JPS6354525B2 - - Google Patents

Info

Publication number
JPS6354525B2
JPS6354525B2 JP56161728A JP16172881A JPS6354525B2 JP S6354525 B2 JPS6354525 B2 JP S6354525B2 JP 56161728 A JP56161728 A JP 56161728A JP 16172881 A JP16172881 A JP 16172881A JP S6354525 B2 JPS6354525 B2 JP S6354525B2
Authority
JP
Japan
Prior art keywords
pressure
resin
temperature
molding
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56161728A
Other languages
Japanese (ja)
Other versions
JPS5862018A (en
Inventor
Yasuhiro Ito
Katsuji Sakamoto
Hideki Myabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP16172881A priority Critical patent/JPS5862018A/en
Publication of JPS5862018A publication Critical patent/JPS5862018A/en
Publication of JPS6354525B2 publication Critical patent/JPS6354525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は、繊維と合成樹脂を組み合わせた、い
わゆる樹脂系複合材料によつて製造される構造物
の成形硬化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molding and curing device for a structure manufactured from a so-called resin-based composite material, which is a combination of fibers and synthetic resin.

従来、樹脂系複合材料、例えばガラス繊維、有
機繊維、炭素繊維等を用いた繊維強化樹脂によつ
て形成された構造物の成形硬化装置の一例として
オートクレーブ成形装置が知られている。このオ
ートクレーブ成形装置では、片面型に複合材料を
積層載置し、次いでナイロン等の薄いシートから
なるいわゆるバツグを被せ、内部を真空に保つた
後、オートクレーブ内に挿入して加圧加熱し、こ
れによつて複合材料を成形硬化して構造物を製造
している。しかしながら、この種の成形装置では
通常高温ガス流をオートクレーブの入口から奥に
向つて流し、これによつて被成形物である構造物
を加熱している。このため従来のオートクレーブ
成形装置によつて、特に長尺構造物あるいは大型
構造物を成形する場合は、構造物のオートクレー
ブ入口側の温度は比較的高くなり、奥側の温度が
比較的低くなり、すなわち構造物の加熱温度分布
が不均一となるとともに、構造物の温度がオート
クレーブ内温度の上昇および下降より大幅に遅れ
るという問題がある。このため、成形された構造
物の各部位の樹脂含有率が不均一となり、この結
果強度と弾性率の分布にバラツキが生ずる。更
に、構造物の昇温速さが不均一になるためゲル化
時期がバラツクことにより硬化収縮歪、熱膨張歪
が不均一となることと、降温速さが不均一になる
ため熱収縮歪が不均一となり、これらの熱歪の差
が成形割れを起こしたり、成形歪を起こしたりす
るという欠点がある。
2. Description of the Related Art Conventionally, an autoclave molding apparatus is known as an example of a molding and curing apparatus for a structure formed of a fiber-reinforced resin using a resin-based composite material, such as glass fiber, organic fiber, carbon fiber, or the like. In this autoclave molding device, composite materials are stacked on a single-sided mold, then covered with a so-called bag made of a thin sheet of nylon, etc., the interior is kept in a vacuum, and then inserted into an autoclave and heated under pressure. Structures are manufactured by molding and curing composite materials. However, in this type of molding apparatus, a high-temperature gas flow is usually passed from the inlet of the autoclave toward the back of the autoclave, thereby heating the structure to be molded. For this reason, when molding particularly long or large structures using conventional autoclave molding equipment, the temperature on the autoclave inlet side of the structure is relatively high, and the temperature on the back side is relatively low. That is, there is a problem that the heating temperature distribution of the structure becomes non-uniform, and the temperature of the structure significantly lags behind the rise and fall of the temperature inside the autoclave. For this reason, the resin content of each part of the molded structure becomes non-uniform, resulting in variations in the distribution of strength and elastic modulus. Furthermore, because the temperature rise rate of the structure is uneven, the gelation time varies, resulting in uneven curing shrinkage strain and thermal expansion strain, and because the temperature cooling rate is uneven, thermal shrinkage strain becomes uneven. This results in non-uniformity, and the difference in these thermal strains causes molding cracks or molding distortions, which is a drawback.

また、上記従来の成形装置においては、被成形
物である構造物の樹脂流動状態とその時期が不明
であるので、構造物中にその積層工程で残存する
ボイド、および構造物の樹脂の硬化反応過程で生
ずるブリスターを除去することができず、更に構
造物が完全硬化しているかどうかの判定が困難で
あるという欠点を有している。
In addition, in the above-mentioned conventional molding equipment, since the resin flow state and timing of the structure to be molded are unknown, voids remaining in the structure during the lamination process and the curing reaction of the resin of the structure This method has disadvantages in that blisters generated during the process cannot be removed and it is difficult to determine whether the structure has been completely cured.

そこで本発明目的は、樹脂系複合材構造物の加
熱および冷却時の温度分布を均一にして、樹脂含
有率を均一化し、成形歪を極小化し、更に成形割
れを防止して、品質と信頼性が向上した構造物を
得ることができるとともに、上記ボイドおよびブ
リスター等が除去され、かつ樹脂が一様に完全硬
化されて、成形品質が向上した構造物を得ること
のできるオートクレーブ成形法による樹脂系複合
材構造物の成形硬化装置を提供することにある。
Therefore, the purpose of the present invention is to uniformize the temperature distribution during heating and cooling of resin composite structures, to equalize the resin content, to minimize molding distortion, and to prevent molding cracks, thereby improving quality and reliability. A resin system using an autoclave molding method that can obtain a structure with improved molding quality, as well as remove the voids and blisters mentioned above, and uniformly and completely cure the resin. An object of the present invention is to provide a molding and curing device for a composite material structure.

上記目的を達成するために、本発明による樹脂
系複合材構造物の成形硬化装置は、構造物の各部
位を独立に加熱する多数のヒータエレメントから
なる加熱手段およびその制御手段を設けて、圧力
制御手段によるオートクレーブ内の圧力とバツグ
内の圧力の相対的制御を行ないながら同時に、加
熱、冷却時における前記構造物の各部位の温度を
均一にするように加熱手段を制御すること、およ
び構造物の所定の複数個所における樹脂の初期流
動化時期およびゲル化開始時期等の樹脂性状を電
気的に検出し、この樹脂性状を示す電気信号に基
づいて温度制御手段および圧力制御手段による温
度制御サイクルおよび圧力制御サイクルを調整す
ることを特徴とする。
In order to achieve the above object, the apparatus for molding and curing resin-based composite structures according to the present invention is provided with heating means consisting of a large number of heater elements that independently heat each part of the structure and its control means, controlling the heating means so as to make the temperature of each part of the structure uniform during heating and cooling while at the same time performing relative control of the pressure inside the autoclave and the pressure inside the bag by the control means; The resin properties such as the initial fluidization time and gelation start time of the resin at a plurality of predetermined locations are electrically detected, and the temperature control cycle and the temperature control cycle by the temperature control means and the pressure control means are performed based on the electrical signals indicating the resin properties. Characterized by adjusting the pressure control cycle.

上記した構造の本発明の樹脂系複合材構造物の
成形硬化装置によれば、特に多数のヒータエレメ
ントからなる加熱装置、温度検出装置、制御装置
によつて構造物の各部位の温度が常に均一になる
ように制御することができるので、本発明装置に
より製造された構造物には上記したような成形割
れ、成形歪が生ずることがない。更に、加圧加熱
時における構造物の樹脂の性状すなわち初期流動
化時期を検出する装置を設け、この検出した樹脂
の性状に基づいて加圧サイクル、加熱サイクルを
制御するようにしたので、構造物中のボイド、ブ
リスター等を除去することができ、更に樹脂を完
全に一様に完全硬化させることができ、従つて成
形品質を向上させることができる。
According to the molding and curing apparatus for a resin composite structure of the present invention having the above-described structure, the temperature of each part of the structure is always uniform, especially by the heating device consisting of a large number of heater elements, the temperature detection device, and the control device. Therefore, the above-mentioned molding cracks and molding distortions do not occur in the structure manufactured by the apparatus of the present invention. Furthermore, we installed a device that detects the properties of the resin in the structure during pressurization and heating, that is, the initial fluidization time, and controlled the pressure cycle and heating cycle based on the detected properties of the resin. It is possible to remove voids, blisters, etc. therein, and furthermore, it is possible to completely and uniformly harden the resin, thereby improving molding quality.

以下添付図面を参照して本発明の好ましい実施
例による樹脂系複合材構造物の成形硬化装置につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A molding and curing apparatus for a resin-based composite structure according to a preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明の実施例による樹脂系複合材
構造物Wの成形硬化装置(オートクレーブ)1の
構成を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing the configuration of a molding and curing apparatus (autoclave) 1 for a resin-based composite material structure W according to an embodiment of the present invention.

成形硬化装置1は、片面型すなわち成形治具2
を有しており、この成形治具2上に予備成形物で
ある構造物Wが積層載置される。この構造物W上
には、軟質膜である加圧バツグすなわち真空バツ
グ3が被せられる。この真空バツグ3の内部は、
シール材4によつて気密に保たれ、パイプ5によ
り連通された真空ポンプ6によつて内部の空気が
抜かれて減圧され、オートクレーブ1内の圧力と
の相対圧力差により構造物Wを加圧するようにな
つている。オートクレーブ1の奥部には、缶内の
温度を上昇、下降させる缶内温度調節装置7が配
されており、この缶内温度調節装置7は、冷却器
8、ヒータ9およびフアン10からなり、低温空
気流あるいは高温空気流を缶内に導入することに
よつて缶内温度を調節する。なお、オートクレー
ブ1内の空気流を整流とするため、整流間隔壁1
1が設けられている。
The molding hardening device 1 is a single-sided type, that is, a molding jig 2
The structure W, which is a preform, is stacked and placed on the forming jig 2. This structure W is covered with a pressure bag, ie, a vacuum bag 3, which is a soft membrane. The inside of this vacuum bag 3 is
The structure W is kept airtight by the sealing material 4, and the internal air is removed and depressurized by the vacuum pump 6 communicated with the pipe 5, and the structure W is pressurized by the relative pressure difference with the pressure inside the autoclave 1. It's getting old. At the back of the autoclave 1, there is provided an in-can temperature regulating device 7 that raises and lowers the temperature inside the can, and this in-can temperature regulating device 7 consists of a cooler 8, a heater 9, and a fan 10. The temperature within the can is regulated by introducing a stream of cold or hot air into the can. In addition, in order to rectify the air flow inside the autoclave 1, the rectifying partition wall 1
1 is provided.

オートクレーブ1内の構造物Wを直接加熱する
ため、このオートクレーブ1内の構造物Wに隣接
して加熱装置12が配置されている。この加熱装
置12は、成形治具2に埋め込まれたマルチヒー
タ13および例えば耐熱ゴム系マツト中に埋め込
まれて、構造物Wの上に覆せられるマルチヒータ
14からなつている。マルチヒータ14は、第2
図に示すように構造物Wのほぼ全面を被う多数の
ヒータエレメント14aからなる。マルチヒータ
13については図示していないが、このマルチヒ
ータ14と同様の配置である。なお、このヒータ
としては、成形圧力が低い場合は、赤外線輻射型
マルチヒータを用いるのが望ましく、またマルチ
ヒートパイプを用いてもよい。
In order to directly heat the structure W inside the autoclave 1, a heating device 12 is arranged adjacent to the structure W inside the autoclave 1. This heating device 12 consists of a multi-heater 13 embedded in the molding jig 2 and a multi-heater 14 embedded in, for example, a heat-resistant rubber mat and placed over the structure W. The multi-heater 14
As shown in the figure, it consists of a large number of heater elements 14a that cover almost the entire surface of the structure W. Although the multi-heater 13 is not shown, it has the same arrangement as the multi-heater 14. Note that as this heater, when the molding pressure is low, it is desirable to use an infrared radiation type multi-heater, and a multi-heat pipe may also be used.

上記した缶内温度調節装置7および加熱装置1
2は、温度制御用電源装置15に接続され、この
電源装置15からの電力を受けて作動するように
なつている。この電源装置15は、個々のヒータ
エレメント13a,14aに別個独立に電力を供
給することができるようになつており、その制御
を入出力インターフエース付マイクロコンピユー
タで構成された制御装置16によつて行なう。
The above-mentioned can temperature adjustment device 7 and heating device 1
2 is connected to a temperature control power supply device 15, and operates upon receiving electric power from this power supply device 15. This power supply device 15 is capable of supplying power to each heater element 13a, 14a separately and independently, and is controlled by a control device 16 comprising a microcomputer with an input/output interface. Let's do it.

上記パイプ5には、真空ポンプ6によるバツグ
3内の空気を排気するための自動調節弁17が配
設されているとともに、バツグ3内を大気と連通
するための自動弁18付き分岐管19が設けられ
ている。一方、オートクレーブ1には、この缶内
に高圧ガスを導くための吸気管20および排気管
21が設けられており、これら吸気管20および
排気管21には、それぞれ自動吸気弁22および
自動排気弁23が配設されている。上記真空ポン
プ6および自動弁17,18,22,23は、そ
れぞれ圧力制御用電源装置24に接続され、この
電源装置24からの電力を受けて個々に作動制御
されるようになつている。この電源装置24は、
上記制御装置16によつて制御されて各弁等への
電力の供給を行なう。
The pipe 5 is provided with an automatic control valve 17 for exhausting the air inside the bag 3 by the vacuum pump 6, and a branch pipe 19 with an automatic valve 18 for communicating the inside of the bag 3 with the atmosphere. It is provided. On the other hand, the autoclave 1 is provided with an intake pipe 20 and an exhaust pipe 21 for introducing high-pressure gas into the can, and these intake pipes 20 and exhaust pipes 21 have an automatic intake valve 22 and an automatic exhaust valve, respectively. 23 are arranged. The vacuum pump 6 and the automatic valves 17, 18, 22, and 23 are each connected to a pressure control power supply 24, and are individually controlled by receiving electric power from the power supply 24. This power supply device 24 is
It is controlled by the control device 16 to supply power to each valve and the like.

オートクレーブ1の入口近傍には、オートクレ
ーブ1内の温度を検出する缶内温度検出器25が
配されている。また、構造物Wの各部位の温度を
検出するため、構造物Wに近接して構造物温度検
出器26が配設されている。この温度検出器26
は、各ヒータエレメント13a,14aに対応し
て配置された多数のIC(鉄コンスタンタン)また
はCA(クロメルアルメル)熱電対からなるセンサ
エレメント26aで構成されている。なおこのセ
ンサエレメント26aは、特に構造物Wの表面品
質を必要とする場合、薄膜ゲージタイプの温度検
出器としてもよく、この場合箔状リード線を用い
るのが望ましい。なお、構造物Wの下側のセンサ
エレメント26aは、図示したように成形治具2
に埋め込んでおいてもよい。検出器25および2
6は、それぞれ温度電圧変換器27に接続されて
おり、この変換器27は温度を十分大なる電気信
号に変換して、制御装置16に出力する。
An in-can temperature detector 25 for detecting the temperature inside the autoclave 1 is arranged near the entrance of the autoclave 1 . Further, in order to detect the temperature of each part of the structure W, a structure temperature detector 26 is disposed close to the structure W. This temperature sensor 26
The sensor element 26a is composed of a large number of IC (iron constantan) or CA (chromel alumel) thermocouples arranged corresponding to each heater element 13a, 14a. Note that this sensor element 26a may be a thin film gauge type temperature detector, especially when the surface quality of the structure W is required, and in this case, it is desirable to use a foil lead wire. Note that the sensor element 26a on the lower side of the structure W is connected to the forming jig 2 as shown in the figure.
You can also embed it in Detectors 25 and 2
6 are each connected to a temperature-voltage converter 27, which converts the temperature into a sufficiently large electrical signal and outputs it to the control device 16.

一方、真空ポンプ6とバツグ3の間の真空系の
圧力を検出するため真空系圧力検出器28が、パ
イプ5に設けられており、またオートクレーブ1
内の圧力を検出するため、缶内圧力検出器29が
配されている。これら圧力検出器28および29
は、それぞれ圧力電圧変換器30に接続されてお
り、この変換器30は各圧力を十分大なる電気信
号に変換して、制御装置16に出力する。
On the other hand, a vacuum system pressure detector 28 is provided on the pipe 5 to detect the pressure of the vacuum system between the vacuum pump 6 and the bag 3.
An in-can pressure detector 29 is provided to detect the pressure inside the can. These pressure detectors 28 and 29
are connected to a pressure-voltage converter 30, which converts each pressure into a sufficiently large electrical signal and outputs it to the control device 16.

制御装置16は、上記した多チヤンネルの信号
の入出力インターフエースを有するマイクロコン
ピユータからなり、成形圧力制御サイクルデー
タ、および昇温速さ、硬化温度、硬化時間、除圧
温度等のデータからなる加熱温度サイクルデータ
を随時入力するためのキー入力装置31を備えて
いる。この制御装置16は、上記サイクルデータ
に基づいて構造物Wの加圧および加熱サイクルを
適宜制御するとともに、上記入力される電気信号
に基づき演算判断を行ない、これによつて温度制
御用電源装置15および圧力制御用電源装置24
をして缶内圧力を制御するとともに、構造物Wの
各部位の温度を所定の缶内温度に一致するように
ヒータエレメント13a,14aのON、OFFを
制御する。
The control device 16 is composed of a microcomputer having an input/output interface for the above-mentioned multi-channel signals, and includes molding pressure control cycle data, heating rate, curing temperature, curing time, depressurization temperature, etc. data. A key input device 31 is provided for inputting temperature cycle data at any time. This control device 16 appropriately controls the pressurization and heating cycles of the structure W based on the cycle data, and also performs arithmetic judgment based on the input electric signal, thereby controlling the temperature control power supply device 15. and pressure control power supply device 24
In addition to controlling the pressure inside the can, the heater elements 13a and 14a are turned on and off so that the temperature of each part of the structure W matches a predetermined temperature inside the can.

さらに、この実施例による成形硬化装置は、加
熱時における構造物Wの樹脂の初期流動時期とゲ
ル化開始時期を判断し、この樹脂の性状によつて
上記した加熱制御サイクルと加圧制御サイクルと
をより一層望ましい方向に自動調整する機能を得
るため、樹脂性状検出器40を備えている。
Furthermore, the molding and curing device according to this embodiment determines the initial flow time and gelation start time of the resin of the structure W during heating, and performs the above-mentioned heating control cycle and pressurization control cycle depending on the properties of the resin. A resin property detector 40 is provided to obtain a function of automatically adjusting the amount in a more desirable direction.

樹脂性状検出器40は、構造物Wの表面に貼り
付けられる2枚の薄い電極板対、または構造物の
表面に貼り付けられるか或いは内部に挿入される
2本または3本一組の電極線からなる。なお、上
記電極板対および電極線は、夫々単独でも、組み
合わせでも用いることがあるが、電極板対は薄肉
部分に用い、電極線は厚肉部分で、一般に内部の
状態を検出する際に用いる。この検出器40は構
造物Wの最も温度上昇が遅いと判断する部位と最
も温度上昇が速いと判断する部位およびその中間
部位の数ケ所に、例えば第4図に示すように配置
する。なお、構造物Wに、炭素繊維等の導電性の
材料が使用されている場合は、検出器の電極に樹
脂だけが接触し、導電性の繊維は接触しないよう
に電極を多孔性の絶縁被膜、例えば綿又は合成繊
維布等で覆つて使用することが必要である。この
ようにすれば加熱によつて樹脂粘度が低下する
と、樹脂が絶縁膜にしみ込んで電極に接触する。
なお上記したいずれの電極及びそのリード線も成
形される構造物に対して有害な欠陥とならないよ
う薄い電極板又は細い電線あるいは箔状電線を用
いる。実用上は両者共0.1mmt程度又は0.1mmφ程
度の材料を用いるのが好ましい。
The resin property detector 40 includes a pair of two thin electrode plates affixed to the surface of the structure W, or a set of two or three electrode wires affixed to the surface of the structure or inserted into the structure. Consisting of Note that the above electrode plate pair and electrode wire may be used alone or in combination, but the electrode plate pair is used for thin-walled parts, and the electrode wire is used for thick-walled parts, and is generally used when detecting internal conditions. . The detectors 40 are arranged at several locations of the structure W, such as a portion where the temperature rise is determined to be slowest, a portion where the temperature rise is determined to be the fastest, and an intermediate portion thereof, as shown in FIG. 4, for example. If the structure W uses a conductive material such as carbon fiber, the electrode should be covered with a porous insulating coating so that only the resin comes into contact with the detector electrode and the conductive fibers do not come into contact with it. , it is necessary to use it by covering it with, for example, cotton or synthetic fiber cloth. In this way, when the resin viscosity decreases due to heating, the resin soaks into the insulating film and comes into contact with the electrode.
Note that for any of the above-mentioned electrodes and their lead wires, thin electrode plates, thin electric wires, or foil-like electric wires are used so as not to cause harmful defects to the molded structure. Practically speaking, it is preferable to use materials with a thickness of approximately 0.1 mmt or 0.1 mmφ for both.

この樹脂性状検出器40は、構造物Wの樹脂の
硬化過程の初期において発生する直流電位又は電
気抵抗の変化を検出することによつて樹脂の性状
の変化を検出するものである。この検出器40
は、性状信号弁別器41に接続されており、この
弁別器41は検出器40からの性状信号を受けて
これを、制御装置16のマイクロコンピユータに
入力できるように処理するものである。制御装置
16は、この性状信号を受け、これに基づいて上
記したような所定の加熱サイクル、加圧サイクル
を補正する。
The resin property detector 40 detects changes in the properties of the resin by detecting changes in DC potential or electrical resistance that occur at the initial stage of the curing process of the resin of the structure W. This detector 40
is connected to a characteristic signal discriminator 41, which receives the characteristic signal from the detector 40 and processes it so that it can be input to the microcomputer of the control device 16. The control device 16 receives this property signal and corrects the above-mentioned predetermined heating cycle and pressurizing cycle based on it.

以下、第3図のフローチヤートを参照してこの
制御装置16の作用を中心として上記本発明の成
形加圧装置の作動を詳細に説明する。
Hereinafter, the operation of the molding and pressurizing device of the present invention will be explained in detail, focusing on the operation of the control device 16, with reference to the flowchart of FIG.

まず、第3図において、成形治具2上に予備成
形物である構造物Wを載置し、その上に温度検出
器26を配し、この温度検出器26が配された構
造物Wをバツグ3で密封状態で被う。この状態で
成形治具2をオートクレーブ1内に挿入する。こ
の後、弁18を閉じ、真空ポンプ6を作動し(A)オ
ートクレーブ1を閉じるとともに、弁17,23
を開放する(B)。この所定時間後、真空系圧力検出
器28の出力により真空系すなわちバツグ3内の
真空度が十分かどうかを判定する(C)。
First, in FIG. 3, a structure W, which is a preform, is placed on a forming jig 2, a temperature sensor 26 is placed on top of the structure W, and a structure W on which this temperature sensor 26 is placed is placed. Covers in a sealed state with Bug 3. In this state, the forming jig 2 is inserted into the autoclave 1. After that, the valve 18 is closed, the vacuum pump 6 is activated, (A) the autoclave 1 is closed, and the valves 17 and 23 are closed.
Release (B). After this predetermined time, it is determined based on the output of the vacuum system pressure detector 28 whether the degree of vacuum in the vacuum system, that is, in the bag 3 is sufficient (C).

この判定がNOのとき、制御装置16によつて
真空もれを警報するようにしておく。このため、
制御装置16には、警報器(図示せず)を設けて
おくことが望ましい。一方、この判定がYESの
とき、温度制御用電源装置15を作動し、缶内温
度調節装置7および加熱装置12をして構造物W
の加熱を行なう(R)。この加熱は、構造物Wの
昇温の最も遅い部分の温度上昇に合わせて各部位
のヒータエレメント13a,14aの電力を制御
しつつ行なう。この加熱によつて例えば構造物W
の樹脂粘度が第5図のように変化したとき、樹脂
性状検出器40が出力する樹脂性状電位信号が第
6図のように変化したとすると、この電位信号に
よつて樹脂の粘度がボイド、ブリスター除去が可
能な十分に低い粘度(これを第5図にβで示す)
に下つたかを判定する(S)。この粘度は、通常
数十センチポイズ以下である。樹脂の粘度が十分
に下つた後、缶内すなわち構造物Wの温度、圧力
を樹脂の脱泡に対して最適に制御して(T、U)、
構造物W中の気体成分を十分に除去する。この気
体成分の除去が十分に行なわれたことを、昇温抑
制時間が十分かを判断することによつて行なう。
この昇温抑制時間が十分か否かは、電位信号が最
大値に達した時点またはその上昇率が低下し始め
た時、あるいは予め設定した最大設定時間に達し
た時点で判断する。以上によつて構造物W内の気
体成分を完全に除去した後、弁18を開放してか
ら真空ポンプ6を停止する。そして弁22から缶
内に高圧ガスを導入して所定の圧力まで缶内昇圧
を行なう(G)。なお、昇圧速さは、装置の加圧能力
次第で一般に速い程好ましい。また、上記所定の
圧力とは、構造物Wの樹脂の種類と、構造物自体
の種類によつて決まる一定圧力であり、一般に数
Kg/cm2である。このように缶内圧力を昇圧し、こ
の缶内圧力が上記所定の圧力となつたことを圧力
検出器29が検出したとき(H)、温度制御用電源装
置15を作動し、缶内温度調節装置7および加熱
装置12をして構造物Wの加熱を再開する(I)。こ
の後、温度検出器26によつて構造物Wの各部位
の温度を検出しつつ、加熱装置12の各ヒータエ
レメント13a,14aを制御して、構造物Wの
各部位の温度を所定の缶内温度と同一温度に上昇
させ、かつこの温度を所定硬化時間維持する(J)。
この加熱による温度上昇に伴なう加圧ガスの膨張
による増圧分、および加圧ガスの漏れによる減圧
分の補正を弁22,23の開閉によつて行ない、
オートクレーブ1内の圧力を所定の成形圧力に維
持制御する(K)。この制御は、除圧まで続行する。
When this determination is NO, the control device 16 is arranged to issue a vacuum leak alarm. For this reason,
It is desirable that the control device 16 be provided with an alarm (not shown). On the other hand, when this determination is YES, the temperature control power supply device 15 is activated, and the can temperature adjustment device 7 and the heating device 12 are
Heating is performed (R). This heating is performed while controlling the electric power of the heater elements 13a, 14a of each part in accordance with the temperature rise of the part of the structure W where the temperature rise is slowest. By this heating, for example, the structure W
When the resin viscosity changes as shown in FIG. 5, the resin property potential signal outputted by the resin property detector 40 changes as shown in FIG. 6. This potential signal causes the resin viscosity to become void, Sufficiently low viscosity to allow blistering (this is indicated by β in Figure 5)
Determine whether the value has fallen to (S). This viscosity is usually several tens of centipoise or less. After the viscosity of the resin has sufficiently decreased, the temperature and pressure inside the can, that is, the structure W, are optimally controlled for defoaming of the resin (T, U),
Gas components in the structure W are sufficiently removed. Whether this gas component has been sufficiently removed is determined by determining whether the temperature rise suppression time is sufficient.
Whether this temperature rise suppression time is sufficient is determined at the time when the potential signal reaches its maximum value, when its rate of increase begins to decrease, or at the time when a preset maximum setting time is reached. After the gas components in the structure W are completely removed as described above, the valve 18 is opened, and then the vacuum pump 6 is stopped. Then, high pressure gas is introduced into the can through the valve 22 to increase the pressure inside the can to a predetermined pressure (G). Note that the pressurization speed is generally more preferable, depending on the pressurization capacity of the device. In addition, the above-mentioned predetermined pressure is a constant pressure determined by the type of resin of the structure W and the type of the structure itself, and is generally a certain pressure.
Kg/ cm2 . When the pressure in the can is increased in this way and the pressure detector 29 detects that the pressure in the can has reached the predetermined pressure (H), the temperature control power supply 15 is activated to adjust the temperature in the can. The heating device 7 and the heating device 12 are restarted to heat the structure W (I). Thereafter, while the temperature detector 26 detects the temperature of each part of the structure W, each heater element 13a, 14a of the heating device 12 is controlled to adjust the temperature of each part of the structure W to a predetermined temperature. Raise the temperature to the same as the internal temperature and maintain this temperature for the specified curing time (J).
The pressure increase due to the expansion of the pressurized gas due to the temperature rise due to this heating and the pressure decrease due to the leakage of the pressurized gas are corrected by opening and closing the valves 22 and 23.
The pressure inside autoclave 1 is maintained and controlled at a predetermined molding pressure (K). This control continues until the pressure is removed.

以上の状態で構造物Wの成形硬化を行ない、十
分な硬化時間を経た後(L)、冷却器8を作動させ、
構造物Wの各部位の温度が一様に低下する最大降
温速さで冷却する(M)。この冷却において、熱
容量が最も大の肉厚部の降温が遅いため、通常は
この部分の降温速さに合せて、冷却器8とヒータ
エレメント13a,14aを作動制御する。この
冷却によつて、構造物Wの温度が、所定の除圧温
度に達したとき(N)、弁22を閉じ、弁23を
開放して排気を行ない、除圧をする(P)。上記
所定の除圧温度とは、構造物Wの樹脂の種類と、
この構造物W自体の種類によつて決まる温度で、
ほぼ常温かまたはこれに近い数十℃である。この
除圧の後、オートクレーブ1をオープンして
(Q)、成形硬化した構造物Wを取り出し制御を終
了する。
The structure W is molded and hardened in the above conditions, and after a sufficient hardening time (L), the cooler 8 is activated,
The structure W is cooled at the maximum cooling rate at which the temperature of each part of the structure W uniformly decreases (M). In this cooling, since the temperature decreases slowly in the thickest portion with the largest heat capacity, the operation of the cooler 8 and the heater elements 13a, 14a is normally controlled in accordance with the rate of temperature decrease in this portion. As a result of this cooling, when the temperature of the structure W reaches a predetermined depressurization temperature (N), the valve 22 is closed and the valve 23 is opened to perform exhaust and depressurize (P). The predetermined pressure relief temperature mentioned above depends on the type of resin of the structure W,
At a temperature determined by the type of the structure W itself,
It is approximately room temperature or several tens of degrees Celsius close to this temperature. After this pressure is removed, the autoclave 1 is opened (Q), and the molded and hardened structure W is taken out and the control is ended.

以上の制御による加熱制御サイクルおよび加圧
制御サイクルをそれぞれ第7図、第8図に示す。
なおこれらの図において、アルフアベツトの符号
は上記第3図に示したフローチヤートの符号を示
す。
A heating control cycle and a pressurization control cycle based on the above control are shown in FIGS. 7 and 8, respectively.
Note that in these figures, alphanumeric symbols indicate the symbols in the flowchart shown in FIG. 3 above.

従来法では、缶内ガスの温度だけで成形物を加
熱していたが、以上説明した本発明の装置では、
成形物の各部の温度を検出し、マイクロコンピユ
ータとマルチヒータシステムによつて成形物の各
部の温度サイクルを精密に制御するため、下記の
効果が得られる。
In the conventional method, the molded product was heated only by the temperature of the gas inside the can, but in the device of the present invention described above,
The temperature of each part of the molded product is detected and the temperature cycle of each part of the molded product is precisely controlled using a microcomputer and multi-heater system, resulting in the following effects.

すなわち、成形物の昇温から所定の硬化温度保
持過程を経て冷却、除圧までの全硬化サイクルに
おいて、成形物各部位の温度が均一に制御される
ことにより樹脂の流動及び硬化反応が一様となる
ため、構造物の樹脂含有率も一様になり、従つて
強度特性が均一になる。
In other words, throughout the entire curing cycle, from raising the temperature of the molded product through the process of maintaining a predetermined curing temperature to cooling and depressurizing, the temperature of each part of the molded product is controlled uniformly, resulting in uniform flow and curing reaction of the resin. Therefore, the resin content of the structure becomes uniform, and therefore the strength properties become uniform.

又、構造物全体の温度分布が常温に戻るまで均
一であることから熱膨張−熱収縮が均一になるた
め成形歪は樹脂の硬化収縮による極くわずかの収
縮歪だけになり、これによつて成形割れの発生を
防止することができる。
In addition, since the temperature distribution of the entire structure is uniform until it returns to room temperature, the thermal expansion and thermal contraction become uniform, so the molding distortion is only a slight shrinkage distortion due to curing contraction of the resin. It is possible to prevent mold cracks from occurring.

更に、従来法では、第9図に破線で示すように
成形物の熱容量等により、昇温過程では所定の硬
化温度(硬化温度サイクル曲線、平坦頂上部)に
近くなるに従つて昇温速さがおそくなり、これに
よつて同図αで示す“昇温遅れによる損失時間”
が在つたが、本装置では、成形物の各部を所定の
硬化温度サイクル曲線に合致させることができる
ため、このような成形工程の損失時間を無くする
ことができる。加えて、この機能によつて成形物
の温度を缶内温度にも一致させることができるた
め、昇温速さ自体も上げることができ、一層成形
時間の節約が可能である。
Furthermore, in the conventional method, as shown by the broken line in Figure 9, due to the heat capacity of the molded product, the temperature increase rate decreases as the temperature approaches a predetermined curing temperature (curing temperature cycle curve, flat top). As a result, the “loss time due to temperature rise delay” shown by α in the figure
However, with this apparatus, each part of the molded product can be made to match a predetermined curing temperature cycle curve, so such lost time in the molding process can be eliminated. In addition, this function allows the temperature of the molded product to match the temperature inside the can, so the temperature increase rate itself can be increased, making it possible to further save molding time.

また、本発明の装置は、マイクロコンピユータ
によるマルチヒータ等制御機能に加えて成形物の
樹脂の性状を電気的に検出することによつて成形
温度サイクルと加圧サイクルを精密に制御する機
能を有するため、この制御を行うことによつて、
ゲル化前の樹脂流動過程において、加熱昇温を抑
制するとともに、加圧力を制御して、成形される
べき構造物内の気体成分の脱泡除去を確実に行う
ことができる。従つて、成形材料の積層時に包含
されるボイド、硬化反応時に発生する揮発成分に
よるブリスター、樹脂と繊維間に残存する気泡成
分等の除去ができる。このため、強度特性は最高
の値で均一な分布をすることになり、欠陥のない
成形品を作ることができる。また、樹脂の性状状
態に対応して加熱及び加圧条件を精密に制御する
ことができるため、個々の樹脂について最適の成
形硬化サイクルを与えることができる。これによ
つて、樹脂の種類及び成形材料品質のバラツキに
対応した成形ができ、常に最良の成形品質が得ら
れる。
Furthermore, the device of the present invention has a function of precisely controlling the molding temperature cycle and pressure cycle by electrically detecting the properties of the resin of the molded product, in addition to the function of controlling the multi-heater etc. using a microcomputer. Therefore, by performing this control,
In the resin flow process before gelation, heating and temperature rise can be suppressed and the pressure applied can be controlled to ensure defoaming and removal of gas components within the structure to be molded. Therefore, it is possible to remove voids included when the molding materials are laminated, blisters caused by volatile components generated during the curing reaction, bubble components remaining between the resin and the fibers, and the like. Therefore, the strength properties are uniformly distributed at the highest value, and a molded product without defects can be produced. Furthermore, since the heating and pressurizing conditions can be precisely controlled in accordance with the physical state of the resin, an optimum molding and curing cycle can be provided for each resin. This allows molding to be carried out in response to variations in the type of resin and the quality of the molding material, and the best molding quality can always be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例による樹脂系複合材
料の成形硬化装置の構成を示す概略図、第2図
は、第1図の装置のヒータエレメントの配置を示
す平面図、第3図は第1図に示す装置の作動を説
明するためのフローチヤート、第4図は、第1図
の装置における樹脂性状検出器の配置を示す平面
図、第5図は、加熱時におけるある種の樹脂にお
ける樹脂粘度の変化を示す図、第6図は、樹脂粘
度が第6図に示すように変化したときの樹脂性状
検出器が出力する樹脂性状電位信号の変化の一例
を示す図、第7図は、加熱制御サイクルを示す
図、第8図は、加圧制御サイクルを示す図、第9
図は本発明の効果の一部を示す図である。 W……樹脂系複合材構造物、1……成形硬化装
置、2……成形治具、3……真空バツグ、12…
…加熱装置、13,14……マルチフイルタ、1
3a,14a……ヒータエレメント、16……制
御装置、40……樹脂性状検出器。
FIG. 1 is a schematic diagram showing the configuration of a molding and curing device for resin-based composite materials according to an embodiment of the present invention, FIG. 2 is a plan view showing the arrangement of heater elements of the device in FIG. 1, and FIG. Flow chart for explaining the operation of the device shown in FIG. 1, FIG. 4 is a plan view showing the arrangement of the resin property detector in the device shown in FIG. 1, and FIG. FIG. 6 is a diagram showing an example of a change in the resin property potential signal output by the resin property detector when the resin viscosity changes as shown in FIG. 6, and FIG. 8 is a diagram showing a heating control cycle, FIG. 8 is a diagram showing a pressurization control cycle, and FIG. 9 is a diagram showing a pressurization control cycle.
The figure is a diagram showing some of the effects of the present invention. W... Resin-based composite material structure, 1... Molding hardening device, 2... Molding jig, 3... Vacuum bag, 12...
...Heating device, 13, 14...Multi filter, 1
3a, 14a... Heater element, 16... Control device, 40... Resin property detector.

Claims (1)

【特許請求の範囲】[Claims] 1 オートクレーブ内でバツグを利用して樹脂系
複合材構造物を加圧、加熱下で成形する樹脂系複
合材構造物の成形硬化装置において、前記構造物
の各部位を独立に加熱する多数のヒータエレメン
トからなる加熱手段、該加熱手段を制御する温度
制御手段、前記オートクレーブ内の圧力と前記バ
ツグ内の圧力を相対的に調節して前記構造物を加
圧する加圧手段、該加圧手段を制御する圧力制御
手段、前記構造物の所定の複数個所の温度を検出
し、その検出した温度を示す電気信号を発生する
温度検出手段、前記オートクレーブ内の圧力およ
び前記バツグ内の圧力を検出し、この検出した圧
力を示す電気信号を発生する圧力検出手段、前記
構造物の所定の複数個所における樹脂の初期流動
化時期およびゲル化開始時期等の樹脂性状を検出
し、この樹脂性状を示す電気信号を発生する樹脂
性状検出手段、前記温度検出手段、圧力検出手
段、および樹脂性状検出手段からの電気信号を受
けて、所定の条件に従つて前記構造物を加熱およ
び加圧するように前記温度制御手段と前記圧力制
御手段とを制御すると共に、少なくとも加熱、冷
却時は前記構造物の各部位の温度を均一にするよ
うに前記温度制御手段を制御するサイクル調整手
段からなる樹脂系複合材構造物の成形硬化装置。
1. In an apparatus for molding and curing a resin composite structure in which the resin composite structure is molded under pressure and heat using a bag in an autoclave, a large number of heaters are used to independently heat each part of the structure. A heating means comprising an element, a temperature control means for controlling the heating means, a pressurizing means for pressurizing the structure by relatively adjusting the pressure in the autoclave and the pressure in the bag, and controlling the pressurizing means. pressure control means for detecting temperatures at a plurality of predetermined locations of the structure and generating electrical signals indicative of the detected temperatures; temperature detection means for detecting the pressure within the autoclave and the pressure within the bag; A pressure detection means that generates an electric signal indicating the detected pressure, detects resin properties such as initial fluidization time and gelation start time of the resin at a plurality of predetermined locations of the structure, and generates an electric signal indicating the resin property. The temperature control means receives generated electric signals from the resin property detection means, the temperature detection means, the pressure detection means, and the resin property detection means, and heats and pressurizes the structure according to predetermined conditions. Molding of a resin-based composite material structure comprising a cycle adjustment means for controlling the pressure control means and the temperature control means so as to equalize the temperature of each part of the structure at least during heating and cooling. Curing equipment.
JP16172881A 1981-10-09 1981-10-09 Apparatus for molding and hardening resinous composite structure Granted JPS5862018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16172881A JPS5862018A (en) 1981-10-09 1981-10-09 Apparatus for molding and hardening resinous composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16172881A JPS5862018A (en) 1981-10-09 1981-10-09 Apparatus for molding and hardening resinous composite structure

Publications (2)

Publication Number Publication Date
JPS5862018A JPS5862018A (en) 1983-04-13
JPS6354525B2 true JPS6354525B2 (en) 1988-10-28

Family

ID=15740752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16172881A Granted JPS5862018A (en) 1981-10-09 1981-10-09 Apparatus for molding and hardening resinous composite structure

Country Status (1)

Country Link
JP (1) JPS5862018A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828472A (en) * 1983-12-16 1989-05-09 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for molding and solidifying a resinous composite structure
JPS6219434A (en) * 1985-07-19 1987-01-28 Japan Steel Works Ltd:The Controlling system of temperature and pressure in vacuum press
US4808461A (en) * 1987-12-14 1989-02-28 Foster-Miller, Inc. Composite structure reinforcement
JPH0618714B1 (en) * 1988-03-18 1994-03-16 Takai Intaanashonaru Yotsuto Dezain Kk
JPH0661449B2 (en) * 1988-06-30 1994-08-17 株式会社芦田製作所 Method and apparatus for circulating gas in autoclave
GB2381764A (en) * 2001-11-08 2003-05-14 Farleydene Ltd Autoclave suitable for heat treating parts
JP4556654B2 (en) * 2004-12-13 2010-10-06 横浜ゴム株式会社 Vacuum pressure control system and heating apparatus equipped with this system
US10300634B2 (en) * 2015-11-16 2019-05-28 The Boeing Company Advanced multiple grid heat sources to achieve optimized cure structure and method of making the same
CN108943530A (en) * 2018-07-12 2018-12-07 安徽佳力奇碳纤维科技股份公司 A kind of composite molding more than one piece is into solidification of hot-press tank temperature difference control method
CN109021284B (en) * 2018-09-18 2021-07-20 台州佑辅机械实业有限公司 Method for recycling waste organic glass
CN109232245B (en) * 2018-09-18 2021-04-02 九江金久再生资源有限公司 Waste organic glass continuous cracking system
JP7014481B2 (en) * 2019-08-29 2022-02-01 株式会社芦田製作所 Autoclave molding equipment
KR102203148B1 (en) * 2019-11-12 2021-01-14 한국항공우주산업 주식회사 Composite material molding method using autoclave

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541210A (en) * 1978-09-18 1980-03-24 Mitsubishi Heavy Ind Ltd Solid molding method of composite material component part
JPS5651325A (en) * 1979-10-02 1981-05-08 Mitsubishi Rayon Co Ltd Formation of fiber-reinforced plastic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541210A (en) * 1978-09-18 1980-03-24 Mitsubishi Heavy Ind Ltd Solid molding method of composite material component part
JPS5651325A (en) * 1979-10-02 1981-05-08 Mitsubishi Rayon Co Ltd Formation of fiber-reinforced plastic

Also Published As

Publication number Publication date
JPS5862018A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
US4828472A (en) Apparatus for molding and solidifying a resinous composite structure
JPS6354525B2 (en)
US6818159B2 (en) Process for the production of a composite consisting of a fiber reinforced material
EP3067189B1 (en) Device for molding of composite material and method therefor
JPH0150565B2 (en)
JP2008072056A (en) Laminating method of solar-battery module by process including preheating, and its apparatus
RU2008126190A (en) METHOD AND DEVICE FOR OBTAINING COMPONENT COMPOUND
US2363431A (en) Apparatus for molding plywood
ES2067260T3 (en) DEVICE FOR AUTOMATIC SURVEILLANCE AND CONTROL OF A VACUUM HEAT TREATMENT OVEN.
JP2004179261A (en) Device and method for manufacturing solar battery module
KR102203148B1 (en) Composite material molding method using autoclave
JPS6219434A (en) Controlling system of temperature and pressure in vacuum press
JP4556654B2 (en) Vacuum pressure control system and heating apparatus equipped with this system
JPH07283158A (en) Thermal treatment device and temperature controlling method thereof
JP4316076B2 (en) Composite parts repair equipment
JP2538678B2 (en) Decompression mechanism of autoclave device
JP2019001111A (en) Heat treatment method and heat treatment apparatus
JPH07283163A (en) Thermal treatment device and temperature controlling method thereof
JP2939526B2 (en) Heating control method for stacked different types of resin sheets
JPH0379120B2 (en)
CN220808182U (en) Environment-friendly temperature-controllable steam crosslinking room
JPH11198152A (en) Method for heating laminate of rubber and metal plate, and device therefor
JPS5852817B2 (en) Manufacturing method of laminates
JP6857934B2 (en) Cooling method for autoclave molding equipment
JP6308688B2 (en) Pressurizing device