′N″−ペンタメチルゞ゚
チレントリアミン等、有機錫觊媒、䟋えばゞブチ
ル錫ゞラりレヌト、スタナスオクト゚ヌト、ゞブ
チル錫ゞアセテヌト等が䟋瀺される。これらの硬
化觊媒は倉性プノヌル暹脂の〜10重量甚い
る。 発泡剀は限定的でなく䞀般のりレタンフオヌム
甚発泡剀をそのたた甚いるこずができる。具䜓的
にはトリクロロモノフルオロメタン、ゞクロロゞ
フルオロメタン等の塩化北化炭化氎玠、その他、
メチレンクロリド、ペンタン等が䟋瀺される。 敎泡剀ずしおはオルガノポリシロキサン−ポリ
オキシアルキレン共重合䜓、シリコヌン−グリコ
ヌル共重合䜓等の非むオン界面掻性剀が䟋瀺され
る。 本発明で甚いられる発泡りレタンフオヌムは耐
炎性の面材ず接着させる。 耐炎性面材ずしおはアスベスト玙、ガラスペヌ
パヌ、アルミニりム箔、各皮耐炎性ラミネヌト
玙、石膏平ボヌト等耐炎性のあるものであればよ
いが特にアスベスト玙が奜たしい。アスベスト玙
は䞊蚘発泡りレタンずの自己接着性に優れ、軜量
でしかも経枈的である。アスベスト玙の厚さは
100〜500m2皋床のものが適圓である。 本発明においおりレタンフオヌムず耐炎性面材
ずの接着は自己接着させる。自己接着はりレタン
フオヌム圢成時に面材ず重ね合わせるこずにより
容易に達成されるため、りレタンフオヌム芯材ず
面材ずを別途接着剀を甚いお接着させる必芁がな
く工業的生産性においお非垞に優れおいる。 耐炎性の面材は炎ず接する可胜性のある面に少
なくずも䞀面接着させる。本発明に甚いるりレタ
ンフオヌムはそれ自䜓極めお難燃性であり、特別
の難燃剀、耐炎剀、枛煙剀を甚いるこずなく非垞
に優れた難燃性を瀺すが、耐炎性の面材を甚いな
いずJIS−−1321難燃玚防火性胜の詊隓に合
栌するものを埗るこずはできない。たた逆にアス
ベスト玙等を面材ずしお、埓来の硬質りレタンフ
オヌムやポリむ゜シアヌレヌトフオヌムの衚面を
保護しおも、倚量の難燃剀を甚いないず難燃玚
の詊隓に合栌しない。たた、この様な難燃剀の䜿
甚はフオヌムの断熱性、寞法安定性を損なわせ、
しかも機械物性を䜎䞋させる。 以䞋、実斜䟋をあげお本発明を説明する。 実斜䟋  プノヌル200Kgず47ホルマリン204Kgを600
の反応釜に仕蟌み、ナフテン酞鉛1.4Kgを添加
しお昇枩し、100〜103℃で時間反応した。 埗られた暹脂をが1000である連続濃瞮装
眮䞭に導入し、管の倖套を3.5Kgcm2の蒞気で加
熱しながら、管の出口を125℃に保぀たフラツシ
ナチダンバヌに導き、該フラツシナチダンバヌを
60mmHgの枛圧ずなし、未反応モノマヌおよび氎
分を系倖に陀去し぀぀、暹脂液のみを別途系倖に
取り出しおベンゞル゚ヌテル型プノヌル暹脂液
を埗たこれを以䞋暹脂液ず云う。 暹脂液は、衚に瀺す特性を有しおいた。
The present invention relates to a flame-resistant laminate, particularly a laminate having a core material of phenolic urethane foam, which has excellent heat resistance, dimensional stability, and the like. Conventionally, laminates have been used for ceiling materials, wall materials, and other construction materials, with a core material such as wood or plaster and a facing material such as decorative paper or iron plate, but these materials are generally heavy and have difficulty in construction. It also has the disadvantages of being hygroscopic and having low heat insulation properties. On the other hand, materials having core materials made of lightweight organic foams such as rigid polyurethane foams with good heat insulation properties have been developed, but these materials generally have the disadvantage of low fire retardant performance. A laminate with a polyisocyanurate foam as a core material and aluminum foil or plate-like material as a face material is known as a laminate with high fire retardant performance that uses an organic foam as a core material. In order to pass the flame retardant class 2 test described below, a considerable amount of flame retardant, smoke reducer, or inorganic material is added to the polyisocyanurate foam, which reduces the physical properties of the foam such as heat insulation and dimensional stability. This is unavoidable, and it is economically disadvantageous because the aluminum foil or plate-like material to be attached must have a thickness of 0.1 mm or more to be effective. The present invention uses a phenolic urethane foam manufactured using a special polyol component, removes all flame retardants from the conventional rigid urethane foam foam formulation, passes the flame retardant grade 2 test, and is inexpensive. To provide a flame-resistant laminate that can be produced by a method suitable for industrial productivity. That is, the present invention provides a laminate in which at least one side of a urethane foam is coated with a flame-resistant face material, in which the urethane foam is (a) a benzyl ether type obtained by condensing formaldehyde in an equimolar or more amount to phenol; The phenolic hydroxyl group of phenolic resin
A modified phenol resin in which 0.3 equivalent or more has been converted into alcoholic hydroxyl groups with alkylene carbonate and (b) polyisocyanate are subjected to a foaming reaction in the range of NCO equivalent/OH equivalent ≩2,
This relates to a flame-resistant laminate that is self-adhered onto the facing. The benzyl ether type phenolic resin in the present invention is prepared by using alkaline earth metal oxides, hydroxides, or organic weak acid salts such as acetic acid and naphthenic acid alone or under conditions of 1 mole or more of formaldehyde per 1 mole of phenols. , obtained by reaction under a mixed catalyst. The phenols referred to herein mean those in which one or more carbon atoms of the skeleton forming a benzene ring are directly bonded to a hydroxyl group, and also include those having other substituted bonding groups within the same structure. Typical examples include phenol, cresol, bisphenol A, and resorcinol. Further, formaldehydes are not particularly limited, but formalin and paraformaldehyde are preferred. Furthermore, the alkylene carbonate used in the present invention has the general formula: (However, R and R' are hydrogen or an alkyl group having 1 to 6 carbon atoms.) Specifically, for example, ethylene carbonate, propylene carbonate, 4-ethyl dioxolone, 4-butyl dioxolone, 4 , 5-dimethyldioxolone, 4-pentyldioxolone, 4,4'-dimethyldioxolone, etc. are used. Next, the amount of conversion of phenolic hydroxyl groups in the resin to alcoholic hydroxyl groups is as follows:
The amount is 0.3 equivalent or more, preferably 0.4 to 0.8 equivalent. If the conversion amount is 0.3 equivalent or less, the modification effect will not be exhibited. Note that if alkylene carbonate is used in excess of the equivalent amount of phenolic hydroxyl groups, unreacted alkylene carbonate or hydrolyzed glycol will be produced, which will deteriorate the heat resistance of the final cured phenol urethane product and reduce the reaction rate during curing. The object of the present invention cannot be achieved because of the delay. In the present invention, the conversion reaction of a phenolic hydroxyl group into an alcoholic hydroxyl group is carried out by adding and mixing alkylene carbonates while keeping the benzyl ether type phenolic resin, which has been concentrated in advance through a condensation reaction and a dehydration reaction, in a non-aqueous system. Not
A suitable alkaline catalyst is added at a temperature not exceeding 140°C, and the reaction is allowed to occur for several minutes to several hours. As the alkaline catalyst for denaturation, catalysts such as potassium carbonate, sodium carbonate, and calcium carbonate that open the ring of alkylene carbonate and do not generate glycol are preferable.By using these catalysts, alkylene carbonate can generate carbon dioxide gas. While doing so, the ring opens, forming an ether bond with the phenolic hydroxyl group, and the hydroxyl group is modified. The obtained modified resin is further removed under reduced pressure to remove unreacted carbonate monomers and by-produced glycol monomers, as necessary, to obtain a product. used in liquids. The polyisocyanates used in the present invention are not particularly limited, and any conventionally and commonly used polyisocyanates may be used as appropriate. Typical examples include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, etc.
Examples include aliphatic polyisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and the like. Particularly preferred are diisocyanates. The reaction ratio between the modified phenolic resin and the polyisocyanate is in the range of NCO equivalent/OH equivalent≩2, preferably 1.2 to 1.8. When NCO equivalent/OH equivalent exceeds 2, flyability increases. The OH equivalent here refers to phenolic and alcoholic
It concerns the total OH. Both reactions are usually carried out in the presence of a curing catalyst, foam stabilizer and blowing agent. As curing catalysts, amine catalysts such as triethylenediamine, N,N-dimethylethanolamine, N,N,N',N',N''-pentamethyldiethylenetriamine, etc., organotin catalysts such as dibutyltin dilaurate, stannous octamine, etc. ate, dibutyltin diacetate, etc. These curing catalysts are used in an amount of 0 to 10% by weight of the modified phenolic resin. The blowing agent is not limited, and general blowing agents for urethane foam can be used as they are. Specifics Examples include chlorofluorinated hydrocarbons such as trichloromonofluoromethane and dichlorodifluoromethane, and others.
Examples include methylene chloride and pentane. Examples of foam stabilizers include nonionic surfactants such as organopolysiloxane-polyoxyalkylene copolymers and silicone-glycol copolymers. The urethane foam used in the present invention is bonded to a flame-resistant face material. The flame-resistant surface material may be any flame-resistant material such as asbestos paper, glass paper, aluminum foil, various flame-resistant laminate papers, and gypsum flat boards, but asbestos paper is particularly preferred. Asbestos paper has excellent self-adhesive properties with the above-mentioned urethane foam, and is lightweight and economical. The thickness of asbestos paper
Approximately 100 to 500 g/m 2 is suitable. In the present invention, the urethane foam and the flame-resistant surface material are self-adhesive. Self-adhesion is easily achieved by overlapping the urethane foam core material with the face material during formation, so there is no need to use a separate adhesive to bond the urethane foam core material and the face material, resulting in excellent industrial productivity. There is. At least one flame-resistant facing material shall be attached to any surface that may come into contact with flames. The urethane foam used in the present invention is itself extremely flame retardant and exhibits excellent flame retardancy without the use of special flame retardants, flame retardants or smoke reducers, but without the use of flame resistant face materials. It is not possible to obtain a product that passes the JIS-A-1321 flame retardant class 2 fire protection test. Conversely, even if asbestos paper or the like is used as a surface material to protect the surface of conventional hard urethane foam or polyisocyanurate foam, it will not pass the second class flame retardant test unless a large amount of flame retardant is used. In addition, the use of such flame retardants impairs the insulation properties and dimensional stability of the foam.
Moreover, mechanical properties are deteriorated. The present invention will be explained below with reference to Examples. Example 1 600 kg of phenol and 204 kg of 47% formalin
1.4 kg of lead naphthenate was added, the temperature was raised, and the mixture was reacted at 100 to 103°C for 4 hours. The obtained resin was introduced into a continuous concentrator with an L/D of 1000, and the outlet of the tube was placed in a flash chamber kept at 125°C while the jacket of the tube was heated with 3.5 kg/cm 2 of steam. guide the flash chamber.
The pressure was reduced to 60 mmHg, and while unreacted monomers and water were removed from the system, only the resin liquid was separately taken out of the system to obtain a benzyl ether type phenol resin liquid (hereinafter referred to as resin liquid A). Resin liquid A had the characteristics shown in Table 1.

【衚】 次いで、暹脂液A260Kgず゚チレンカヌボネヌ
ト110Kgを反応釜に仕蟌み、K2CO30.3Kgを添加し
お110℃で50分間反応させた。反応の進行ずずも
に炭酞ガスを発生するので、系倖に陀去し぀぀、
反応終了埌に枛圧䞋でモノマヌを陀去しお倉性暹
脂を埗たこれを以䞋、暹脂液ず云う。暹脂
液の特性を衚に瀺す。 è¡š  粘床20℃ cps 4200 OH䟡KOH 407 平均分子量 324 䞍揮発分 72 氎分 0.9 フリヌプノヌル 4.9 フリヌホルムアルデヒド 0.1 暹脂液䞭のモノマヌ及びグリコヌルをガスク
ロマトグラフむヌで枬定したずころ、゚チレンカ
ヌボネヌト、グリコヌルであり、プノ
ヌル性氎酞基モルに察しお0.56モルの倉性率で
あ぀た。 尚、前蚘実斜䟋における各項の枬定は䞋蚘の枬
定法にもずづいた。 粘床  BH型粘床蚈による。 フリヌプノヌル  液䜓クロマトグラフむヌ フリヌホルムアルデヒド  塩酞・ヒドロキシル
アミン法による。 䞍揮発分  180℃×時間 蒞発 平均分子量  蒞気圧浞透法による。 メチロヌル基゚ヌテル基  IR法 OH䟡  アセチル化法による。 氎分  カヌルフむツシダヌ法による。 メチロヌル基圓量 10のプノヌル暹脂ず20のプノヌル
PbO0.2wt含を115〜120℃で90分反応させ冷
华埌カヌルフむツシダヌ法により氎分を塩酞ヒド
ロキシルアミン法により遊離ホルマリンを枬定
し、次匏により求める。 ×RRW×10-2−RF−RRF×18×
18-230−×RW×10-2××PW×10-2×18×100 添加プノヌル量 暹脂量 RF暹脂䞭遊離ホルマリン RW暹脂䞭氎分 PW添加プノヌル䞭氎分 RRF反応物䞭遊離ホルマリン RRW反応物䞭氎分 次にこの暹脂液を甚いお、凊方におボツク
ス内フリヌ発泡を、凊方によ぀お金型内発泡を
行いボヌドを䜜成した。これらフオヌム物性倀を
衚に瀺した。 凊方 重量郹 暹脂液 100 −12 0.3 −5420 1.5 − 16 MR−200 NCO圓量OH圓量1.2 凊方 重量郹 暹脂液 100 −12 0.3 −5420 1.5 − 60 MR−200 NCO圓量OH圓量1.2 ここで−12は chem瀟補品 ゞブチ
ル錫ゞラりレヌト −5420は日本ナニカヌ瀟補品 オルガノポリ
シロキサンポリオキシアルキレン共重合䜓 −はダむキン工業瀟補品 ダむフロン−
トリクロロモノフルオロメタン MR−200は日本ポリりレタン工業瀟補品 粗
補ゞプニルメタンゞむ゜シアネヌトミリオネ
ヌトMR200NCO含量31 ボツクス内フリヌ発泡は、暹脂液が200の
配合比で、玄10秒間の高速撹拌埌、25cm角のボツ
クス内にあけ、フリヌ発泡させた。又金型内での
ボヌド䜜成は、暹脂液が20での配合比で、玄
10秒間の高速撹拌埌30cm×30cm×20mmのあらかじ
め玄55℃に加熱した金型内にあけ、玄55℃にあら
かじめ加熱した䞊蓋をのせ、クランプで金型ず蓋
をし぀かり固定し、金型内で発泡させお䜜成し
た。
[Table] Next, 260 kg of resin liquid A and 110 kg of ethylene carbonate were charged into a reaction vessel, 0.3 kg of K 2 CO 3 was added, and the mixture was reacted at 110°C for 50 minutes. As the reaction progresses, carbon dioxide gas is generated, so while removing it from the system,
After the reaction was completed, the monomer was removed under reduced pressure to obtain a modified resin (hereinafter referred to as resin liquid). Table 2 shows the properties of the resin liquid. Table 2 Viscosity (20℃ cps) 4200 OH number (mgKOH/g) 407 Average molecular weight 324 Nonvolatile content (%) 72 Moisture (%) 0.9 Free phenol (%) 4.9 Free formaldehyde (%) 0.1 Monomer and glycol in resin liquid When measured by gas chromatography, the content was 2% ethylene carbonate and 0% glycol, and the modification rate was 0.56 mol per mol of phenolic hydroxyl group. Incidentally, each item in the above examples was measured based on the following measuring method. Viscosity: Based on BH type viscometer. Free phenol...liquid chromatography free formaldehyde...by hydrochloric acid/hydroxylamine method. Nonvolatile content: 180°C x 1 hour Evaporation average molecular weight: Based on vapor pressure osmosis method. Methylol group/ether group...by IR method OH value...by acetylation method. Moisture: According to the Karl-Fitscher method. Methylol group equivalent: 10 g of phenolic resin and 20 g of phenol (containing 0.2 wt% PbO) were reacted at 115 to 120°C for 90 minutes, and after cooling, water was removed by the Karl Fischer method and free formalin was measured by the hydrochloric acid hydroxylamine method. Find it by (P+R)×RRW×10 -2 −(P+R)(RF−RRF)×18×
18 -2 /30-R x RW x 10 -2 x P x PW x 10 -2 /R x 18 x 100 P: Amount of added phenol (g) R: Amount of resin (g) RF: Free formalin in resin (% ) RW: Moisture in resin (%) PW: Moisture in added phenol (%) RRF: Free formalin in reactant (%) RRW: Moisture in reactant (%) Next, using this resin liquid, in formulation A. A board was prepared by free foaming in a box and foaming in a mold according to recipe B. These foam physical property values are shown in Table 3. Prescription A Parts by weight Resin liquid 100 T-12 0.3 L-5420 1.5 S-1 16 MR-200 NCO equivalent/OH equivalent = 1.2 Prescription B Parts by weight Resin liquid 100 T-12 0.3 L-5420 1.5 S-1 60 MR- 200 NCO equivalent/OH equivalent = 1.2 Here, T-12 is a product of M&T Chem Co., Ltd. Dibutyltin dilaurate L-5420 is a product of Nippon Unicar Co., Ltd. Organopolysiloxane polyoxyalkylene copolymer S-1 is a product of Daikin Industries Co., Ltd. Daiflon S-
1; Trichloromonofluoromethane MR-200 is a product of Nippon Polyurethane Kogyo Co., Ltd. Crude diphenylmethane diisocyanate (Millionate MR200) NCO content 31% Free foaming in the box is achieved after high-speed stirring for approximately 10 seconds at a blending ratio of 200 g of resin liquid. , placed in a 25cm square box and allowed to foam freely. Also, when creating a board in a mold, the mixing ratio is approximately 20g of resin liquid.
After stirring at high speed for 10 seconds, place in a 30cm x 30cm x 20mm mold preheated to approximately 55℃, place a top lid preheated to approximately 55℃, secure the mold and lid firmly with clamps, and place the mold into a mold. It was created by foaming inside.

【衚】 次に実斜䟋〜においお、暹脂液を甚いた
積局䜓を玹介する。 実斜䟋  30cm角に裁断した、あらかじめ玄55℃に加熱さ
れたアスパヌル十条補玙瀟補品アスベスト玙
100m2を玄55℃に加熱した金型瞊暪30cm、
深さ20mm内にセツトする。凊方の配合で、暹
脂液が20の配合比に調合された、暹脂液、
−12、−、−5420の混合液䞭に所定量の
MR−200を加えお盎ちに玄10秒間高速撹拌した
埌、該混合原液を䞊蚘金型内に泚入する。泚入原
液の䞊方に玄55℃にあらかじめ加熱されたアスパ
ヌルをのせ、次いで予め玄55℃に加熱した䞊蓋を
のせお、クランプで金型ず蓋をし぀かり固定す
る。垞枩で玄10分間攟眮埌脱型しお30cm×30cm×
20mmの積局䜓を補造した。埗られた積局䜓の断面
構成を第図に瀺す。図䞭、はアスベスト玙、
はプノリツクりレタンフオヌムの局を瀺す。
この積局䜓の燃焌詊隓結果を衚−に瀺した。 凊方 暹脂液 100重量郹 −12 0.4重量郹 −5420 重量郚 − 60重量郹 MR−200 NCO圓量OH圓量1.6
[Table] Next, in Examples 2 to 7, laminates using resin liquid will be introduced. Example 2 Aspal (asbestos paper manufactured by Jujo Paper Co., Ltd.) cut into 30 cm squares and heated to approximately 55°C in advance
100g/m 2 ) heated to approximately 55℃ in a mold (30cm in length and width,
(depth 20mm). A resin liquid prepared by formula C at a blending ratio of 20g of resin liquid,
Add a specified amount to the mixed solution of T-12, S-1, and L-5420.
Immediately after adding MR-200 and stirring at high speed for about 10 seconds, the mixed stock solution is poured into the mold. Place aspar that has been preheated to about 55°C above the injection stock solution, then place the top lid that has been preheated to about 55°C, and firmly fix the mold and the lid with a clamp. Leave it at room temperature for about 10 minutes, then remove it from the mold and make it 30cm x 30cm x
A 20 mm laminate was produced. The cross-sectional structure of the obtained laminate is shown in FIG. In the figure, 1 is asbestos paper,
2 shows a layer of phenolic urethane foam.
The combustion test results of this laminate are shown in Table 4. Formulation C Resin liquid I 100 parts by weight T-12 0.4 parts by weight L-5420 3 parts by weight S-1 60 parts by weight MR-200 NCO equivalent/OH equivalent = 1.6

【衚】【table】

【衚】 実斜䟋 、および 面材を倉えたほか実斜䟋ず同じ方法で以䞋に
瀺す積局䜓を埗た。 実斜䟋は、面材ずしお、30Ό厚みのポリ゚チ
レンフむルムをラミネヌトしたアスパヌル100
m2を甚いそのポリ゚チレンフむルム局をり
レタンフオヌム局に接着した積局䜓、実斜䟋
は、面材ずしお、アルミニりム箔厚み20Όを
ポリ゚チレンフむルム厚さ20Όを介しおアス
パヌル100m2にラミネヌトしたものを甚
いた積局䜓アルミニりム局を最倖局ずするお
よび実斜䟋は、面材ずしお、150Ό厚みのアル
ミニりムを甚いた積局䜓である。これら積局䜓の
燃焌詊隓結果を衚−に瀺した。
[Table] Examples 3, 4 and 5 The following laminates were obtained in the same manner as in Example 2 except that the face material was changed. In Example 3, asparallel (100Ό
Example 4 Laminate in which the polyethylene film layer was adhered to the urethane foam layer using
is a laminate (with the aluminum layer as the outermost layer) using aluminum foil (thickness 20Ό) laminated to aspar (100g/m 2 ) via polyethylene film (thickness 20Ό) as a face material. Example 5 is a laminate using aluminum with a thickness of 150 Όm as the face material. The combustion test results of these laminates are shown in Table 5.

【衚】 実斜䟋 および 実斜䟋は、衚面材にアスベストをセメントで
固めたmm厚みのフレキシブル板、裏面材に50ÎŒ
厚みのポリ゚チレンフむルムをラミネヌトしたガ
ラスペヌパヌ60m2を甚いた積局䜓であ
る。この構成を第図に瀺す。図䞭、はりレタ
ンフオヌム局、はポリ゚チレンフむルム局、
はガラスペヌパヌ局およびはフレキシブル板を
瀺す。その補造方法は、実斜䟋ず同様である。
即ち金型内にフレキシブル板をセツトし、その䞊
に凊方の混合液を泚入し、この泚入原液の䞊方
にガラスペヌパヌをセツトしお補造した。 実斜䟋は、衚面材にmm厚みの石こう平ボヌ
ドを、裏面材に50Ό厚みのポリ゚チレンフむルム
をラミネヌトしたガラスペヌパヌ60m2を
甚いた積局䜓であるポリ゚チレンフむルムずり
レタンフオヌムを接着させる。その補造方法は
実斜䟋ず同様である。これら積局䜓の燃焌詊隓
結果を衚−に瀺した。
[Table] Examples 6 and 7 In Example 6, the surface material is a 3mm thick flexible board made of cemented asbestos, and the back material is a 50Ό
This is a laminate using glass paper (60 g/m 2 ) laminated with a thick polyethylene film. This configuration is shown in FIG. In the figure, 2 is a urethane foam layer, 3 is a polyethylene film layer, and 4 is a polyethylene film layer.
5 indicates a glass paper layer and 5 indicates a flexible plate. The manufacturing method is the same as in Example 2.
That is, a flexible plate was set in a mold, a mixed solution of prescription C was poured onto it, and a glass paper was set above the injection stock solution. Example 7 is a laminate using glass paper (60 g/m 2 ) laminated with a 9 mm thick gypsum flat board as the surface material and a 50 Ό thick polyethylene film as the back material (polyethylene film and urethane foam are bonded together). ). The manufacturing method is the same as in Example 6. The combustion test results of these laminates are shown in Table 6.

【衚】 実斜䟋  ゚チレンカヌボネヌトにより倉性させたベンゞ
ル゚ヌテル型プノヌル暹脂の倉性割合ずフオヌ
ムのフラむアビリテむの関係を調べた。倉性プ
ノヌル暹脂は、実斜䟋に準じお合成した。䞀方
フオヌムは、凊方によりボツクス内でフリヌ発
泡させお埗た。これらの結果を衚−に瀺した。 凊方 倉性プノヌル暹脂 100重量郹 −12 0.3重量郹 −5420 1.5重量郹 − 25重量郹 MR−200 NCO圓量OH圓量1.2 次に暹脂液を甚いお、NCO圓量ずOH圓量の
比率をかえお実斜䟋に準じお金型内発泡により
ボヌドを䜜成し、そのフラむアビリテむを調べ
た。結果を衚−に瀺した。
[Table] Example 8 The relationship between the modification ratio of a benzyl ether type phenolic resin modified with ethylene carbonate and the flyability of the foam was investigated. The modified phenolic resin was synthesized according to Example 1. On the other hand, the foam was obtained by free foaming in a box using Formulation D. These results are shown in Table-7. Formulation D Modified phenolic resin 100 parts by weight T-12 0.3 parts by weight L-5420 1.5 parts by weight S-1 25 parts by weight MR-200 NCO equivalent/OH equivalent = 1.2 Next, using the resin liquid, calculate the NCO equivalent and OH equivalent. Boards were prepared by in-mold foaming according to Example 1 with different ratios, and their flyability was examined. The results are shown in Table-8.

【衚】 フラむアビリテむフオヌム衚面を匷く指でこす
り、粉が発生するもの×印、発生しないも
の○印。
[Table] Flyability: Rub the surface of the foam strongly with your fingers, and mark with an x if powder is generated, or mark with an ○ if it does not.

【衚】 フラむアビリテむボヌド衚面を匷く指でこ
すり、粉の発生するもの×を印、発
生しないもの○印。
[Table] Flyability: Rub the surface of the board strongly with your fingers, mark the item that generates powder with an
Items that do not survive are marked with ○.

【図面の簡単な説明】[Brief explanation of the drawing]

第図および第図は本発明耐炎性積局䜓の䞀
態様の断面図である。 図䞭、はアスベスト玙、はりレタンフオヌ
ム局、はポリ゚チレンフむルム、はガラスペ
ヌパヌ、はフレキシブル板を瀺す。
FIGS. 1 and 2 are cross-sectional views of one embodiment of the flame-resistant laminate of the present invention. In the figure, 1 is asbestos paper, 2 is a urethane foam layer, 3 is a polyethylene film, 4 is glass paper, and 5 is a flexible board.

Claims (1)

【特蚱請求の範囲】  りレタンフオヌムの少なくずも䞀面を耐炎性
の面材で被芆しおなる積局䜓においお、該りレタ
ンフオヌムが (a) プノヌルに察し等モル以䞊のホルムアルデ
ヒドを瞮合反応させお埗られるベンゞル゚ヌテ
ル型プノヌル暹脂のプノヌル性氎酞基の
0.3圓量以䞊をアルキレンカヌボネヌトによ぀
おアルコヌル性氎酞基に倉換した倉性プノヌ
ル暹脂ず (b) ポリむ゜シアネヌトずを NCO圓量OH圓量≊ の範囲で発泡反応させお埗られたものであ぀お、
これが面材䞊に自己接着した耐炎性積局䜓。  耐炎性の面材がアスベスト玙である第項蚘
茉の耐炎性積局䜓。
[Scope of Claims] 1. A laminate in which at least one side of a urethane foam is coated with a flame-resistant face material, wherein the urethane foam contains (a) benzyl obtained by condensing formaldehyde in an equimolar or more amount to phenol; The phenolic hydroxyl group of ether type phenolic resin
A modified phenol resin in which 0.3 equivalent or more has been converted into alcoholic hydroxyl groups with alkylene carbonate and (b) polyisocyanate are subjected to a foaming reaction in the range of NCO equivalent/OH equivalent ≩2,
This is a flame-resistant laminate that is self-adhered to the surface material. 2. The flame-resistant laminate according to item 1, wherein the flame-resistant facing material is asbestos paper.
JP1804182A 1982-02-06 1982-02-06 Flame-retarded laminate Granted JPS58136432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1804182A JPS58136432A (en) 1982-02-06 1982-02-06 Flame-retarded laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1804182A JPS58136432A (en) 1982-02-06 1982-02-06 Flame-retarded laminate

Publications (2)

Publication Number Publication Date
JPS58136432A JPS58136432A (en) 1983-08-13
JPS6354539B2 true JPS6354539B2 (en) 1988-10-28

Family

ID=11960591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1804182A Granted JPS58136432A (en) 1982-02-06 1982-02-06 Flame-retarded laminate

Country Status (1)

Country Link
JP (1) JPS58136432A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879164A (en) * 1987-08-17 1989-11-07 Arco Chemical Technology, Inc. Laminated composite of a rigid polyisocyanurate substrate and metal, plastic, cellulose, glass, ceramic or combinations thereof

Also Published As

Publication number Publication date
JPS58136432A (en) 1983-08-13

Similar Documents

Publication Publication Date Title
US4046721A (en) Low friability polyisocyanurate foams
RU2679617C2 (en) Process for preparation of solid polyurethane foam or urethane modified polyisocyanurate foam
US8231952B2 (en) Insulated pipes
RU2572890C2 (en) Composition, suitable for obtaining polyurethane systems suitable for hot gluing, application thereof for manufacturing laminated structures and polyurethane system based thereon
CN108350137B (en) Reactive flame retardants for polyurethane and polyisocyanurate foams
US12012749B2 (en) Foam insulation with improved low temperature properties using polyol additives
JPS6044137B2 (en) laminate
CN110582522A (en) Process for producing rigid polyurethane-modified polyisocyanurate foams
JPH08501346A (en) Polyol useful for polyurethane foam with improved heat insulation, polyurethane foam produced from the same, and method for producing the same
CN103619904A (en) Polyol formulations for improved green strength of polyisocyanurate rigid foams
US3953645A (en) Phenolic polymer, related products and processes thereof
US4184022A (en) Polyisocyanurate foam comprising reaction product of a polyisocyanate and a polyol mixture comprising a carboxylic ester polyol and a resole polyether polyol using a catalyst comprising dimethylethanolamine and an alkali metal salt of a carboxylic acid
KR100764968B1 (en) Method of Preparing Polyurethane-Modified Polyisocyanurate Foam
KR20220098366A (en) Rigid polyurethane foam with compressive strength and fire resistance
JP2003089714A (en) Composition for rigid polyisocyanurate foam and method for producing the rigid polyisocyanurate foam
JPS6354539B2 (en)
JPS6332084B2 (en)
JP2606352B2 (en) Metal siding material
US5338768A (en) Substantially closed cell rigid polyurethane foams
JPS6049021A (en) Manufacture of polyol-catalyst mixture useful for manufacture of hard polyurethane foam product
JP4428012B2 (en) Manufacturing method of rigid foam synthetic resin
EP0483431B1 (en) Polyol and utilization thereof
CA1085998A (en) Low friability polyisocyanurate foams
JP2010018818A (en) Method for producing rigid foamed synthetic resin
JPH0238088B2 (en)