JPS6354241A - Amorphous metal reinforced composite wire rod - Google Patents

Amorphous metal reinforced composite wire rod

Info

Publication number
JPS6354241A
JPS6354241A JP61198541A JP19854186A JPS6354241A JP S6354241 A JPS6354241 A JP S6354241A JP 61198541 A JP61198541 A JP 61198541A JP 19854186 A JP19854186 A JP 19854186A JP S6354241 A JPS6354241 A JP S6354241A
Authority
JP
Japan
Prior art keywords
amorphous metal
reinforced composite
composite wire
wire
metal reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61198541A
Other languages
Japanese (ja)
Other versions
JPH0335102B2 (en
Inventor
駿 佐藤
小澤 勉
山田 利男
小林 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61198541A priority Critical patent/JPS6354241A/en
Publication of JPS6354241A publication Critical patent/JPS6354241A/en
Publication of JPH0335102B2 publication Critical patent/JPH0335102B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアモルファス金属の箔線又は繊維を合成樹脂あ
るいは有機高分子材と複合化することにより種々の分野
において補強材として使用し得るようにしたアモルファ
ス金属強化複合線材に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is capable of being used as a reinforcing material in various fields by compositing amorphous metal foil wires or fibers with synthetic resins or organic polymer materials. The present invention relates to an amorphous metal reinforced composite wire rod.

アモルファス金属の箔線あるいは繊維を合成樹脂あるい
は有機高分子材と複合化することにより、引張り強度の
みならずねじりに対しても強い性質を付与することがで
きるのでこれにより強化繊物、運動用具、レジャー用具
、光通信ケーブル用テンションメンバー線、その他補強
材などに有利に用いることができる。なお、ここでいう
ff3線とは幅が比較的狭い(約5n以下)が厚みに比
べて充分大きなテープ状の材料を云う。
By combining amorphous metal foil wires or fibers with synthetic resins or organic polymer materials, it is possible to impart strong properties not only in tensile strength but also in torsion. It can be advantageously used for leisure equipment, tension member wires for optical communication cables, and other reinforcing materials. Note that the ff3 line here refers to a tape-shaped material that is relatively narrow in width (approximately 5 nm or less) but is sufficiently large compared to its thickness.

(従来の技術) 従来、引張り強度の大きな線材が各種補強材として使用
されてきた。金属では、ピアノ線、ステンレス線、タン
グステン線、モリブデン線など、高分子材としては、ケ
ブラー繊維や炭素繊維などが代表的である。また近年ア
モルファス金属繊維が登場し、ピアノ線を凌ぐ高抗張力
が実用的に注目されるようになった。
(Prior Art) Conventionally, wire rods with high tensile strength have been used as various reinforcing materials. Typical metals include piano wire, stainless steel wire, tungsten wire, and molybdenum wire, and typical polymer materials include Kevlar fiber and carbon fiber. In recent years, amorphous metal fibers have appeared, and their high tensile strength, which exceeds that of piano wire, has attracted attention for practical purposes.

アモルファス金属のこのような性質は原子の配列に規則
性がないことに起因するものである。
This property of amorphous metals is due to the lack of regularity in the arrangement of atoms.

アモルファス金属は気相、液相、固相それぞれから作製
可能であるが、液相すなわち金属・合金の溶湯から急冷
してつくる方法が生産性および経済性の面から有利であ
る。
Although amorphous metals can be produced from the gas phase, liquid phase, or solid phase, a method in which they are produced from the liquid phase, that is, by rapidly cooling a molten metal or alloy, is advantageous in terms of productivity and economy.

アモルファス金属は上述したように長軸方向の張力に対
しては、従来材を超える強さを有するが、ねじり力に対
して弱い欠点がある。この欠点のためアモルファス金属
の繊維(又は箔線)を織ったり、編んだりする加工工程
で破断が起りやすく、作業性を著しく低下させるほか、
製品の機械的性質を劣化させ、用途が制限されていた。
As mentioned above, amorphous metal has strength exceeding conventional materials against tension in the longitudinal direction, but has the drawback of being weak against torsional force. Due to this drawback, amorphous metal fibers (or foil wires) are easily broken during weaving or knitting processes, which significantly reduces workability.
It deteriorates the mechanical properties of the product, limiting its use.

(発明が解決しようとする問題点) アモルファス金属は上述したように長手方向の引張りに
は強いが、ねじりに弱い欠点をもつ。本発明はこの欠点
を改善することにより、アモルファス金属本来の性質で
ある高い引張り強度をもち、加工工程における作業性、
生産性の優れた新規な材料を提供することにある。
(Problems to be Solved by the Invention) As mentioned above, amorphous metals are strong against tension in the longitudinal direction, but have the disadvantage of being weak against twisting. By improving this drawback, the present invention has high tensile strength, which is an inherent property of amorphous metal, and improves workability in the processing process.
Our goal is to provide new materials with excellent productivity.

(問題点を解決するための手段) 本発明は複数のアモルファス金属箔線又は繊維を芯材と
し、合成樹脂あるいは有機高分子材で被覆してなること
を特徴とするものである。
(Means for Solving the Problems) The present invention is characterized in that a plurality of amorphous metal foil wires or fibers are used as a core material and covered with a synthetic resin or an organic polymer material.

アモルファス金属の箔線又は繊維は一般に板厚が薄い(
20〜30μ11)ので単独で強度部材として用いられ
ることは少ない。板厚を大きくすることはできるが、板
厚の増大とともに脆化の傾向を示すので単に板厚を大き
くすることによって強度部材どしての要求特性を改善す
ることはできない。
Amorphous metal foil wires or fibers are generally thin (
20 to 30μ11), so it is rarely used alone as a strength member. Although it is possible to increase the plate thickness, the properties required for a strength member cannot be improved simply by increasing the plate thickness, as the plate tends to become brittle as the plate thickness increases.

本発明者はアモルファス金属箔線又は繊維を2本以上積
層し、それを樹脂あるいは有機高分子材で被覆すること
によって、従来の単線では得られない強い引張り強度を
もち、かつねじり力に対する耐性の大きい新規な強度部
材が得られることを見出した。
The present inventor has discovered that by laminating two or more amorphous metal foil wires or fibers and coating them with resin or organic polymer material, the present inventors can obtain strong tensile strength that cannot be obtained with conventional single wires and have high resistance to torsional force. It has been found that a new high strength member can be obtained.

薄い箔線あるいは偏平な繊維状のアモルファス金属を複
数本積層するとき、ねじりに対する破断までの耐力(破
断トルク)は単に単線の耐力の積層本数倍ではないこと
を本発明者らは実験的に見い出した。
The present inventors have experimentally demonstrated that when laminating multiple thin foil wires or flat fibrous amorphous metals, the torsional strength (rupture torque) until rupture is not simply the strength of a single wire multiplied by the number of laminated wires. I found it.

第1表にアモルファス金属箔線について積層枚数と破断
するトルクの大きさの実験結果を示した。
Table 1 shows the experimental results regarding the number of laminated sheets and the magnitude of breaking torque for amorphous metal foil wires.

サンプルの組成はFeyJ+zCaCre (ate)
で幅は0.6mm、2.5mおよび板厚はそれぞれ19
μm、24μmの2種類である。
The composition of the sample is FeyJ+zCaCre (ate)
The width is 0.6mm, 2.5m and the plate thickness is 19.
There are two types: μm and 24 μm.

第      1      表 なお測定のゲージ長さく10cm)、張力は一定に保持
した。第1表の測定は被覆なしの条件で行なった。理由
は破断が生じたことを目視するためであるが、結果は被
覆材に対しても同一傾向を示した。即ち、積層枚数を増
すほど箔線−本当りの破断トルクは増大し、単線で用い
るより有利であることを示している。
(Table 1) The gauge length of the measurement was 10 cm), and the tension was kept constant. The measurements in Table 1 were carried out under uncoated conditions. The reason for this was to visually confirm that a break had occurred, but the results showed the same tendency for the covering material. That is, as the number of laminated sheets increases, the breaking torque of the foil wire-to-strand increases, indicating that it is more advantageous than using a single wire.

本発明で芯材として用いられるアモルファス箔線の寸法
は厚さが10μm〜70μm1幅が0.1n〜5龍とす
る。厚さが10μmより薄いとビンホールの形成やエツ
ジの一様性不良が生じ機械的に弱くなる。また70μl
を越えると脆化によりねじり耐性が低下するだけでなく
折損なども生ずるので好ましくない。
The dimensions of the amorphous foil wire used as the core material in the present invention are 10 μm to 70 μm in thickness and 0.1 nm to 5 μm in width. If the thickness is less than 10 μm, the formation of via holes and poor edge uniformity occur, resulting in mechanical weakness. Also 70μl
Exceeding this is not preferable because it not only reduces torsion resistance due to embrittlement but also causes breakage.

幅に対する制約は厳密なものではない。下限の0.1鶴
は融体急冷法で今日作製できる最小の幅であり、上限は
線材として用いることを念頭において5鶴とした。
The width constraints are not strict. The lower limit of 0.1 Tsuru is the minimum width that can be produced today by the melt quenching method, and the upper limit was set at 5 Tsuru keeping in mind that it will be used as a wire.

本発明の複合線材の芯材として用いるアモルファス金属
箔線又は繊維の組成はFeをベースとしてFe、X、M
。で表示される合金が適当である。Xは磁性や耐食性、
機械的性質、被覆材との密着性などを高めるために添加
する合金元素で、Cr、 Mo、 W、71% Ni5
Coから選ばれる1種又は2種以上である。
The composition of the amorphous metal foil wire or fiber used as the core material of the composite wire of the present invention is based on Fe, Fe, X, M
. Alloys shown in are suitable. X is magnetism and corrosion resistance,
Alloying elements added to improve mechanical properties, adhesion with coating materials, etc. Cr, Mo, W, 71% Ni5
One or more types selected from Co.

Mは半金属元素でB、C,P、Si、Geの1種又は2
種以上である。それぞれの含有量はa:60〜90(a
tχ)、b:0超15未満、C:10〜35、ただしa
+b+c=’looである。
M is a metalloid element and is one or two of B, C, P, Si, and Ge.
More than a species. The content of each is a: 60 to 90 (a
tχ), b: more than 0 and less than 15, C: 10 to 35, but a
+b+c='loo.

上記組成の合金は過熱溶解された後、所定のノズルを介
して移動する冷却基板あるいは互いに逆回転する一対の
ロールで少なくとも10’ k/secの冷却速度で急
冷することにより、アモルファス合金の箔線あるいは繊
維が形成される。
After the alloy having the above composition is superheated and melted, it is rapidly cooled at a cooling rate of at least 10' k/sec using a cooling substrate moving through a predetermined nozzle or a pair of rolls rotating in opposite directions to produce an amorphous alloy foil wire. Alternatively, fibers are formed.

積層した箔線あるいは繊維を被覆するために用いられる
樹脂あるいは有機高分子材はポリ塩化ビニル、ナイロン
、ポリエチレン、ポリスチレン、テフロン、ポリウレタ
ン、硬質ゴムのいずれかである。
The resin or organic polymer material used to cover the laminated foil wires or fibers is polyvinyl chloride, nylon, polyethylene, polystyrene, Teflon, polyurethane, or hard rubber.

被覆の厚さは用途に応じて1μ+w〜5鶴の範囲である
。アモルファス金属箔線又は繊維の積層体を一体化して
固定するために必要な最小の被覆厚さとして1μ腸が下
限である。被覆厚みの上限は複合体を線材として用いる
ために好ましい厚みの上限である。
The thickness of the coating ranges from 1 μ+w to 5 μm depending on the application. The lower limit of the minimum coating thickness required to integrate and fix the laminate of amorphous metal foil wires or fibers is 1 micron. The upper limit of the coating thickness is the preferable upper limit for using the composite as a wire.

(実施例) 次に実施例をあげて説明する。(Example) Next, an example will be given and explained.

実施例1 原子数比でFeqbB+ zC4Crsの合金組成で幅
0.6鶴、厚さ33μ11長さ10,000mのアモル
ファス合金繊維1を3本重ねて連続的にノズルを通して
樹脂押し出し機に送り、直径1鶴の円形に製作した押し
出し金型のダイスからナイロン階6を吐出し、第1図に
示すような断面をもつアモルファス金属繊維を芯材とし
ナイロン樹脂2を被覆した複合線材を得た。
Example 1 Three amorphous alloy fibers 1 having an alloy composition of FeqbB + zC4Crs in atomic ratio and having a width of 0.6 mm, a thickness of 33μ11, and a length of 10,000 m are stacked and continuously passed through a nozzle to a resin extruder to obtain a fiber with a diameter of 1 A nylon layer 6 was discharged from a die of an extrusion mold made in the shape of a crane to obtain a composite wire having a core material of an amorphous metal fiber having a cross section as shown in FIG. 1 and coated with a nylon resin 2.

上記工程によって得た直径1nの複合線材1本を直径0
.9Nの光フアイバー6本を円形に組んだ中心にテンシ
ョンメンバーとして用い、光通信線を製作した。同じ目
的で用いた他の補強材(ケブラー、炭素繊維、タングス
テン線、ステンレス線など)に比べて本発明の複合線材
は引張り強度、熱膨張特性が優れ、ねじり強度も単線に
比べて大幅に改善された。
One composite wire with a diameter of 1n obtained by the above process is
.. An optical communication line was fabricated using six 9N optical fibers arranged in a circular shape and used as a tension member at the center. Compared to other reinforcing materials used for the same purpose (Kevlar, carbon fiber, tungsten wire, stainless steel wire, etc.), the composite wire of the present invention has superior tensile strength and thermal expansion properties, and its torsional strength is also significantly improved compared to solid wire. It was done.

実施例2 原子数比でFeH,5sia、 sB+ zcIの合金
組成で幅2關、厚さ25μm1長さ15,000mのア
モルファス合金箔線1′を4本第2図に示すような断面
をもつ複合体に成形した。複合体成形工程において実施
例1と異なる点は押し出し金型のダイスの形状が幅2.
2龍、厚さ0.3mmの角のとれた矩形状である点およ
び被覆する樹脂3がポリ塩化ビニルである点である。
Example 2 Four amorphous alloy foil wires 1' with an alloy composition of FeH, 5sia, sB + zcI in atomic ratio, 2 widths, 25 μm thickness, 15,000 m length, and a cross section as shown in Fig. 2 were made. Molded into the body. The difference from Example 1 in the composite molding process is that the die shape of the extrusion mold has a width of 2.
Two points are that it has a rectangular shape with rounded corners and a thickness of 0.3 mm, and that the covering resin 3 is polyvinyl chloride.

上記工程によって得たアモルファス金属強化複合線材を
使用して強化繊物を製作した。この強化繊物は経糸とし
て本発明に係る幅2.2鶴、厚さ0.3flの複合線材
を1mの幅に450本を整径し、緯糸として5O5−3
16、直径0.1 t*の細線を用い、1mの間隔←工
400本を打ち込み、アモルファス強化ビニル線とステ
ンレス線から成る交織強化繊物を製作した。このように
構成された成品は引張り強度、熱膨張特性、ねじり強度
等、在来品より著しく優れた特性を有していた。
A reinforced fiber was produced using the amorphous metal-reinforced composite wire obtained through the above steps. In this reinforced fiber, 450 composite wires according to the present invention having a width of 2.2 mm and a thickness of 0.3 fl are adjusted to a width of 1 m as warp yarns, and 5O5-3 as weft yarns.
16. Using fine wire with a diameter of 0.1 t*, 400 wires were inserted at 1 m intervals to produce a mixed-woven reinforced fiber consisting of amorphous reinforced vinyl wire and stainless steel wire. The product thus constructed had properties such as tensile strength, thermal expansion properties, and torsional strength that were significantly superior to conventional products.

(発明の効果) 本発明の複数のアモルファス金属の箔線又は繊維を芯材
とし合成樹脂あるいは有機高分子を被覆した複合線材は
本来の高抗張力を保持しながら、柔軟性をもち、ねじり
に対する耐性が強く、かつ熱膨張率も小さいため、光フ
ァイバーのテンションメンバー、強化繊物、運動用具、
スクラバーブラシなどの強化材として有利に用いること
ができる。また加工中の破断や折損が生じないため、生
産性を改善することが出来る。
(Effects of the Invention) The composite wire of the present invention, which has a plurality of amorphous metal foil wires or fibers as a core material and is coated with a synthetic resin or an organic polymer, has flexibility and resistance to torsion while maintaining its original high tensile strength. is strong and has a low coefficient of thermal expansion, making it suitable for optical fiber tension members, reinforced textiles, athletic equipment,
It can be advantageously used as a reinforcing material for scrubber brushes and the like. Furthermore, since no breakage or breakage occurs during processing, productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円形断面からなる本発明線材の断面図、第2図
は偏平断面からなる本発明線材の断面図である。・ 1:アモルファス合金繊維、1′:アモルファス合金箔
線、2:ナイロン樹脂、3:塩化ビニール樹脂。 特許出願人 新日本製鐵株式會社他1名第1図
FIG. 1 is a cross-sectional view of the wire rod of the present invention having a circular cross section, and FIG. 2 is a cross-sectional view of the wire rod of the present invention having a flat cross section. - 1: amorphous alloy fiber, 1': amorphous alloy foil wire, 2: nylon resin, 3: vinyl chloride resin. Patent applicant Nippon Steel Corporation and one other person Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)複数のアモルファス金属の箔線又は繊維を芯材と
し、合成樹脂あるいは有機高分子材で被覆してなること
を特徴とするアモルファス金属強化複合線材。
(1) An amorphous metal-reinforced composite wire material comprising a plurality of amorphous metal foil wires or fibers as a core material and coated with a synthetic resin or an organic polymer material.
(2)強化用アモルファス金属箔線の寸法が厚さ10μ
m〜70μm、幅0.1mm〜5mmであることを特徴
とする特許請求の範囲第1項記載のアモルファス金属強
化複合線材。
(2) The reinforcement amorphous metal foil wire has a thickness of 10 μm.
The amorphous metal reinforced composite wire according to claim 1, wherein the amorphous metal reinforced composite wire has a width of 0.1 mm to 5 mm.
(3)前記アモルファス金属箔線の化学組成がFe_a
X_bM_cであることを特徴とする特許請求の範囲第
1項または第2項記載のアモルファス金属強化複合線材
。ここでXはCr、Mo、W、Ti、Ni、Coの1種
又は2種以上、MはB、C、P、Siの1種又は2種以
上で、a:60〜90(at%)、b:0超15未満、
c:10〜35、ただしa+b+c=100である。
(3) The chemical composition of the amorphous metal foil wire is Fe_a
The amorphous metal reinforced composite wire according to claim 1 or 2, characterized in that it is X_bM_c. Here, X is one or more of Cr, Mo, W, Ti, Ni, and Co, M is one or more of B, C, P, and Si, and a: 60 to 90 (at%) , b: more than 0 and less than 15,
c: 10-35, but a+b+c=100.
(4)被覆に用いられる合成樹脂又は有機高分子材がポ
リ塩化ビニル、ナイロン、ポリエチレン、ポリスチレン
、テフロン、ポリウレタン、硬質ゴムで被覆の厚さが1
μm〜5mmの範囲であることを特徴とする特許請求の
範囲第1項記載のアモルファス金属強化複合線材。
(4) The synthetic resin or organic polymer material used for the coating is polyvinyl chloride, nylon, polyethylene, polystyrene, Teflon, polyurethane, or hard rubber, and the coating thickness is 1.
The amorphous metal reinforced composite wire according to claim 1, wherein the amorphous metal reinforced composite wire has a diameter in the range of μm to 5 mm.
JP61198541A 1986-08-25 1986-08-25 Amorphous metal reinforced composite wire rod Granted JPS6354241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198541A JPS6354241A (en) 1986-08-25 1986-08-25 Amorphous metal reinforced composite wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198541A JPS6354241A (en) 1986-08-25 1986-08-25 Amorphous metal reinforced composite wire rod

Publications (2)

Publication Number Publication Date
JPS6354241A true JPS6354241A (en) 1988-03-08
JPH0335102B2 JPH0335102B2 (en) 1991-05-27

Family

ID=16392873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198541A Granted JPS6354241A (en) 1986-08-25 1986-08-25 Amorphous metal reinforced composite wire rod

Country Status (1)

Country Link
JP (1) JPS6354241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193221B2 (en) 2002-06-13 2007-03-20 Toudai Tlo, Ltd. Electronic optical lens barrel and production method therefor
JP2010015818A (en) * 2008-07-03 2010-01-21 Hitachi High-Technologies Corp Electron source device and ion system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193221B2 (en) 2002-06-13 2007-03-20 Toudai Tlo, Ltd. Electronic optical lens barrel and production method therefor
JP2010015818A (en) * 2008-07-03 2010-01-21 Hitachi High-Technologies Corp Electron source device and ion system

Also Published As

Publication number Publication date
JPH0335102B2 (en) 1991-05-27

Similar Documents

Publication Publication Date Title
Hagiwara et al. Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method
CA2742706C (en) Exploitation of deformation mechanisms for industrial usage in thin product forms
EP0147937B1 (en) Iron-base amorphous alloys having improved fatigue and toughness characteristics
KR19990028212A (en) Fiber Reinforced Aluminum Matrix Composites
EP0552370A1 (en) Carbon fiber prepreg and carbon fiber reinforced resin
JPS59163458A (en) Reinforcing of polyethylene fiber reticulated texture
US4806179A (en) Fine amorphous metal wire
TWI598449B (en) Metal alloy containing micro-components of phase-separated glass matrix and method for forming same
US5137782A (en) Granular composite containing metal fibers and plastic articles made therefrom
JPS6354241A (en) Amorphous metal reinforced composite wire rod
JPH08253847A (en) Titanium-zirconium amorphous metal filament
Inoue et al. Production of Ni-Pd-Si and Ni-Pd-P amorphous wires and their mechanical and corrosion properties
US4415529A (en) Mn-Based alloy of nonequilibrium austenite phase
JP3047922B2 (en) Security sensors and display components
EP0026237B1 (en) Amorphous metal containing iron family element and zirconium, and articles obtained therefrom
JPS6337177B2 (en)
JPS58126964A (en) Amorphous iron alloy containing carbon with high strength, high hardness, high crystallization temperature and high embrittlement temperature
JPS6354773B2 (en)
JPH0460812B2 (en)
JPS5941450A (en) Amorphous iron base alloy with excellent fatigue characteristics
JPS6026825B2 (en) Nitrogen-containing carbon-based amorphous iron alloy with high strength, high hardness, high crystallization temperature, and high embrittlement resistance
EP0077611B1 (en) Mn based alloy of nonequilibrium austenite phase
Pond et al. A method of producing rapidly solidified filamentary castings: Transactions AIME Vol 245, No 11, pp 2457–2476
JPH037181A (en) Ski board
Salkind et al. Some effects of cold rolling on the microstructure and properties of Al3Ni whisker reinforced aluminium: Transactions AIME Vol 245, No 10, pp 2339–2345