JPS6354466B2 - - Google Patents

Info

Publication number
JPS6354466B2
JPS6354466B2 JP55074346A JP7434680A JPS6354466B2 JP S6354466 B2 JPS6354466 B2 JP S6354466B2 JP 55074346 A JP55074346 A JP 55074346A JP 7434680 A JP7434680 A JP 7434680A JP S6354466 B2 JPS6354466 B2 JP S6354466B2
Authority
JP
Japan
Prior art keywords
mold
ceramic shell
casting
coolant
shell mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074346A
Other languages
Japanese (ja)
Other versions
JPS571539A (en
Inventor
Minoru Morikawa
Teruo Hirane
Toshiaki Saito
Mitsuru Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7434680A priority Critical patent/JPS571539A/en
Publication of JPS571539A publication Critical patent/JPS571539A/en
Publication of JPS6354466B2 publication Critical patent/JPS6354466B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は鋳造方法およびセラミツクシエル鋳型
に係り、特に高品質、高歩留の鋳物を得ることが
できる鋳造方法およびセラミツクシエル鋳型に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a casting method and a ceramic shell mold, and more particularly to a casting method and a ceramic shell mold that can produce high-quality, high-yield castings.

セラミツクシエル鋳型はロストワツクス法もし
くはインベストメント法と呼ばれる方法で製作さ
れ、通常900℃程度の高温に加熱されて注湯に供
されるが、鋳物に凝固欠陥を生じさせないよう押
湯は鋳物より遅く凝固することが必要である。こ
のため押湯の大きさ、形、位置および数などに
種々の検討が加えられている。第1図はこのよう
な観点から作製された従来のセラミツクシエル鋳
型の一例を示す断面図であり、これによれば上下
に押湯部分2が設けられ、さらに鋳型1の中心に
太い湯道を兼ねた押湯部分2aが設けられてい
る。
Ceramic shell molds are manufactured using a method called the lost wax method or the investment method, and are heated to a high temperature of approximately 900°C before pouring, but the feeder solidifies slower than the casting to prevent solidification defects in the casting. It is necessary. For this reason, various studies have been made on the size, shape, position, number, etc. of the feeder. FIG. 1 is a cross-sectional view showing an example of a conventional ceramic shell mold made from this viewpoint. According to this, riser parts 2 are provided at the top and bottom, and a thick runner is provided in the center of the mold 1. A riser portion 2a that also serves as a feeder is provided.

押湯を鋳物より遅く凝固させるため、押湯部分
の保温、鋳物部分の冷却を促進する種々の方法も
採用され、鋳物の品質と歩留の向上が図られてい
る。注湯時に加熱されることのない砂型鋳型にあ
つては、冷し金を鋳型の内表面の形状に成形し
て、前記内表面近くの鋳型壁面中に埋めこんで溶
湯を冷却する方法が一般に用いられるが、通常加
熱して注湯されるセラミツクシエル鋳型において
は、冷し金を鋳型と一体に構成すると冷し金が鋳
型と共に加熱されて保温効果を生じ逆効果とな
る。またセラミツクシエル鋳型はその製作法の特
色から外面が非常に粗い面になるために、成形さ
れた冷し金を外面にあてても密着性が悪く冷却効
果が小さい。このためセラミツクシエル鋳型にお
いては冷し金による冷却は行われなかつた。従
来、押湯部分の保温のため、第1図に示す如く耐
火繊維からなる保温材6を押湯部分2の鋳型外側
に巻き付けたり、押湯部分2の鋳型壁を他の部分
より厚くするなどの手段が採用され、凝固収縮に
起因する欠陥の除去には一応の効果が得られてい
るが、結晶粒の粗大化、粒界の脆弱化などの問題
が生じる。従つて鋳型に溶融金属を注入後鋳物部
分の冷却を促進するのがより好ましく、このため
鋳型下部に空気や窒素などのガスを吹きつけた
り、鋳型を冷却用金属板(水冷銅板が通常使用さ
れる。)上に置くなどの方法も採用されている。
しかしガスを吹きつける方法は、鋳型の外壁を介
して冷却するので、金属を冷却する効果が小さい
という欠点がある。現に本発明者らは、第1図に
示す鋳型に溶融金属を注入後、鋳型下部に窒素ガ
スを強く吹きつけつつ鋳造を行なつたが、鋳物に
引け巣状欠陥が生成するのを認めた。また鋳型を
冷却用金属板上に置く方法では、鋳型を金属板と
密着させることが難かしく、また鋳型の金属板と
接触する部分が割れやすいという欠点がある。
In order to solidify the feeder slower than the casting, various methods have been adopted to keep the feeder warm and to promote cooling of the casting, thereby improving the quality and yield of castings. For sand molds that are not heated during pouring, a general method is to cool the molten metal by forming a cold metal into the shape of the inner surface of the mold and embedding it in the mold wall near the inner surface. However, in ceramic shell molds that are usually heated and poured, if the chiller is integrated with the mold, the chiller will be heated together with the mold, creating a heat retention effect, which will have the opposite effect. Furthermore, because the ceramic shell mold has a very rough outer surface due to its manufacturing method, even when a molded chiller is applied to the outer surface, the adhesion is poor and the cooling effect is small. For this reason, ceramic shell molds were not cooled with a chiller. Conventionally, in order to keep the feeder part warm, methods such as wrapping a heat insulating material 6 made of fire-resistant fiber around the outside of the mold of the feeder part 2, or making the mold wall of the feeder part 2 thicker than other parts, as shown in Fig. 1, were used. This method has been adopted and has been somewhat effective in removing defects caused by solidification shrinkage, but problems such as coarsening of crystal grains and weakening of grain boundaries arise. Therefore, it is preferable to accelerate the cooling of the casting part after pouring molten metal into the mold. For this purpose, a gas such as air or nitrogen is blown onto the bottom of the mold, or a cooling metal plate (a water-cooled copper plate is usually used) is used to cool the mold. .) Methods such as placing it on top of the
However, the method of blowing gas has the disadvantage that the effect of cooling the metal is small because it cools through the outer wall of the mold. In fact, after pouring molten metal into the mold shown in Figure 1, the inventors conducted casting while strongly blowing nitrogen gas at the bottom of the mold, but found that shrinkage cavities were formed in the casting. . Furthermore, the method of placing the mold on a metal plate for cooling has the disadvantage that it is difficult to bring the mold into close contact with the metal plate, and the portion of the mold that comes into contact with the metal plate is likely to break.

更に、セラミツクシエル鋳型は高温での強度は
大きいが、冷却された部分は強度が低下する。ま
た鋳型の厚さは溶湯圧に耐える厚さにしなければ
ならないが、溶湯圧に耐える厚さの鋳型ではその
外面に冷却剤を接触させても冷却効果は小さい。
したがつて冷却剤を接触させる場合は従来知られ
ていなかつたことであるが、鋳型厚みを極力薄く
すると同時に薄くした分だけ、鋳型を補強してや
らねばならない。本発明の課題は、セラミツクシ
エル鋳型の強度を損うことなく溶湯を冷却する冷
却方法を備えた鋳造方法と、前記冷却方法を適用
するのに適したセラミツクシエル鋳型を提供する
にある。
Furthermore, although ceramic shell molds have high strength at high temperatures, the strength of the cooled portions decreases. Furthermore, the thickness of the mold must be such that it can withstand the pressure of the molten metal, but if the mold is thick enough to withstand the pressure of the molten metal, even if a coolant is brought into contact with the outer surface of the mold, the cooling effect will be small.
Therefore, in the case of bringing the coolant into contact, which has not been known in the past, it is necessary to reduce the thickness of the mold as much as possible and at the same time reinforce the mold to the extent that the thickness has been reduced. An object of the present invention is to provide a casting method equipped with a cooling method for cooling molten metal without impairing the strength of the ceramic shell mold, and a ceramic shell mold suitable for applying the cooling method.

上記の課題の一つは溶融金属を加熱されたセラ
ミツクシエル鋳型に注入し、該セラミツクシエル
鋳型内で固化し鋳物を得る方法において、鋳型周
囲の少くとも一部に粉粒体と液体とのうちのいず
れかひとつ以上からなる冷却剤を接触させ、鋳型
の鋳物部分を冷却することを特徴とする鋳造方法
により達成される。
One of the above-mentioned problems is that in the method of injecting molten metal into a heated ceramic shell mold and solidifying it in the ceramic shell mold to obtain a casting, at least a part of the periphery of the mold is mixed with powder and liquid. This is achieved by a casting method characterized by cooling the cast part of the mold by bringing it into contact with a coolant consisting of one or more of the following.

上記の課題の他の一つは、押湯部分と鋳物部分
とを有するセラミツクシエル鋳型において、前記
鋳物部分の周囲に冷却剤を装入するための容器を
設けたことを特徴とするセラミツクシエル鋳型に
より達成される。
Another one of the above-mentioned problems is a ceramic shell mold having a riser part and a casting part, which is characterized in that a container for charging a coolant is provided around the casting part. This is achieved by

本発明において冷却剤としては、固体及び液体
の流動物体であれば如何なるものも用いることが
でき、例えば種々の金属または非金属の粉粒体、
溶融塩、低融点金属、軽金属等の溶融物が挙げら
れる。
In the present invention, any solid or liquid fluid object can be used as the coolant, such as various metal or non-metal powders,
Examples include molten salts, low melting point metals, and molten metals such as light metals.

金属の粉粒体としては鋳物工場で砂落し等に用
いられるシヨツト等の鉄粒、鋼粒が、非金属体の
粉粒体としてはアルミナ粒子、珪砂粒が、低融点
金属としては鉛、錫が、軽金属としてはアルミニ
ウムが、溶融塩としては螢石とアルミナとシリカ
の混合物が、好適である。
Examples of metal powders include iron particles and steel particles such as shots used in foundries to remove sand, nonmetallic particles include alumina particles and silica sand particles, and low-melting metals include lead and tin. However, aluminum is preferred as the light metal, and a mixture of fluorite, alumina, and silica is preferred as the molten salt.

本発明の鋳型の特に好ましい態様によれば、冷
却剤を装入するための容器が鋳型と一体構造であ
るのが好ましい。
According to a particularly preferred embodiment of the mold according to the invention, the container for charging the coolant is preferably of integral construction with the mold.

以下、添付図面に基づいて本発明の実施例を詳
説する。
Embodiments of the present invention will be described in detail below based on the accompanying drawings.

第2図において、900℃に加熱されたセラミツ
クシエル鋳型1の鋳物部分3の下部に容器5を設
け、この容器5の中に冷却剤4として鉄粒を充填
し、冷却剤4が鋳物部分3と接触するようにし
た。その直後、鋳型1内にSUS304の溶湯を注入
した。押湯部分2には保温のため保温材6として
セラミツク繊維シートが巻いてある。鋳物部分3
を冷却剤4で冷却しながら溶湯を固化し鋳物を鋳
型1より取り出して検査したところ引け巣状欠陥
がなく、結晶粒の比較的細かいことが確認され
た。
In FIG. 2, a container 5 is provided below the casting part 3 of the ceramic shell mold 1 heated to 900°C, iron particles are filled as a coolant 4 into the container 5, and the coolant 4 is applied to the casting part 3. I made contact with. Immediately after that, molten SUS304 was poured into mold 1. A ceramic fiber sheet is wrapped around the feeder portion 2 as a heat insulating material 6 for heat retention. Casting part 3
The molten metal was solidified while being cooled with coolant 4, and the casting was taken out from mold 1 and inspected. It was confirmed that there were no shrinkage cavities and that the crystal grains were relatively fine.

第3図はインベストメント法により冷却剤を装
入するための容器5を鋳型1と一体で製作した例
を示す。
FIG. 3 shows an example in which a container 5 for charging a coolant is manufactured integrally with a mold 1 by the investment method.

インベストメント法ではセラミツクシエルは多
数の耐火物層を重ねて造型していくもので、この
場合、10層のコーテイングを行なつたが、6層の
コーテイングが終えた時点で冷却剤4の入る空間
にろうを付着させ、その後の4層のコーテイング
により容器5を形成させたもので、容器5の厚さ
および鋳型1の冷却剤4と接する部分の厚さは薄
い。また下部の押湯部分2bのすぐ上にある保温
材6は6層のコーテイングが終えた時点で入れた
ものである。
In the investment method, ceramic shells are formed by stacking many layers of refractory material. In this case, 10 layers of coating were applied, but after 6 layers of coating were completed, the space for coolant 4 was filled. The container 5 is formed by depositing the wax and then applying four layers of coating, and the thickness of the container 5 and the thickness of the part of the mold 1 in contact with the coolant 4 are thin. Further, the heat insulating material 6 immediately above the lower feeder portion 2b was inserted after the six layers of coating were completed.

鋳型1を900℃に加熱した後、鋳型1と一体的
に形成された容器5に冷却剤4(鉄粒)を装入
し、鋳型1にSUS304の溶湯を注入した。このよ
うに鋳物部分3を冷却剤4で冷却しつつ鋳物を製
造した場合には、下側の押湯は極めて少なくて良
く、引き巣状欠陥の全くない健全な鋳物が得られ
た。
After heating the mold 1 to 900° C., a coolant 4 (iron particles) was charged into a container 5 formed integrally with the mold 1, and molten SUS304 was poured into the mold 1. When the casting was manufactured while cooling the casting part 3 with the coolant 4 in this manner, the lower feeder was required to be extremely small, and a sound casting without any nest-like defects was obtained.

またセラミツクシエル鋳型を冷却のため薄くし
た部分には粉粒体と液体とのうちのいずれかひと
つ以上からなる冷却剤が接触しているので、鋳型
の壁に周囲から該冷却剤の圧力が加わり、内圧と
して加わつている溶湯圧を減殺し、実質的にセラ
ミツクシエルを補強する効果を生じている。
In addition, since the thinner part of the ceramic shell mold for cooling is in contact with a coolant made of one or more of powder and liquid, the pressure of the coolant is applied to the walls of the mold from the surrounding area. This has the effect of reducing the molten metal pressure applied as internal pressure and substantially reinforcing the ceramic shell.

以上詳述したごとく、本発明によれば、セラミ
ツクシエル鋳型の周囲に粉粒体と液体とのうちの
いずれかひとつ以上からなる冷却剤を接触させて
前記セラミツクシエル鋳型の鋳物部分を冷却する
鋳造方法とし、また前記冷却剤を鋳型周囲に保持
するための容器を備えたセラミツクシエル鋳型と
したので、溶湯をセラミツクシエル鋳型周囲から
冷却することが可能になると共に、冷却のために
薄くされかつ冷却されて強度が低下した鋳型の粉
粒体と液体とのうちのいずれかひとつ以上からな
る冷却剤の圧力による補強が可能となり、セラミ
ツクシエル鋳型による鋳物の品質をよくし、歩止
りを高くする効果がある。
As detailed above, according to the present invention, the casting part of the ceramic shell mold is cooled by bringing a coolant made of one or more of powder or liquid into contact with the periphery of the ceramic shell mold. The method and the ceramic shell mold having a container for holding the coolant around the mold make it possible to cool the molten metal from around the ceramic shell mold, and also make it possible to cool the molten metal from around the ceramic shell mold. It is possible to strengthen molds whose strength has been reduced by the pressure of a coolant made of one or more of powder and liquid, improving the quality of castings made with ceramic shell molds and increasing yields. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鋳型の一例を示す断面図、第2
図および第3図は本発明の鋳型の具体例を示す断
面図である。 1……セラミツクシエル鋳型、2,2a,2b
……押湯部分、3……鋳物部分、4……冷却剤、
5……容器、6……保温材。
Figure 1 is a sectional view showing an example of a conventional mold, Figure 2 is a sectional view showing an example of a conventional mold.
3 and 3 are cross-sectional views showing specific examples of the mold of the present invention. 1...Ceramic shell mold, 2, 2a, 2b
... riser part, 3 ... casting part, 4 ... coolant,
5... Container, 6... Insulating material.

Claims (1)

【特許請求の範囲】 1 溶融金属を加熱されたセラミツクシエル鋳型
に注入し、該セラミツクシエル鋳型内で固化し鋳
物を得る方法において、鋳型周囲の少くとも一部
に粉粒体と液体とのうちのいずれかひとつ以上か
らなる冷却剤を接触させ、前記セラミツクシエル
鋳型の鋳物部分を冷却することを特徴とする鋳造
方法。 2 粉粒体と液体とのうちのいずれかひとつ以上
からなる冷却剤が、金属粉粒体と非金属粉粒体と
溶融した低融点金属と溶融した軽金属と溶融塩
と、の内のいずれかからなることを特徴とする特
許請求の範囲第1項に記載の鋳造方法。 3 押湯部分と鋳物部分とを有するセラミツクシ
エル鋳型において、前記鋳物部分の周囲に冷却剤
を装入するための容器を設けたことを特徴とする
セラミツクシエル鋳型。 4 前記冷却剤を装入するための容器がセラミツ
クシエル鋳型と一体構造となつていることを特徴
とする特許請求の範囲第3項記載のセラミツクシ
エル鋳型。
[Scope of Claims] 1. A method of injecting molten metal into a heated ceramic shell mold and solidifying it in the ceramic shell mold to obtain a casting, in which at least a part of the periphery of the mold contains particulate matter and a liquid. A casting method characterized in that the cast part of the ceramic shell mold is cooled by contacting with a coolant consisting of one or more of the following. 2. A coolant consisting of one or more of powder and granules and liquid is one of metal powder, non-metal powder, molten low melting point metal, molten light metal, and molten salt. A casting method according to claim 1, characterized in that the method comprises: 3. A ceramic shell mold having a riser part and a casting part, characterized in that a container for charging a coolant is provided around the casting part. 4. The ceramic shell mold according to claim 3, wherein the container for charging the coolant has an integral structure with the ceramic shell mold.
JP7434680A 1980-06-04 1980-06-04 Casting method and mold Granted JPS571539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7434680A JPS571539A (en) 1980-06-04 1980-06-04 Casting method and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7434680A JPS571539A (en) 1980-06-04 1980-06-04 Casting method and mold

Publications (2)

Publication Number Publication Date
JPS571539A JPS571539A (en) 1982-01-06
JPS6354466B2 true JPS6354466B2 (en) 1988-10-28

Family

ID=13544460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7434680A Granted JPS571539A (en) 1980-06-04 1980-06-04 Casting method and mold

Country Status (1)

Country Link
JP (1) JPS571539A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829410B1 (en) * 2001-09-13 2003-11-07 Snecma Moteurs THERMAL INSULATION OF FOUNDRY SHELLS
FR2985925B1 (en) * 2012-01-24 2014-11-28 Snecma CARAPLE FOR THE MANUFACTURE BY LOST WAX MOLDING OF AIRCRAFT TURBOMACHINE AIRCRAFT COMPONENTS COATED WITH THERMAL INSULATION BANDS
US20140110077A1 (en) * 2012-10-23 2014-04-24 United Technologies Corporation Casting Process and Apparatus
JP5458295B1 (en) * 2013-09-10 2014-04-02 有限会社ファンドリーテック・コンサルティング Casting method without using hot water
FR3103400B1 (en) * 2019-11-21 2022-08-19 Safran Aircraft Engines FOUNDRY MOLD, METHOD FOR MAKING THE MOLD AND FOUNDRY METHOD
CN115255274A (en) * 2022-07-29 2022-11-01 贵州安吉航空精密铸造有限责任公司 Investment casting method of stainless steel casting with bracket structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54184312U (en) * 1978-06-16 1979-12-27

Also Published As

Publication number Publication date
JPS571539A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
CN101928872B (en) Production method of low-magnetic iron castings
US3204303A (en) Precision investment casting
JPS6354466B2 (en)
CN109604563A (en) A kind of composite graphite chill and preparation method thereof
CN106623810A (en) Casting method for motorcycle aluminum alloy wheel with hollow hub
AU633154B2 (en) Method of controlling the rate of heat extraction in mould casting
EP0625386B1 (en) An investment casting process for producing castings
US4566518A (en) Method of heat retention in a blind riser
JPH07155897A (en) Mold structure and casting method
US5092390A (en) Method and mold for sand casting varying thickness articles
JPS62220241A (en) Casting mold and vacuum casting method using said casting mold
JPH0561018B2 (en)
US2867871A (en) Hot-top for ingot mold
JP2666725B2 (en) Sand mold
US4700768A (en) Metal casting process using a lost pattern, moulds for performing this process and process for the production of said moulds
US5234046A (en) Method of eliminating shrinkage porosity defects in the formation of cast molten metal articles using polystyrene chill
US3460605A (en) Method for casting in a permanent mold a casting having thick and thin sections
JP2549865B2 (en) Composite sand mold
JPS5850167A (en) Prevention for clogging of sprue
JPH02117743A (en) Manufacture of core for pressure casting
JP2541691B2 (en) Core for forming the socket of cast iron pipe
JPH07121446B2 (en) Method for manufacturing cast ceramic body
JP2023102308A (en) Cast production method and casting device
JPS6121142Y2 (en)
JPH02187236A (en) Gypsum investment casting method