JPH07121446B2 - Method for manufacturing cast ceramic body - Google Patents

Method for manufacturing cast ceramic body

Info

Publication number
JPH07121446B2
JPH07121446B2 JP20883787A JP20883787A JPH07121446B2 JP H07121446 B2 JPH07121446 B2 JP H07121446B2 JP 20883787 A JP20883787 A JP 20883787A JP 20883787 A JP20883787 A JP 20883787A JP H07121446 B2 JPH07121446 B2 JP H07121446B2
Authority
JP
Japan
Prior art keywords
cast
ceramic
view
cast iron
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20883787A
Other languages
Japanese (ja)
Other versions
JPS6453761A (en
Inventor
永人 鵜崎
内村  勝次
孝之 伊東
琢也 伊藤
石黒  裕之
武彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP20883787A priority Critical patent/JPH07121446B2/en
Publication of JPS6453761A publication Critical patent/JPS6453761A/en
Publication of JPH07121446B2 publication Critical patent/JPH07121446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックス鋳ぐるみ体の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a cast ceramic body.

(従来技術) セラミックスをアルミニウム合金や鋳鉄等の金属によっ
て鋳ぐるむことにより耐摩耗性断熱鋳物を製造する場
合、高温の金属溶湯がセラミックスに接触する際の熱衝
撃によりセラミックスが破損することがある。またセラ
ミックスの熱膨張率は金属のそれよりも著しく小さいた
め、金属溶湯が冷却凝固して収縮する際に発生する内部
圧縮応力によりセラミックスが破損することがある。
(Prior Art) When a wear-resistant adiabatic casting is manufactured by casting ceramics with a metal such as an aluminum alloy or cast iron, the ceramics may be damaged by thermal shock when a high-temperature molten metal comes into contact with the ceramics. . Further, since the coefficient of thermal expansion of ceramics is significantly smaller than that of metals, the ceramics may be damaged by the internal compressive stress generated when the molten metal cools and solidifies and contracts.

このような問題を解決するため、セラミックス鋳ぐるみ
部周縁に混練した鋳物砂のような断熱性と柔軟性を備え
た中間層を設け、溶湯金属注入時に発生する熱衝撃を緩
和すると共に、該金属の冷却時に発生する内部圧縮応力
を吸収する方法が提案されている(例えば特開昭53−83
26号公報)。
In order to solve such a problem, an intermediate layer having heat insulation and flexibility, such as kneading foundry sand, is provided around the periphery of the ceramic cast-in portion to reduce the thermal shock generated when pouring the molten metal, and There has been proposed a method of absorbing internal compressive stress generated during cooling (for example, Japanese Patent Laid-Open No. 53-83).
No. 26 bulletin).

(発明が解決しようとする問題点) しかし上記方法では、鋳物砂の砂粒間の隙間が小さいた
め、鋳ぐるむ際に溶湯が中間層中に浸透せず、セラミッ
クス基体と鋳ぐるみ金属との接合強度が弱くなるという
問題があった。
(Problems to be Solved by the Invention) However, in the above method, since the gap between the sand grains of the foundry sand is small, the molten metal does not penetrate into the intermediate layer during the casting process, and the ceramic substrate and the cast metal are joined together. There was a problem that the strength became weak.

本発明は上記のような事情に鑑みてなされたものであ
り、セラミックスをアルミニウム合金や鋳鉄によって鋳
ぐるむ際にセラミックスが金属溶湯の熱衝撃や冷却収縮
によって破損することがなく、かつセラミックスと鋳ぐ
るみ金属とが強固に接合したセラミックス鋳ぐるみ体の
製造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, when the ceramic is cast with an aluminum alloy or cast iron, the ceramic is not damaged by thermal shock or cooling shrinkage of the molten metal, and It is an object of the present invention to provide a method for producing a cast ceramic body that is firmly bonded to a stuffed metal.

(問題点を解決するための手段) 本発明は上記の目的を達成するため、セラミックス基体
の周囲にセラミックスビーズ(小粒体)を層状に装着し
て被鋳込み体を形成し、しかる後該被鋳込み体の周囲に
金属溶湯を流し込んで鋳ぐるむことを特徴としている。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention forms a cast body by mounting ceramic beads (small particles) in layers around a ceramic substrate, and thereafter, performing the cast casting. It is characterized by pouring molten metal around the body and surrounding it.

以下、本発明を実施例に基づいて詳細に説明する。Hereinafter, the present invention will be described in detail based on examples.

(第1実施例) 第1図ないし第5図は本発明の一実施例における製造工
程を示し、第1図は被鋳込み体の縦断図、第2図は同輪
切り図、第3図は被鋳込み体を鋳型にセットした状態を
示す断面図、第4図はセラミックス鋳ぐるみ体の縦断
図、第5図は同輪切り図である。
(First Embodiment) FIGS. 1 to 5 show a manufacturing process in an embodiment of the present invention. FIG. 1 is a vertical sectional view of a cast body, FIG. 2 is a sectional view of the same, and FIG. FIG. 4 is a cross-sectional view showing a state in which the cast body is set in a mold, FIG. 4 is a vertical cross-sectional view of the cast ceramic body, and FIG.

図において、まず高さ70mm、外径40mm、肉厚3mmの緻密
質アルミナ(99.5%)から成る円筒状のセラミックス基
体(1)の外周面に、平均粒径4mmのアルミナビーズ(9
2%ハイアルミナ結焼体)(2)を耐熱性無機質接着剤
(日産化学製ボンド・エックス)(3)を介して層状
(単層)に装着する。なお前記アルミナビーズ(2)相
互の間隔は0.4±0.2mm以上にされている。次に前記アル
ミナビーズ(2)層の外周部に厚さ20mmのシート状のポ
リスチレン部材(4)を巻装し、該ポリスチレン部材
(4)の外周面に塗型(5)を施して被鋳込み体(6)
とする(第1図参照)。しかる後前記被鋳込み体(6)
を、これにポリスチレン製の湯道(7)を取付けた上、
鋳枠(8)内にセットする。該鋳枠(8)は、通気構造
を有すると共に上端を開口した内箱(9)と、該内箱
(9)の側部及び底部を包囲して該内箱(9)との間に
減圧室(11)を構成した外箱(12)とから成っており、
該外箱(12)には一端が減圧室(11)と連通し、他端が
図示しない真空ポンプと接続された管路(13)が設けら
れている。
In the figure, first, on the outer peripheral surface of a cylindrical ceramic substrate (1) made of dense alumina (99.5%) having a height of 70 mm, an outer diameter of 40 mm, and a wall thickness of 3 mm, alumina beads (9
2% high-alumina sintered body (2) is attached in a layer (single layer) through a heat-resistant inorganic adhesive (Nissan Chemical's Bond X) (3). The interval between the alumina beads (2) is 0.4 ± 0.2 mm or more. Next, a sheet-shaped polystyrene member (4) having a thickness of 20 mm is wound around the outer peripheral portion of the alumina bead (2) layer, and the outer peripheral surface of the polystyrene member (4) is coated with a mold (5) to be cast. Body (6)
(See FIG. 1). After that, the cast body (6)
After attaching the polystyrene runner (7) to this,
Set in the flask (8). The casting frame (8) has a ventilation structure and an inner box (9) having an open upper end, and a side surface and a bottom of the inner box (9) are surrounded to reduce pressure between the inner box (9). It consists of an outer box (12) that constitutes the room (11),
The outer box (12) is provided with a conduit (13) having one end communicating with the decompression chamber (11) and the other end connected to a vacuum pump (not shown).

このような鋳枠(8)の内箱(9)内に鋳物砂用珪砂
(AFS粒度−100相当)(14)を充満し、図示しない振動
手段によって該珪砂(14)に流動性を付与しつつ前記被
鋳込み体(6)を、その湯口(7)の上端が内箱(9)
の上面に現出するようにして該内箱(9)内にセットす
る。次に湯口(7)の上端を除いた鋳枠(8)の上面を
酢酸ビニール共重合体、ポリエチレン等の気密シート
(15)で密閉する。
The inner box (9) of such a flask (8) is filled with silica sand for foundry sand (AFS grain size -100 equivalent) (14), and fluidity is imparted to the silica sand (14) by vibrating means (not shown). Meanwhile, the upper end of the sprue (7) of the cast body (6) is an inner box (9).
It is set in the inner box (9) so that it appears on the upper surface of the. Next, the upper surface of the flask (8) excluding the upper end of the gate (7) is sealed with an airtight sheet (15) of vinyl acetate copolymer, polyethylene or the like.

しかる後、図示しない真空ポンプンを作動させ、管路
(13)及び減圧室(11)を介して内箱(9)内の空気を
排気し、以て内箱(9)内の圧力を大気圧より200〜500
mmHgほど低くする。これにより珪砂(14)は内箱(9)
内にて被鋳込み体(6)を内蔵したまま固化し、鋳型を
形成する(第3図参照)。この状態で1,380℃の鋳鉄(1
6)の溶湯の湯口(7)上端より注湯すると、被鋳込み
体(6)中のポリスチレン部材(4)及び接着剤(3)
が燃焼気化し、これによって生じた空洞及び隙間に溶湯
が置換的に充填され、セラミックス鋳ぐるみ体(17)が
成形される。所定時間経過後、真空ポンプの作動を停止
して内箱(9)内の減圧状態を解除すると、珪砂(14)
の各粒子の移動が自由になり鋳型が崩壊するから、容易
に内部の製品を取出すことができる。このようにして得
たセラミックス鋳ぐるみ体(17)を切断してその組織を
調べたところ、第4図に示す如く、内側のアルミナセラ
ミックス層(1)、外側の鋳鉄層(16)及び両者の中間
に存在するアルミナビーズ(2)と鋳鉄(16)との複合
層の三層から形成されており、いずれの層にも破損クラ
ック等の存在は認められなかった。
Then, a vacuum pump (not shown) is operated to exhaust the air in the inner box (9) through the pipe line (13) and the decompression chamber (11), and thereby the pressure in the inner box (9) is changed to the atmospheric pressure. From 200 to 500
Make it as low as mmHg. As a result, the silica sand (14) will become the inner box (9).
Inside the object to be cast (6) is solidified while it is built in to form a mold (see FIG. 3). In this state, cast iron at 1380 ℃ (1
When the molten metal of 6) is poured from the upper end of the melt spout (7), the polystyrene member (4) and the adhesive (3) in the cast body (6)
Are vaporized by combustion, and the cavities and gaps generated thereby are filled with the molten metal in a substitutional manner, and the cast ceramic body (17) is molded. After a lapse of a predetermined time, when the vacuum pump is stopped and the depressurized state in the inner box (9) is released, silica sand (14)
Since the movement of each particle becomes free and the mold collapses, the product inside can be easily taken out. When the cast ceramic body (17) thus obtained was cut and its structure was examined, as shown in FIG. 4, the inner alumina ceramic layer (1), the outer cast iron layer (16) and both It was formed from three layers of a composite layer of alumina beads (2) and cast iron (16) which were present in the middle, and no presence of break cracks was observed in any of the layers.

(第2実施例) 第6図は本発明の他の実施例における被鋳込み体の縦断
正面図、第7図は同縦断側面図(第6図のA−A線にお
ける)、第8図はセラミックス鋳ぐるみ体の縦断正面
図、第9図は同縦断側面図(第8図のB−B線におけ
る)である。
(Second Embodiment) FIG. 6 is a front view in vertical section of a cast body in another embodiment of the present invention, FIG. 7 is a side view in the same section (in AA line in FIG. 6), and FIG. FIG. 9 is a vertical sectional front view of the cast ceramic body, and FIG. 9 is a vertical sectional side view (in the line BB in FIG. 8).

図において、表面に凹凸を形成した70mm×45mm×30mmの
緻密質アルミナから成るセラミックス基体(1)の表面
に、第1実施例の場合と同様平均粒径4mmのアルミナビ
ーズ(2)を、相互の間隔を0.4±0.2mm以上として耐熱
性無機質接着剤(図示せず)を介して層状(単層)に装
着した。
In the figure, the alumina beads (2) having an average particle size of 4 mm are mutually attached on the surface of a ceramic substrate (1) made of dense alumina of 70 mm × 45 mm × 30 mm having irregularities formed on the surface, as in the case of the first embodiment. With a distance of 0.4 ± 0.2 mm or more, and they were mounted in a layer (single layer) through a heat-resistant inorganic adhesive (not shown).

次に前記アルミナビーズ(2)層の上面に、接合させた
い鋳鉄と同形状に成形されたポリスチレン部材(4)を
装着し、該ポリスチレン部材(4)の表面に塗型(図示
せず)を施して第6図に示すような被鋳込み体(6)を
成形する。しかる後、該被鋳込み体(6)を第1実施例
の場合と同様の鋳枠にセットし、同様の手順で鋳鉄(1
6)の溶湯を注湯して、第8図に示すようなセラミック
ス鋳ぐるみ体(17)を得た。これも第一実施例と同様に
アルミナセラミックス層(1)、鋳鉄層(16)及びアル
ミナビーズ(2)と鋳鉄(16)との複合層の三層から成
っており、いずれの層にも破損、クラック等の存在は認
められなかった。
Next, a polystyrene member (4) molded in the same shape as the cast iron to be joined is mounted on the upper surface of the alumina bead (2) layer, and a coating mold (not shown) is attached to the surface of the polystyrene member (4). Then, the cast body (6) as shown in FIG. 6 is formed. Then, the cast-in body (6) is set in the same casting frame as in the case of the first embodiment, and cast iron (1
The molten metal of 6) was poured to obtain a cast ceramic body (17) as shown in FIG. This is also composed of three layers, the alumina ceramic layer (1), the cast iron layer (16) and the composite layer of the alumina beads (2) and the cast iron (16) as in the first embodiment, and any of the layers is damaged. The presence of cracks was not recognized.

(作用及び効果) 上記のような本発明によれば、鋳型内へ注入された鋳鉄
(16)溶湯は、最初被鋳込み体(6)の外殻部を構成す
るポリスチレン部材(4)を燃焼気化させ、これによっ
て生じた空間部に置換的に充填されて鋳鉄層(16)を形
成するが、この時セラミックス基体(1)の外周部を層
状に被覆しているアルミナビーズ(2)が断熱効果を発
揮して、セラミックス基体(1)への熱衝撃が緩和され
る。前記溶湯は更に、前記アルミナビーズ(2)の相互
の隙間に充填されている耐熱性無機質接着剤(3)を燃
焼気化させつつ該隙間に置換的に充填され、これにより
アルミナビーズ(2)と鋳鉄(16)との複合層が形成さ
れる。溶湯は次に冷却凝固して収縮し、この時内部圧縮
応力が発生するが、前記鋳鉄(16)とセラミックスビー
ズ(2)との複合層の熱膨張係数はセラミックス基体
(1)のそれよりも大きく、かつ鋳鉄(16)のそれより
も小さいため、鋳熱溶湯の内部圧縮応力は該複合層によ
って緩和され、セラミックス基体(1)の破損が防止さ
れる。
(Operation and Effect) According to the present invention as described above, the molten cast iron (16) injected into the mold first vaporizes and vaporizes the polystyrene member (4) constituting the outer shell of the cast-in target (6). The cast iron layer (16) is formed by substituting the resulting space into the cast iron layer (16). At this time, the alumina beads (2) coating the outer peripheral portion of the ceramic substrate (1) in a layered form have a heat insulating effect. And the thermal shock to the ceramic substrate (1) is alleviated. Further, the molten metal is substituted and filled in the gap while burning and vaporizing the heat-resistant inorganic adhesive (3) filled in the gap between the alumina beads (2), whereby the alumina beads (2) A composite layer with cast iron (16) is formed. The molten metal is then cooled and solidified and contracted, and internal compressive stress is generated at this time, but the thermal expansion coefficient of the composite layer of the cast iron (16) and the ceramic beads (2) is larger than that of the ceramic substrate (1). Since it is large and smaller than that of the cast iron (16), the internal compressive stress of the hot molten metal is relieved by the composite layer, and damage to the ceramic base (1) is prevented.

一方、アルミナビーズ(2)間の隙間に充填された溶湯
の一部はセラミックス基体(1)の表面と接触してお
り、凝固収縮時の内部圧縮応力とも相俟ってセラミック
ス基体(1)に作用してこれを締付ける。この締付力は
鋳鉄(16)が完全に凝固冷却した後も残留し、これによ
ってセラミックス基体(1)と鋳ぐるみ鋳鉄(16)とは
固く接合された状態になる。
On the other hand, a part of the molten metal filled in the gap between the alumina beads (2) is in contact with the surface of the ceramic base (1), and together with the internal compressive stress during solidification shrinkage, It works and tightens it. This tightening force remains even after the cast iron (16) is completely solidified and cooled, so that the ceramic substrate (1) and the cast-in-turn cast iron (16) are firmly joined.

なお実施例では、鋳ぐるみ金属として鋳鉄を用い、また
セラミックス基体の周囲にアルミナビーズを装着した
が、前者はアルミ合金、ステンレス合金等の耐熱、耐蝕
金属を用いてもよく、後者は溶湯温度に耐えるセラミッ
クビーズであれば何でもよい。
In the examples, cast iron was used as the cast metal, and alumina beads were mounted around the ceramic substrate, but the former may be made of heat-resistant or corrosion-resistant metal such as aluminum alloy or stainless alloy, and the latter may be used at the melt temperature. Any ceramic beads that can withstand will do.

また実施例では、アルミナビーズの平均粒径を4mmと
し、粒子間の隙間を0.4±0.2mm以上としたが、これは重
力鋳造の場合の設定値であり、加圧鋳造の場合は粒径及
び粒子間隔をもっと小さくしてもよい。
In the examples, the average particle size of the alumina beads was 4 mm, and the gap between the particles was 0.4 ± 0.2 mm or more, but this is the set value in the case of gravity casting, and in the case of pressure casting the particle size and The particle spacing may be smaller.

また前記アルミナビーズはセラミックス基体の周囲に単
層で装着されたが、多層に装着してもよく、この場合ア
ルミナビーズの粒径を、例えばセラミックス基体に近い
ほど小さくし、反対にセラミックス基体に遠いほど大き
くしてアルミナビーズと金属との複合層を制御すること
により、より強固な鋳ぐるみ接合が可能になる。
Further, although the alumina beads are mounted in a single layer around the ceramic substrate, they may be mounted in multiple layers. In this case, the particle size of the alumina beads is made smaller, for example, as they are closer to the ceramic substrate, and vice versa. By increasing the size to control the composite layer of alumina beads and metal, stronger cast-gurgle bonding becomes possible.

なお、注湯時に金属溶湯がアルミナビーズに均等に接触
すると共にアルミナビーズ間の隙間に十分浸透するよう
に、鋳型方案、溶湯圧、溶湯温度等を十分検討する必要
がある。
In addition, it is necessary to sufficiently examine the mold plan, the melt pressure, the melt temperature, etc. so that the metal melt uniformly contacts the alumina beads during the pouring and sufficiently penetrates into the gaps between the alumina beads.

また実施例では、フルモールド法によってセラミックス
鋳ぐるみ体を製造したが、生型鋳造法その他の鋳造法に
よってこれを製造してもよい。
Further, in the embodiment, the cast ceramic body was manufactured by the full molding method, but it may be manufactured by a green casting method or another casting method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における被鋳込み体の縦断
図、第2図は同輪切り図、第3図は被鋳込み体を鋳型に
セットした状態を示す断面図、第4図はセラミックス鋳
ぐるみ体の縦断図、第5図は同輪切り図、第6図は本発
明の他の実施例における被鋳込み体の縦断正面図、第7
図は同縦断側面図、第8図はセラミックス鋳ぐるみ体の
縦断正面図、第9図は同縦断側面図である。 (1):セラミックス基体、(2):アルミナビーズ (3):接着剤、(4):ポリスチレン部材 (6):被鋳込み体、(8):鋳枠 (16):鋳鉄、(17):セラミックス鋳ぐるみ体
FIG. 1 is a longitudinal sectional view of an object to be cast in one embodiment of the present invention, FIG. 2 is a sectional view of the same, FIG. 3 is a sectional view showing a state where the object to be cast is set in a mold, and FIG. FIG. 5 is a vertical sectional view of the toy body, FIG. 5 is a sectional view of the same body, and FIG. 6 is a vertical sectional front view of a cast-in body according to another embodiment of the present invention.
FIG. 8 is a vertical sectional side view, FIG. 8 is a vertical sectional front view of a ceramics cast body, and FIG. 9 is a vertical sectional side view. (1): Ceramics substrate, (2): Alumina beads (3): Adhesive, (4): Polystyrene member (6): Cast object, (8): Cast frame (16): Cast iron, (17): Ceramic cast body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミックス基体(1)の周囲にセラミッ
クスビーズ(2)を層状に装着して被鋳込み体(6)を
形成し、しかる後該被鋳込み体(6)の周囲に金属溶湯
を流し込んで鋳ぐるむことを特徴とするセラミックス鋳
ぐるみ体の製造方法。
A ceramic bead (2) is mounted in layers around a ceramic substrate (1) to form a cast body (6), and then a molten metal is poured around the cast body (6). A method for producing a ceramic cast-in body, which is characterized in that the cast-in-roll body is formed by.
JP20883787A 1987-08-21 1987-08-21 Method for manufacturing cast ceramic body Expired - Fee Related JPH07121446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20883787A JPH07121446B2 (en) 1987-08-21 1987-08-21 Method for manufacturing cast ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20883787A JPH07121446B2 (en) 1987-08-21 1987-08-21 Method for manufacturing cast ceramic body

Publications (2)

Publication Number Publication Date
JPS6453761A JPS6453761A (en) 1989-03-01
JPH07121446B2 true JPH07121446B2 (en) 1995-12-25

Family

ID=16562923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20883787A Expired - Fee Related JPH07121446B2 (en) 1987-08-21 1987-08-21 Method for manufacturing cast ceramic body

Country Status (1)

Country Link
JP (1) JPH07121446B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404721A (en) * 1994-01-28 1995-04-11 Ford Motor Company Cast-in-place ceramic manifold and method of manufacturing same
CN101954455A (en) * 2010-10-14 2011-01-26 安徽应流集团霍山铸造有限公司 Method for removing heat cracks of framed-structure casting
CN110372178B (en) * 2019-08-22 2021-10-26 安徽鑫永晟微晶材料有限公司 Prestressed microcrystal ceramic lining plate and production method thereof

Also Published As

Publication number Publication date
JPS6453761A (en) 1989-03-01

Similar Documents

Publication Publication Date Title
JPH07121446B2 (en) Method for manufacturing cast ceramic body
JPS5911383B2 (en) Low-pressure casting mold for tire molding and vulcanization
JPS6310056A (en) Mold for low pressure casting of metal die for vulcanizing tyre forming
JPH0561018B2 (en)
JPS62220241A (en) Casting mold and vacuum casting method using said casting mold
US5092390A (en) Method and mold for sand casting varying thickness articles
JP2553916B2 (en) Method for manufacturing cast ceramic body
JPS6354466B2 (en)
JPH10156484A (en) Mold for precision casting
JP3552298B2 (en) Mold for hot impeller casting
JP2553923B2 (en) Method for manufacturing cast ceramic body
JP2553918B2 (en) Method for manufacturing cast ceramic body
JPS6167540A (en) Casting mold
JPS597460A (en) Precision casting method
JPH0199767A (en) Complex of ceramic and metal and its manufacture
JPS57193266A (en) Metallic mold for casting
JPH05277699A (en) Method for casting thin casting
JPH02117743A (en) Manufacture of core for pressure casting
JPS5828682Y2 (en) casting mold
JPH07110407B2 (en) Method for manufacturing sliding member made of composite of ceramics and metal
JP2553917B2 (en) Method for manufacturing cast ceramic body
JPH09300061A (en) Reduced pressure suction casting device and cast parts using this
JP2592659B2 (en) Exhaust manifold for internal combustion engine and method of manufacturing the same
JPS5927750A (en) Casting method of magnesium alloy
JP2004017075A (en) Casting mold, method for manufacturing the same, and casting method using the mold

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees