JPS635410Y2 - - Google Patents

Info

Publication number
JPS635410Y2
JPS635410Y2 JP9738379U JP9738379U JPS635410Y2 JP S635410 Y2 JPS635410 Y2 JP S635410Y2 JP 9738379 U JP9738379 U JP 9738379U JP 9738379 U JP9738379 U JP 9738379U JP S635410 Y2 JPS635410 Y2 JP S635410Y2
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
discharge
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9738379U
Other languages
Japanese (ja)
Other versions
JPS5615251U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9738379U priority Critical patent/JPS635410Y2/ja
Publication of JPS5615251U publication Critical patent/JPS5615251U/ja
Application granted granted Critical
Publication of JPS635410Y2 publication Critical patent/JPS635410Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は電力のピークカツト,ロードレベルま
たは余剰電力吸収のために用いる電池およびその
制御管理装置に関するものである。 このような目的に電池を用いる場合には、最も
簡単な方法は必要な数の単電池を直列に接続した
電池群を直流母線に直接接続することである。し
かし電池は充電と放電とで電圧が大きく変る。例
えば鉛電池では充電時2.1V/セル放電時2.0〜
1.5V/セルになるので、このように直接接続し
ただけでは、放電しやすい単電池数にすれば充電
不足になりやすく、充電しやすく単電池数を決め
れば過充電になる。したがつて第1図の原理図に
示すように充放電制御装置1を介して電池2と母
線3が接続され、母線の要求と電池の状態を検出
して電池への電気の出入りを制御するのが普通で
ある。電池を放電させる場合は放電用スイツチ6
をON,充電用スイツチ7をOFFに放電用ブース
タ4を介して電池が母線に接続される。なお放電
用ブースタ4は単なる接続バーで置きかえられる
こともあり得る。 電池を充電する場合には充電用スイツチ7を
ON放電用スイツチ6をOFFにして、充電用ブー
スタ5の電圧が母線電圧に加算されて、電池に印
加されることになる。充電用ブースタ5の代りに
単なる接続線にすることもある。 これらブースタの省略のし方の組合せは下表の
通りである。
The present invention relates to a battery used for power peak cut, load level or surplus power absorption, and its control management device. When using batteries for such purposes, the simplest method is to directly connect a battery group consisting of the required number of single cells connected in series to a DC bus bar. However, the voltage of a battery changes greatly when it is charged and discharged. For example, in a lead battery, 2.1V when charging/2.0~ when discharging the cell
The voltage is 1.5V/cell, so if you just connect it directly like this, if you choose a number of cells that are easy to discharge, you will likely be undercharged, and if you choose a number of cells that are easy to charge, you will end up overcharging. Therefore, as shown in the principle diagram of FIG. 1, the battery 2 and the bus bar 3 are connected via the charge/discharge control device 1, and the demand on the bus bar and the state of the battery are detected to control the flow of electricity into and out of the battery. is normal. To discharge the battery, press the discharge switch 6.
is turned on, and the charging switch 7 is turned off, and the battery is connected to the bus bar via the discharge booster 4. Note that the discharge booster 4 may be replaced by a simple connection bar. When charging the battery, turn on the charging switch 7.
When the ON discharge switch 6 is turned OFF, the voltage of the charging booster 5 is added to the bus voltage and applied to the battery. A simple connection line may be used instead of the charging booster 5. Combinations of how to abbreviate these boosters are shown in the table below.

【表】 との組合せを使用するかは具体的な使用条件によ
り決めるべきであるが、原理的にはこれらは全て
同じである。すなわち電池を放電する必要のある
時は電池とブースタ(又は接続線)との直列接続
の電圧を上げ、充電の必要のある時は電池とブー
スタ(又は接続線)との直列接続の電圧を下げる
ように操作することである。 その様子をの例を用いて示したのが第2図で
ある。第2図の直線ABB′C′が第1図の点Qの電
流−電圧特性である。すなわち直線ABは電池群
の充電特性、直線B′C′は同放電特性である。今負
荷が大きくなり電池を放電する必要が生じた場
合、上記のスイツチ動作により電池と放電ブース
タが接続されて第1図の点Pの電流電圧特性が第
2図の破線B″C″の特性になる放電が行なわれる。
一方負荷からの回生による充電の場合も上記の動
作(スイツチ6OFF,スイツチ7ON)により電
池は直流母線に接続されるので第1図点Pの特性
は点Qと同じ特性になり、第2図の直線ABにな
る。また回生がなくても母線電圧が高い場合には
同様のコントロールにより、電池は充電される。
負荷増加の場合母線電圧は下り、回生電力発生の
場合母線電圧は上るので、母線電圧を検出し、そ
れが或設定値より高ければ充電,低ければ放電と
することにより上記のコントロールが出来る。そ
してこの設定値を変えると電池の充放電のバラン
スが変る。その様子を第2図を用いて説明する。 設定値を比較的高い値、第2図のB″に選んだ
場合、電池の放電特性はB″C″充電特性はADとな
り母線電圧が比較的高くなつて放電電流が0にな
るまで放電出来るのに対し充電は電圧がB″より
高い大電流の部分だけになるので充電される機会
は少くなる。したがつてこのような場合は電池は
充放電を相殺して全体的に考えると放電が進む方
向になる。一方、設定電圧を比較的低い値第2図
のBに選んだ場合は放電特性はEC″充電特性は
ABにより、上記とは逆に放電出来る範囲はせま
く充電出来る範囲は広くなるので充電が進む方向
になる。 したがつて電池の放電状態を検出し放電深度が
浅ければ上記設定電圧を高く、例えば鉛電池では
2.15V/セル、放電深度が深ければ設定電圧を低
く、例えば鉛電池では2.05V/セルにすればよ
い。その放電深度の深,浅の判定は放電電流を積
分して求めた放電量または適当な方法で検出した
電解液比重、その他に対応させて求めた放電量を
或る設定値、例えば60%放電量と比較することに
より行うことが出来る。 電圧検出による放電、充電の切替および電池放
電状態検出による電圧設定値の切替にはヒステリ
シス特性を持たすのが普通である。 そして電圧の高設定値のヒステリシスの下限と
低設定値のヒステリシスの上限とが等しくなるよ
うに選べば次のように動作させることが出来る。
すなわち、電池の放電状態が或る設定レベル末満
であれば常時電池を放電させるように動作し母線
電圧が高レベル(すなわち高設定電圧ヒステリシ
スの上限)を越えた時に電池を充電する動作に切
替り、その後母線電圧が中間電圧、すなわち高設
定電圧ヒステリシスの下限、すなわち低設定レベ
ルヒステリシスの上限まで下つた時に電池を放電
させる動作に復帰し、次の検出電圧上昇までその
状態を保つ、そして放電状態が深くなり上昇設定
レベル以上になれば、常に電池を充電させる動作
を保ち、検出電圧が低レベルすなわち、低設定電
圧、ヒステリシスの下限より低くなつた時に電池
を放電させる動作に切替りその後母線電圧が中間
電圧まで上昇した時に電池を充電する動作に復帰
し、次に母線電圧または電池放電状態の変化を待
つと言う動作をする。この動作により電池を目標
範囲内の放電深度に保つことが出来る。 以上のような機能を有する本考案装置の一例の
概要が第3図に示すものである。図に示した状態
では電池2、電流検出シヤント16およびブース
タ整流器5′が常時ONのマグネツトスイツチ
6′を介して母線3に接続され電池は放電してい
る。これは母線から検出された電圧VBが基準電
圧発生器9の出力を抵抗91と92で分割した電
圧VSより低いので比較器8からは出力が出ずマ
グネツトスイツチ駆動部15が働かない状態であ
る。今母線電圧が上つてVB>VSとなると比較器
8から出力が発生し、マグネツトスイツチ駆動部
が働き接点6′がOFF、7′がONになり電池2が
シヤント16と接点7′だけを介して電池につな
がる。すなわち電池は充電されるようになる。そ
の後電圧が下れば以上と反対の動作として元の状
態となる。母線電圧の変化が微妙な変化をする場
合の不要なスイツチ動作を避けて安定な切替とす
るために放電から充電とその逆とで切替時の設定
電圧が変るようヒステリシス特性を持たすために
マグネツトスイツチ駆動部15により動作する接
点80と抵抗81,82,83が使用されてい
る。以上の動作において基準電圧発生器9の出力
を分割する比を電池放電深度により接点14を用
いて変えるようにしてある。 第3図に示す状態は放電深度が浅い状態であ
る。すなわちシヤント16に放電々流により生ず
る電圧を積分器10で積分し、積分値に比例する
その出力Pdと基準電圧発生器11の出力PSとを
比較器12に入力し比較する。Pd<PSであるの
で接点14は閉のままになつている。したがつて
基準電圧発生器の電圧がそのまゝVSになり、電
圧設定値が高くなるので上記の説明のように放電
が進む方向になる。 今、放電深度が深くなり、Pd>PSになると、
比較器12の出力がマグネツトスイツチ駆動部1
3を働かせ接点14を開き基準電圧発生器9の出
力を抵抗91,92で分割した値がVSとなり電
圧設定値が下るので、上記説明のように充電が進
む方向になる。なお、積分器10は放電と充電と
で相殺して積分出来る可逆式積分器である。また
マグネツトスイツチはサイリスタ,トランジスタ
ーなどを用いて無接点化出来ることは言うまでも
ない。 ブースタ整流器,比較器,基準電圧発生器,積
分器などについての詳細の説明は省略したがこれ
らは一般的な公知のものが使用出来る。
Whether to use the combination with [Table] should be determined depending on the specific conditions of use, but in principle they are all the same. In other words, when the battery needs to be discharged, the voltage of the series connection between the battery and the booster (or connection line) is increased, and when the battery needs to be charged, the voltage of the series connection between the battery and the booster (or connection line) is decreased. It is to operate as follows. FIG. 2 shows this situation using an example. The straight line ABB'C' in FIG. 2 is the current-voltage characteristic at point Q in FIG. In other words, the straight line AB is the charging characteristic of the battery group, and the straight line B'C' is the discharging characteristic of the battery group. If the load becomes large and it becomes necessary to discharge the battery, the battery and discharge booster will be connected by the above switch operation, and the current-voltage characteristic at point P in Figure 1 will change to the characteristic shown by the broken line B''C'' in Figure 2. A discharge occurs.
On the other hand, in the case of charging by regeneration from the load, the battery is connected to the DC bus by the above operation (switch 6 OFF, switch 7 ON), so the characteristics of point P in Figure 1 are the same as those of point Q, and the characteristics of point P in Figure 2 are the same as those of point Q in Figure 2. It becomes straight line AB. Furthermore, even if there is no regeneration, if the bus voltage is high, the battery is charged using the same control.
When the load increases, the bus voltage decreases, and when regenerative power is generated, the bus voltage increases, so the above control can be performed by detecting the bus voltage and charging if it is higher than a certain set value, and discharging if it is lower. Changing this setting value changes the balance of charging and discharging the battery. The situation will be explained using FIG. 2. If the set value is selected as a relatively high value, B'' in Figure 2, the battery's discharge characteristics will be B''C'' and its charging characteristics will be AD, allowing the battery to be discharged until the bus voltage becomes relatively high and the discharge current reaches 0. On the other hand, charging occurs only in the large current portion where the voltage is higher than B'', so there are fewer opportunities to be charged. Therefore, in such a case, the battery will cancel out the charging and discharging, and when considered as a whole, the battery will discharge in the direction of progress. On the other hand, if the set voltage is set to a relatively low value B in Figure 2, the discharge characteristics will be EC'' and the charging characteristics will be
With AB, contrary to the above, the range where it can be discharged is narrowed and the range where it can be charged is widened, so charging progresses. Therefore, the discharge state of the battery is detected, and if the depth of discharge is shallow, the above set voltage is increased.For example, for lead batteries, the set voltage is increased.
2.15V/cell; the deeper the depth of discharge, the lower the set voltage; for example, 2.05V/cell for a lead-acid battery. To determine whether the depth of discharge is deep or shallow, the discharge amount determined by integrating the discharge current or the specific gravity of the electrolyte detected by an appropriate method, or the discharge amount determined in accordance with other factors, is determined by setting the discharge amount to a certain set value, for example, 60% discharge. This can be done by comparing the amount. It is common to have hysteresis characteristics in switching between discharging and charging by voltage detection and in switching the voltage setting value by detecting the battery discharge state. If the lower limit of the hysteresis of the high voltage setting value and the upper limit of the hysteresis of the low voltage setting value are selected to be equal, the following operation can be achieved.
In other words, if the discharge state of the battery is at the end of a certain set level, it will always operate to discharge the battery, and when the bus voltage exceeds the high level (i.e., the upper limit of the high set voltage hysteresis), it will switch to the operation to charge the battery. Then, when the bus voltage falls to the intermediate voltage, that is, the lower limit of the high set voltage hysteresis, that is, the upper limit of the low set level hysteresis, the operation returns to discharging the battery, and this state is maintained until the next detected voltage rise, and then the discharge continues. When the condition deepens and exceeds the rising set level, the battery is always charged, and when the detected voltage becomes low level, i.e., lower than the low set voltage or lower limit of hysteresis, the battery is discharged. When the voltage rises to the intermediate voltage, it returns to charging the battery, and then waits for a change in the bus voltage or battery discharge state. This operation allows the battery to be maintained at a depth of discharge within the target range. FIG. 3 shows an outline of an example of the device of the present invention having the above-mentioned functions. In the state shown in the figure, the battery 2, current detection shunt 16 and booster rectifier 5' are connected to the bus bar 3 via the magnet switch 6' which is always on, and the battery is discharging. This is because the voltage V B detected from the bus is lower than the voltage V S obtained by dividing the output of the reference voltage generator 9 by the resistors 91 and 92, so no output is output from the comparator 8 and the magnetic switch drive unit 15 does not work. state. When the bus voltage rises and becomes V B > V S , an output is generated from the comparator 8, and the magnetic switch drive operates to turn off contact 6' and turn on contact 7', causing battery 2 to switch between shunt 16 and contact 7'. Connects to the battery only through. In other words, the battery becomes charged. After that, when the voltage drops, the operation is reversed and the original state is restored. In order to avoid unnecessary switch operations and ensure stable switching when the bus voltage changes slightly, magnets are used to provide hysteresis characteristics so that the set voltage changes when switching from discharging to charging and vice versa. A contact 80 and resistors 81, 82, 83 operated by the switch drive unit 15 are used. In the above operation, the ratio by which the output of the reference voltage generator 9 is divided is changed using the contact 14 depending on the battery discharge depth. The state shown in FIG. 3 is a state where the depth of discharge is shallow. That is, the voltage generated by the discharge flow in the shunt 16 is integrated by the integrator 10, and its output P d , which is proportional to the integrated value, and the output P S of the reference voltage generator 11 are input to the comparator 12 and compared. Since P d <P S , the contact 14 remains closed. Therefore, the voltage of the reference voltage generator becomes V S as it is, and the voltage setting value becomes higher, so that the discharge progresses as explained above. Now, when the depth of discharge becomes deeper and P d > P S ,
The output of the comparator 12 is the magnetic switch drive unit 1.
3 and opens the contact 14, the value obtained by dividing the output of the reference voltage generator 9 by the resistors 91 and 92 becomes V S , and the voltage setting value decreases, so that charging progresses as described above. Note that the integrator 10 is a reversible integrator that can perform integration by canceling out discharge and charge. It goes without saying that magnetic switches can be made contactless by using thyristors, transistors, etc. Although detailed explanations of the booster rectifier, comparator, reference voltage generator, integrator, etc. are omitted, commonly known ones can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロードレベリング用蓄電池装置の原理
図、第2図はロードレベリング用蓄電池装置の動
作説明図の一例、第3図に本考案の蓄電池装置の
一例を示す。 1……充放電制御装置、2……電池、3……直
流母線、4……放電用ブースタ、5……充電用ブ
ースタ、5′……ブースタ整流器、6,6′,7,
7′……スイツチ、9……基準電圧発生器、10
……可逆式積分器、8……比較器、11……基準
電圧発生器、12……比較器、13,15……マ
グネツトスイツチ駆動部、14……接点、16…
…シヤント。
FIG. 1 is a diagram showing the principle of a storage battery device for load leveling, FIG. 2 is an example of an explanatory diagram of the operation of the storage battery device for load leveling, and FIG. 3 is an example of the storage battery device of the present invention. DESCRIPTION OF SYMBOLS 1... Charge/discharge control device, 2... Battery, 3... DC bus, 4... Booster for discharging, 5... Booster for charging, 5'... Booster rectifier, 6, 6', 7,
7'...Switch, 9...Reference voltage generator, 10
... Reversible integrator, 8 ... Comparator, 11 ... Reference voltage generator, 12 ... Comparator, 13, 15 ... Magnetic switch drive section, 14 ... Contact, 16 ...
...Shyanto.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 母線に、放電用あるいは充電用ブースタおよび
切換スイツチ等からなる充放電制御装置を介して
電池を接続して、電力のピークカツト,ロードレ
ベリング等を行う蓄電池装置において、母線の電
圧を検出する手段と、電池の放電状態を検出する
手段と、検出された母線の電圧が、ある設定電圧
レベル以上で充電され、設定電圧レベル未満で放
電されるように電池の充放電を制御し、かつ充放
電切換操作に連動して設定電圧レベル自体が変る
ようにして、放電から充電への切換の設定電圧レ
ベルが、充電から放電への切換の設定電圧レベル
よりも高くなるように、ヒステリシス特性を持た
せる手段と、さらに電池の放電状態が、ある設定
レベル以上の場合には電池を充電させるように動
作し、設定レベル未満の場合には電池を放電させ
るように動作するように、上記母線の電圧の設定
電圧レベルを変化させる手段とからなることを特
徴とする蓄電池装置。
In a storage battery device that performs power peak cutting, load leveling, etc. by connecting a battery to the bus bar via a charging/discharging control device consisting of a discharge or charging booster, a changeover switch, etc., means for detecting the voltage of the bus bar; Means for detecting the discharge state of the battery, and controlling the charging and discharging of the battery so that the detected bus voltage is charged above a certain set voltage level and discharged below the set voltage level, and a charging/discharging switching operation. means for providing a hysteresis characteristic so that the set voltage level itself changes in conjunction with the change, so that the set voltage level for switching from discharging to charging is higher than the set voltage level for switching from charging to discharging; , Furthermore, the set voltage of the bus voltage is set such that when the discharge state of the battery is above a certain set level, the battery is charged, and when it is below the set level, the battery is discharged. A storage battery device comprising means for changing the level.
JP9738379U 1979-07-13 1979-07-13 Expired JPS635410Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9738379U JPS635410Y2 (en) 1979-07-13 1979-07-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9738379U JPS635410Y2 (en) 1979-07-13 1979-07-13

Publications (2)

Publication Number Publication Date
JPS5615251U JPS5615251U (en) 1981-02-09
JPS635410Y2 true JPS635410Y2 (en) 1988-02-15

Family

ID=29330185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9738379U Expired JPS635410Y2 (en) 1979-07-13 1979-07-13

Country Status (1)

Country Link
JP (1) JPS635410Y2 (en)

Also Published As

Publication number Publication date
JPS5615251U (en) 1981-02-09

Similar Documents

Publication Publication Date Title
EP3292018B1 (en) Hybrid energy storage system
US20090317696A1 (en) Compound battery device having lithium battery and lead-acid battery
US9166418B2 (en) Battery system and control method thereof
JPH10513601A (en) Battery pack with undervoltage (UNDER-VOLTAGE) and overvoltage (OVER-VOLTAGE) protection functions
CA2486364A1 (en) Operating method of redox flow battery and cell stack of redox flow battery
JP2002078218A5 (en) Charging circuit, charging / discharging circuit, charging method and battery pack
EP1058367A3 (en) Battery accumulating apparatus
US10845418B2 (en) Method and device for operating an energy storage cell, battery module, and vehicle
JPWO2012164630A1 (en) Power storage system
CN105226733A (en) Active-passive hybrid equalization architecture and method for battery pack
JPH02280635A (en) Charger
JP2003079059A (en) On vehicle battery pack control device
JP6305930B2 (en) Vehicle power supply for regenerative braking
JP3419115B2 (en) Battery charge / discharge protection device
JPS635410Y2 (en)
JP2001292533A (en) Battery management device for electric vehicle
CN206977128U (en) The battery protection system of new energy
KR20120124540A (en) Smart starting battery for operating the vechile starting motor
JP5359485B2 (en) Control method of all-solid-state lithium ion secondary battery
JP3409458B2 (en) Battery pack charging device
TWI655120B (en) Active discharge balance extended range device using regenerative energy and method thereof
JP2013031248A (en) Battery device hysteresis reduction system
JPH05111171A (en) Hybrid charger
CN103986202A (en) Intelligent power equalization type electric vehicle
JP2001163534A5 (en)