JPS6354246B2 - - Google Patents

Info

Publication number
JPS6354246B2
JPS6354246B2 JP56110534A JP11053481A JPS6354246B2 JP S6354246 B2 JPS6354246 B2 JP S6354246B2 JP 56110534 A JP56110534 A JP 56110534A JP 11053481 A JP11053481 A JP 11053481A JP S6354246 B2 JPS6354246 B2 JP S6354246B2
Authority
JP
Japan
Prior art keywords
transistor
collector
input
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56110534A
Other languages
Japanese (ja)
Other versions
JPS5812420A (en
Inventor
Kazumi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56110534A priority Critical patent/JPS5812420A/en
Publication of JPS5812420A publication Critical patent/JPS5812420A/en
Publication of JPS6354246B2 publication Critical patent/JPS6354246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/26Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
    • H03K3/28Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
    • H03K3/281Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
    • H03K3/286Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable
    • H03K3/288Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable using additional transistors in the input circuit
    • H03K3/2885Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable using additional transistors in the input circuit the input circuit having a differential configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 本発明はセツト又はリセツト信号によつて、論
理状態を任意に制御し得る所謂セツト・リセツト
フリツプフロツプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called set/reset flip-flop whose logic state can be arbitrarily controlled by a set or reset signal.

セツト・フリツプフロツプリセツト(以下
RSFと略記)は、順序型論理回路の最も基本的
な構成要素であるため従来よりいくつかの回路構
成が提案されている。
Set/Flip/Preset (below)
Since RSF (abbreviated as RSF) is the most basic component of sequential logic circuits, several circuit configurations have been proposed.

第1図は、電流切換型論理回路による最も一般
的なRSFを示す。同図の動作を簡単に説明する
と、例えばセツト入力Sと、リセツト入力Rが共
に低レベルの時、即ち、データ保持状態の時トラ
ンジスタQ3がオン、トランジスタQ2がオフして
いるとする。
FIG. 1 shows the most common RSF using current switched logic circuits. To briefly explain the operation in the figure, it is assumed that, for example, when both the set input S and the reset input R are at a low level, that is, when data is held, transistor Q3 is on and transistor Q2 is off.

従つて、定電流源CSの電流の大部分は、トラ
ンジスタQ3を流れ真値出力OUTが低レベル、相
補出力が高レベルになつている。
Therefore, most of the current of the constant current source CS flows through the transistor Q3 , so that the true value output OUT is at a low level and the complementary output is at a high level.

次に、セツト入力Sが高レベルに変化すると、
定電流源CSの電流の一部が、トランジスタQ1
も分流する。このため、相補出力の電位が
降下し、逆に真値出力OUTの電位は、トランジ
スタQ3の電流が減少した事により、上昇する。
Next, when the set input S changes to high level,
A portion of the current from the constant current source CS is also shunted to the transistor Q1 . Therefore, the potential of the complementary output falls, and conversely, the potential of the true value output OUT rises due to the decrease in the current of the transistor Q3 .

一方、トランジスタQ3のベースが相補出力
OUTに接続されている事から、相補出力の
電位低下に伴つて、トランジスタQ3を流れる電
流はいよいよ減少し、遂には、トランジスタQ3
がオフし、一方トランジスタQ1がオンの状態に
なる。従つて、真値出力OUTは高レベル、相補
出力は低レベルの状態に変化する。
On the other hand, the base of transistor Q 3 is the complementary output
Since it is connected to OUT, the current flowing through transistor Q 3 gradually decreases as the potential of the complementary output decreases, and finally, transistor Q 3
is turned off, while transistor Q1 is turned on. Therefore, the true value output OUT changes to a high level and the complementary output changes to a low level.

この状態から、セツト入力Sのレベルが低レベ
ルに戻つても、トランジスタQ1の電流が、トラ
ンジスタQ2に切換わるだけで、各出力の状態は
変化しない。
Even if the level of the set input S returns to a low level from this state, the current of the transistor Q1 is simply switched to the transistor Q2 , and the state of each output does not change.

上記が、第1図のRSFを「セツト」する状況
である。
The above is the situation in which the RSF of FIG. 1 is "set."

一方、「リセツト」する状況は、リセツト入力
Rを高レベルに変化させると、上記と同様の変化
で、トランジスタQ2がオフ、トランジスタQ3
オンの状態になる。
On the other hand, in a "reset" situation, when the reset input R is changed to a high level, the transistor Q2 is turned off and the transistor Q3 is turned on, with the same change as described above.

ここで、上記「セツト」又は「リセツト」する
場合の、セツト入力S、リセツト入力Rの閾値に
ついて考える。
Here, the threshold values of the set input S and the reset input R in the case of the above-mentioned "set" or "reset" will be considered.

上記例の初期状態、即ち、トランジスタQ3
オン、トランジスタQ2がオフしていて、セツト
入力S、リセツト入力Rが共に低レベルの状態か
ら、「セツト」する場合を例として考える。この
場合トランジスタQ2と、トランジスタQ4は差し
当たり動作と関係がないので無視すると、第2図
の等価回路が書ける。
Let us consider as an example the case where "setting" is performed from the initial state of the above example, that is, transistor Q 3 is on, transistor Q 2 is off, and both set input S and reset input R are at low level. In this case, the equivalent circuit shown in FIG. 2 can be written by ignoring transistor Q 2 and transistor Q 4 because they have no relation to the operation for the time being.

第2図で、トランジスタQ3のベース電位は、
トランジスタQ1がオフして、負荷抵抗RL1の電圧
降下が、ほぼφである事から、上側電源値とほぼ
同一になつている。一方、トランジスタQ1のベ
ースにセツト入力Sを入力して、トランジスタ
Q1をオンさせるには、通常の電流切換型回路と
同様に、対トランジスタのベース電位を少なくと
も同一レベルまで引き上げなければならない。
In Figure 2, the base potential of transistor Q3 is
Since the transistor Q 1 is turned off and the voltage drop across the load resistor R L1 is approximately φ, it is approximately the same as the upper power supply value. On the other hand, by inputting the set input S to the base of transistor Q1 , the transistor
To turn on Q 1 , the base potentials of the paired transistors must be raised to at least the same level, as in normal current-switching circuits.

従つて、セツト入力Sの高レベルは、上側電源
値と同一か、それ以上にしなければ、トランジス
タQ3に流れる電流を、トランジスタQ1に切換え
られない。
Therefore, unless the high level of the set input S is equal to or higher than the upper power supply value, the current flowing through the transistor Q3 cannot be switched to the transistor Q1 .

ただし、トランジスタQ3のベース電位が外部
電圧源で与えられる通常の電流切換型回路と異な
り、トランジスタQ1のコレクタからの帰還電圧
として与えられているため、セツト入力Sの閾値
は、上側電源値より若干低くはなる。
However, unlike a normal current switching type circuit in which the base potential of transistor Q3 is given by an external voltage source, it is given as a feedback voltage from the collector of transistor Q1 , so the threshold of set input S is set to the upper power supply value. It will be slightly lower.

上記の様に、第1図に示されたRSFでは、セ
ツト及びリセツト入力の閾値電位が、通常の電流
切換型論理回路よりかなり高くなる。
As mentioned above, in the RSF shown in FIG. 1, the threshold potentials of the set and reset inputs are significantly higher than in conventional current switched logic circuits.

このことは、セツト及びリセツトの感度が低い
事であり、好ましくない。
This is undesirable since the sensitivity of setting and resetting is low.

上記の欠点を補うため、第3図に示す様に、コ
レクタ負荷抵抗RL3,RL4の共通接点と、上側電
圧源との間に、レベルシフト抵抗Rccを挿入し、
実効的に上側電源値の電圧値を下げた回路が案出
されている。
In order to compensate for the above drawbacks, a level shift resistor Rcc is inserted between the common contact of the collector load resistors R L3 and R L4 and the upper voltage source, as shown in Figure 3.
A circuit has been devised that effectively lowers the voltage value of the upper power supply value.

第3図の回路では、レベルシフト抵抗Rccに常
に定電流源CSの電流が流れることによる電圧降
下が生じているため、トランジスタQ5〜Q8から
見た、実効的な上側電圧源電圧値が低下する。従
つて、セツト及びリセツト入力の閾値は、RSF
の外から見た場合、レベルシフト抵抗Rccの電圧
降下分だけ下がり、セツト及びリセツトの感度が
向上する。
In the circuit shown in Figure 3, a voltage drop occurs due to the constant current source CS constantly flowing through the level shift resistor Rcc, so the effective upper voltage source voltage value as seen from transistors Q5 to Q8 is descend. Therefore, the set and reset input thresholds are RSF
When viewed from the outside, the voltage drops by the voltage drop across the level shift resistor Rcc, improving the sensitivity of set and reset.

しかし、第3図の回路では、真値出力OUT、
相補出力の高レベルが、レベルシフト抵抗
Rccの電圧降下分だけ必ず下がるため、RSFの出
力レベルが、通常の電流切換型回路と異なつてし
まう不都合がある。
However, in the circuit shown in Figure 3, the true value output OUT,
The high level of the complementary output is the level shift resistor.
Since the Rcc voltage drop is always reduced, the RSF output level is inconveniently different from that of a normal current switching type circuit.

特に論理振幅の小さい場合などは、RSFの高
レベル出力と、次段の電流切換型回路の閾値とが
近づき過ぎる事による動作不全を生ずる可能性が
ある。
Particularly when the logic amplitude is small, there is a possibility that malfunction may occur due to the high level output of the RSF being too close to the threshold of the current switching circuit in the next stage.

本発明の目的は、従来のRSFの、上記欠点を
なくし、入力閾値電圧を下げて、セツト及びリセ
ツト入力に対する感度を向上させると共に、出力
レベルの特異性をなくし入/出力条件を通常の電
流切換え型論理回路と同等にする事にある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional RSF, lower the input threshold voltage, improve the sensitivity to set and reset inputs, eliminate the specificity of the output level, and change the input/output conditions to normal current switching. The purpose is to make it equivalent to a type logic circuit.

このため本発明は、エミツタを相互に接続した
一対のトランジスタの内、第1のトランジスタの
コレクタを、第1の抵抗を介して上側電源に、他
の一方の、第2のトランジスタのコレクタを、第
2の抵抗を介して上側電源に接続すると共に、該
エミツタ相互接続点に定電流源を接続した電流切
換え型論理回路において、該第1のトランジスタ
のコレクタに、コレクタを、該第2のトランジス
タのコレクタにベースを、各々接続した第3のト
ランジスタと、該第1のトランジスタのコレクタ
にベースを、該第2のトランジスタのコレクタに
コレクタを、各々接続した第4のトランジスタと
を設け、該第3、第4のトランジスタのエミツタ
を、それぞれ、第3、第4の抵抗を介して、前記
第1と第2のトランジスタのエミツタ相互接続点
に接続した事を特徴とする。
Therefore, in the present invention, of a pair of transistors whose emitters are connected to each other, the collector of the first transistor is connected to the upper power supply via the first resistor, and the collector of the other transistor, the second transistor, is connected to the upper power supply through the first resistor. In a current switching type logic circuit connected to an upper power supply via a second resistor and a constant current source connected to the emitter interconnection point, the collector is connected to the collector of the first transistor, and the collector is connected to the collector of the first transistor. a third transistor having its base connected to the collector of the first transistor, and a fourth transistor having its base connected to the collector of the first transistor, and the collector connected to the collector of the second transistor, respectively; 3. The emitter of the fourth transistor is connected to the emitter interconnection point of the first and second transistors via third and fourth resistors, respectively.

本発明の実施例を、第4図に示す。 An embodiment of the invention is shown in FIG.

第4図の様に、トランジスタQ10,Q11のエミ
ツタに、エミツタ抵抗RE1,RE2を付加した事に
より、トランジスタQ10,Q11のエミツタ電位は
トランジスタQ9,Q12のエミツタ電位より若干高
くなる。
As shown in Figure 4, by adding emitter resistors R E1 and R E2 to the emitters of transistors Q 10 and Q 11 , the emitter potential of transistors Q 10 and Q 11 is lower than the emitter potential of transistors Q 9 and Q 12 . Slightly more expensive.

上記により、例えば、第4図で相補出力
が高レベルで、トランジスタQ11がオンしている
場合、トランジスタQ11のベース電位が等価的に
エミツタ抵抗RE2の電圧降下分だけ下がつて見え
るため、セツト入力Sに高レベルを印加して、ト
ランジスタQ9に定電流源CSの電流が分流し、相
補出力の電位が下がつた時、容易に、トラ
ンジスタQ11がオフする。
As a result of the above, for example, in Figure 4, when the complementary output is at a high level and transistor Q 11 is on, the base potential of transistor Q 11 appears to drop equivalently by the voltage drop of emitter resistor R E2 . When a high level is applied to the set input S, the current from the constant current source CS is shunted to the transistor Q9 , and the potential of the complementary output drops, the transistor Q11 is easily turned off.

この様子を入/出力特性と入力/閾値特性とで
示したものが第5図である。
FIG. 5 shows this situation in terms of input/output characteristics and input/threshold characteristics.

同図で、曲線A−B−C−Dの実線で示したも
のが、エミツタ抵抗RE1,RE2を0、即ち、第1
図の従来回路における特性で、セツト入力Sの入
力電圧Vinが低レベル(同図左側)から上昇する
と出力OUTの電圧は点A→B→Cを通つて、原
点0に至る。
In the figure, the solid line A-B-C-D indicates that the emitter resistances R E1 and R E2 are 0, that is, the first
In the characteristic of the conventional circuit shown in the figure, when the input voltage Vin of the set input S rises from a low level (on the left side of the figure), the voltage of the output OUT passes through points A→B→C and reaches the origin 0.

従つて、入力閾値aは点D→Bに変化する。 Therefore, the input threshold value a changes from point D to point B.

一方、通常の電流切換え型回路の入力閾値は、
入/出力振幅の中点、第5図のC′点付近にあるか
ら、第1図の入力閾値B点がかなり高い所にある
事がわかる。
On the other hand, the input threshold of a normal current switching type circuit is
Since it is near the midpoint of the input/output amplitude, point C' in FIG. 5, it can be seen that the input threshold point B in FIG. 1 is quite high.

次に、第4図の、本発明による回路のセツト入
力Sの入力電圧Vinに対する出力OUTの特性は、
第5図の点A′−B′−C′−D′で示した特性となり、
入力閾値bは点D′からB′に変化する。
Next, the characteristics of the output OUT with respect to the input voltage Vin of the set input S of the circuit according to the present invention in FIG. 4 are as follows:
The characteristics are shown by points A'-B'-C'-D' in Figure 5,
The input threshold b changes from point D' to B'.

従つて、本発明による回路の入力閾値B′点は
適当なエミツタ抵抗値により、通常の電流切換型
回路の閾値と同等になる事がわかる。
Therefore, it can be seen that the input threshold point B' of the circuit according to the present invention can be made equivalent to the threshold value of a normal current switching type circuit by using an appropriate emitter resistance value.

なお、入力レベルが、高レベルから低レベルに
変化する時の閾値は、第5図のD及びD′点であ
るが、同図の様に、エミツタ抵抗RE1,RE2の付
加の効果は少なく、従来回路(D点)でも、本発
明の回路(D′点)でも大差ない。即ち、セツト
及びリセツト入力の、低レベルの上限値には変化
がない。
The threshold values when the input level changes from high level to low level are points D and D' in Figure 5, but as shown in the figure, the effect of adding emitter resistors R E1 and R E2 is There is little difference between the conventional circuit (point D) and the circuit of the present invention (point D'). That is, there is no change in the low level upper limit of the set and reset inputs.

一方、出力レベルについては、第4図に示す様
に、コレクタ側の回路が、通常の電流切換型論理
回路と全く同一である事から、通常の電流切換型
回路と同等のレベルになる事は明らかである。
On the other hand, regarding the output level, as shown in Figure 4, the collector side circuit is exactly the same as a normal current switching type logic circuit, so it is unlikely that the output level will be the same as that of a normal current switching type circuit. it is obvious.

以上の様に、本発明によるRSFは、適当なエ
ミツタ抵抗を付加する事により、入力閾値、出力
レベル共、通常の電流切換型論理回路と同一の特
性を持ち、入力感度の高い安定な動作を期待でき
る。
As described above, by adding an appropriate emitter resistance, the RSF according to the present invention has the same characteristics as a normal current switching type logic circuit in terms of input threshold and output level, and can achieve stable operation with high input sensitivity. You can expect it.

なお、第4図に示した、本発明の実施例では
NPN型トランジスタを用いたが、PNP型トラン
ジスタによつても同様の効果が得られることは言
うまでもない。
In addition, in the embodiment of the present invention shown in FIG.
Although NPN type transistors were used, it goes without saying that similar effects can be obtained using PNP type transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の、電流切換型RSF回路図、第
2図はセツト入力有効の状態の、第1図の等価回
路図、第3図は入力感度向上を図つた、概知の
RSF回路図、第4図は本発明によるRSFの実施
例を示す回路図、第5図は第1図及び第4図の
RSFの、入/出力特性および入力/閾値特性を
示す図である。 Q1〜Q12:トランジスタ(第1〜4図)、RL1
RL6:コレクタ負荷抵抗(第1〜4図)、CS:定
電流源(第1〜4図)、RE1,RE2:エミツタ抵抗
(第4図)、S:セツト入力端子(第1〜4図)、
R:リセツト入力端子(第1〜4図)、OUT:真
値出力端子(第1〜4図)、:相補出力端子
(第1〜4図)、Vin:入力電圧(第5図)、
Vout:出力電圧(第5図)。
Figure 1 is a conventional current-switching RSF circuit diagram, Figure 2 is an equivalent circuit diagram of Figure 1 with set input enabled, and Figure 3 is a conventional current-switching RSF circuit diagram.
RSF circuit diagram, FIG. 4 is a circuit diagram showing an embodiment of RSF according to the present invention, and FIG.
FIG. 3 is a diagram showing input/output characteristics and input/threshold characteristics of RSF. Q 1 ~ Q 12 : Transistor (Figures 1 to 4), R L1 ~
R L6 : Collector load resistance (Fig. 1 to 4), CS: Constant current source (Fig. 1 to 4), R E1 , R E2 : Emitter resistance (Fig. 4), S: Set input terminal (Fig. 1 to Figure 4),
R: Reset input terminal (Fig. 1 to 4), OUT: True value output terminal (Fig. 1 to 4), : Complementary output terminal (Fig. 1 to 4), Vin: Input voltage (Fig. 5),
Vout: Output voltage (Figure 5).

Claims (1)

【特許請求の範囲】[Claims] 1 エミツタを相互に接続した一対のトランジス
タの内一方の第1のトランジスタのコレクタを、
第1の抵抗を介して電源に、他方の第2のトラン
ジスタのコレクタを第2の抵抗を介して電源に接
続すると共に、該エミツタ相互接続点に定電流源
を接続し、該第1のトランジスタのコレクタに、
コレクタを、該第2のトランジスタのコレクタに
ベースを各々接続した第3のトランジスタと、該
第1のトランジスタのコレクタにベースを、該第
2のトランジスタのコレクタに、コレクタを各々
接続した第4のトランジスタとを設け、該第3、
第4のトランジスタのエミツタをそれぞれ第3お
よび第4の抵抗を介して前記第1と第2のトラン
ジスタのエミツタ相互接続点に接続したことを特
徴とするフリツプフロツプ。
1. Connect the collector of one of the first transistors of a pair of transistors whose emitters are connected to each other,
The collector of the other second transistor is connected to the power supply via the first resistor, and the collector of the other second transistor is connected to the power supply via the second resistor, and a constant current source is connected to the emitter interconnection point, and the collector of the other second transistor is connected to the power supply via the second resistor. to the collector of
a third transistor whose collector is connected to the collector of the second transistor, and a fourth transistor whose base is connected to the collector of the first transistor, and whose collector is connected to the collector of the second transistor, respectively; a transistor;
A flip-flop characterized in that the emitter of a fourth transistor is connected to the emitter interconnection point of the first and second transistors through third and fourth resistors, respectively.
JP56110534A 1981-07-15 1981-07-15 Flip-flop Granted JPS5812420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110534A JPS5812420A (en) 1981-07-15 1981-07-15 Flip-flop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110534A JPS5812420A (en) 1981-07-15 1981-07-15 Flip-flop

Publications (2)

Publication Number Publication Date
JPS5812420A JPS5812420A (en) 1983-01-24
JPS6354246B2 true JPS6354246B2 (en) 1988-10-27

Family

ID=14538241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110534A Granted JPS5812420A (en) 1981-07-15 1981-07-15 Flip-flop

Country Status (1)

Country Link
JP (1) JPS5812420A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209226A (en) * 1982-05-31 1983-12-06 Fujitsu Ltd Set circuit

Also Published As

Publication number Publication date
JPS5812420A (en) 1983-01-24

Similar Documents

Publication Publication Date Title
JPS6120427A (en) Logic gate circuit connected at emitter
JPH0449287B2 (en)
US3509362A (en) Switching circuit
JPS58502176A (en) Latchable high-speed setting D-A converter bit switch
JPS60817B2 (en) Complementary emitter follower circuit
JP2573394B2 (en) Hysteresis circuit
JPS6354246B2 (en)
US20050231258A1 (en) Static flip-flop circuit
JPS6331214A (en) Variable delay circuit
JPH02285714A (en) Semiconductor integrated circuit
JPS6255327B2 (en)
JPH04154216A (en) Semiconductor integrated circuit
JPH06209237A (en) Storage cell
JPH0231528B2 (en)
JPH07183769A (en) Latch circuit
JPH07105710B2 (en) Logic circuit
JPS6113413B2 (en)
JPS61248618A (en) Logic circuit
JPS58114237A (en) Total adder
JPS6316714A (en) Differential current switching circuit
JPS62165431A (en) Emitter coupling and gate circuit
JPS59115620A (en) Logical circuit device
JPH03162122A (en) Switch circuit
JPS59171322A (en) Semiconductor logical circuit
JPS63304706A (en) Limiter amplifier circuit