JPS6354083B2 - - Google Patents

Info

Publication number
JPS6354083B2
JPS6354083B2 JP57156846A JP15684682A JPS6354083B2 JP S6354083 B2 JPS6354083 B2 JP S6354083B2 JP 57156846 A JP57156846 A JP 57156846A JP 15684682 A JP15684682 A JP 15684682A JP S6354083 B2 JPS6354083 B2 JP S6354083B2
Authority
JP
Japan
Prior art keywords
pavement
surface layer
crushed stone
layer
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57156846A
Other languages
Japanese (ja)
Other versions
JPS5948504A (en
Inventor
Shinko Kikegawa
Tadao Kubota
Kazuhisa Kato
Hiroshi Tsukano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Corp Ltd
Original Assignee
Nippon Hodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hodo Co Ltd filed Critical Nippon Hodo Co Ltd
Priority to JP15684682A priority Critical patent/JPS5948504A/en
Publication of JPS5948504A publication Critical patent/JPS5948504A/en
Publication of JPS6354083B2 publication Critical patent/JPS6354083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、運動競技場或いは屋外遊戯場等に使
用される舗装体の改善に関する。 従来、この種のグランドには、例えば第1図及
び第2図に示すように構成された樹脂系グランド
及びクレイグランド等がある。 第1図に示す樹脂系グランドは、この種グラン
ドの標準的なもので、路床Aの上に、砕石(切込
砕石)61、密粒アスコン62、強化処理アスコ
ン63、ウレタン64をそれぞれ所定厚さに順次
下側から層状に舗設し、その表面にトツプコート
65を舗設した構成からなる。 しかしながら、この樹脂系グランドは、耐久性
及び表面の弾力性には優れるが通常高価であるた
め、ハイクラスの陸上競技場等にこそ使用されて
いるが、学校の校庭等一般人の為の施設に使用す
るには経済的に不適当である。また、この種グラ
ンドは人工材料であるため、どうしてもクレイグ
ランド等に較べて自然の感触に劣るという問題も
ある。 一方、第2図に示す一般的なクレイグランド
は、路床A上に、下層路盤71としての砕石(切
込砕石)と、上層路盤72としての火山砂利をそ
れぞれ層状に舗装し、さらにその上に表層73と
しての黒土と砂との混合物或いは砕石ダストとロ
ームと荒木田土との混合物を所定厚さに舗設した
構成からなる。 このクレイグランドは、適度の弾力性がありグ
ランドとしての感触に優れるとともに前記樹脂系
グランドよりも安価である。しかし、表層を軟ら
かく造ると走者のスパイクやシユーズ等により表
層土が削り取られ易く、グランドに凹凸が出き頻
繁に整備を行う必要性を生じる。また、削り取ら
れた表層土に含まれている細粒土の埃の原因とな
り易いとともに、この細粒土がグランド表面にた
まり、降雨時にはグランドや泥濘化し易いという
問題もある。 この問題を解消するため、グランド表層を例え
ばダスト舗装における表層のような比較的固い表
層で構成することもあるが、これでは全体として
のグランドが固くなり過ぎる傾向がある。即ち、
一般にグランドは排水性等を良好に維持するた
め、路床の上に路盤として砕石や火山砂利を舗設
する。そして、この砕石や火山砂利を路盤に用い
るとグランドとして固くなり易いので、その表層
には、例えば野球場では黒土と砂の混合物、テニ
スコートでは荒木田土のような比較的軟かい表層
土を使用し、グランド全体としての固さをその適
用に応じて調整しているのであるが、上記ダスト
舗装用表層は野球場やテニスコート等の表面に較
べて弾力性に劣りグランド全体として固くなり過
ぎるのである。このため、使用者の膝等に与える
衝撃が大き過ぎ使用者に悪影響を及ぼすことが多
い。 本発明はこのような従来の実状に着目してなさ
れたもので、中間層に弾力性が富んだ材料を使用
する一方、表層には比較的固くて耐削離性に優れ
かつ排水性に富んだ材料を使用することにより、
弾力性に富み、排水性、防塵性にも優れ、更には
メンテナンスの煩わしさも少なく安価で経済性に
も優れた舗装体を提供しようとするものである。 以下、本発明を図面に基づいて詳細に説明す
る。 第3図は本発明にかかる舗装体の基本的な構造
例を示し、路床(地盤)Aの上に、下層路盤1と
透水性に富む弾性材料からなる中間層2とを層状
に舗設し、該中間層2の上に透水性に優れ耐削離
性材料からなる表層3を舗設したものである。
尚、下層路盤1と中間層2との間、または中間層
2と表層3との間に、不織布等の土木用シートを
敷設したり、或いは表層補助層としてローム等を
補設しても良く、また下層路盤1を省略したもの
でも良い。 ここで、本発明の特徴である上層路盤2及び表
層3の適用材料につき、本発明者等の実験結果を
も参照して説明する。 一般に、グランドにとつて最を大切な弾力性は
グランド全体のバネ定数で表わされ、弾力性の良
いグランドのバネ定数は1500〜3500Kg/cm2の範囲
である。本発明にかかる舗装体も当該範囲内にお
さまるバネ定数を有するように材料が構成され
る。 即ち、中間層2は、特にグランド全体としての
適度な弾力性を確保するためのもので、この材料
としてゴムチツプ、プラスチツク、モミガラ、木
片チツプ、又はこれらの混合物、或いはこれらと
同効の弾性材料(バネ定数10〜1000Kg/cm2、透水
係数1×10-3cm/sec以上の性質を有する材料)
を、砕石、砂、砕石ダスト等に30〜90容積%混合
し、この混合の割合によつて弾力性を調整して形
成し、舗装体としての適度な弾力性を得るように
している。或いは、ゴムチツプとウレタンを混合
して透水性かつ弾力性に富む合成樹脂板を形成す
ることにより、同様の効果を得る構成としても良
い。 一方、表層3は、特に耐削離性に優れるととも
に排水性、防塵性、経済性にも優れ、比較的固め
で粗い粒子からなるダスト舗装用表層材等で形成
される。尚、ダスト舗装とは、砕石ダスト、或い
は砕石ダストに荒木田土又はロームを30〜70容積
%混合したものを表層材とするグランドであり、
プロクターニードル値が60〜120Lbs、透水係数
が6×10-3〜2×10-4cm/secの性質を有する。 かかる構成からなる本発明の舗装体と、従来の
各種グランドとにおける弾力性等の比較を、表A
に示す。
TECHNICAL FIELD The present invention relates to improvements to pavements used in athletic fields, outdoor play areas, and the like. Conventionally, this type of gland includes, for example, a resin gland and a Craigland constructed as shown in FIGS. 1 and 2. The resin-based ground shown in Fig. 1 is a standard one for this type of ground. Crushed stone (cut crushed stone) 61, dense-grained ascon 62, reinforced ascon 63, and urethane 64 are placed on top of the subgrade A. It consists of a structure in which layers are sequentially coated from the bottom to the thickness, and a top coat 65 is coated on the surface. However, although this resin ground has excellent durability and surface elasticity, it is usually expensive, so it is used only in high-class athletics stadiums, but it is not used in facilities for the general public such as school playgrounds. Economically unsuitable for use. Furthermore, since this type of ground is an artificial material, there is also the problem that it has a less natural feel than Craigland or the like. On the other hand, in the general Craigland shown in Fig. 2, crushed stone (cut crushed stone) is used as the lower roadbed 71 and volcanic gravel is paved as the upper roadbed 72 in layers on the roadbed A, and then The surface layer 73 is made of a mixture of black soil and sand, or a mixture of crushed stone dust, loam, and Arakita soil, which is paved to a predetermined thickness. This Craigland has appropriate elasticity, provides an excellent feel as a ground, and is cheaper than the resin-based gland. However, if the surface layer is made soft, the surface soil is likely to be scraped away by runners' spikes and shoes, creating uneven surfaces and requiring frequent maintenance. Further, there is a problem in that fine-grained soil contained in the scraped surface soil tends to cause dust, and this fine-grained soil accumulates on the surface of the ground, making it easy to turn the ground into mud during rain. In order to solve this problem, the ground surface layer may be constructed of a relatively hard surface layer, such as the surface layer of dust pavement, but this tends to make the ground as a whole too hard. That is,
Generally speaking, crushed stone or volcanic gravel is laid on top of the roadbed as a roadbed to maintain good drainage. When this crushed stone or volcanic gravel is used for the roadbed, it tends to become hard as a ground, so relatively soft surface soil is used for the surface layer, such as a mixture of black soil and sand for baseball fields, and Arakita soil for tennis courts. However, the hardness of the ground as a whole is adjusted depending on the application, but the surface layer for dust paving has less elasticity than the surfaces of baseball fields, tennis courts, etc., and the ground as a whole becomes too hard. be. For this reason, the impact on the user's knees is often too large and has a negative impact on the user. The present invention was made in view of the conventional situation, and uses a highly elastic material for the intermediate layer, while the surface layer is made of a material that is relatively hard, has excellent abrasion resistance, and has excellent drainage properties. By using different materials,
The objective is to provide a paving body that is highly elastic, has excellent drainage properties, and dustproof properties, and furthermore requires less troublesome maintenance, is inexpensive, and is excellent in economic efficiency. Hereinafter, the present invention will be explained in detail based on the drawings. FIG. 3 shows an example of the basic structure of the pavement body according to the present invention, in which a lower roadbed 1 and an intermediate layer 2 made of an elastic material with high water permeability are paved in layers on a roadbed (ground) A. A surface layer 3 made of a material with excellent water permeability and abrasion resistance is provided on the intermediate layer 2.
In addition, a civil engineering sheet such as a non-woven fabric may be laid between the lower roadbed 1 and the intermediate layer 2, or between the intermediate layer 2 and the surface layer 3, or a loam or the like may be supplemented as an auxiliary surface layer. , or the lower roadbed 1 may be omitted. Here, the applicable materials for the upper roadbed 2 and the surface layer 3, which are a feature of the present invention, will be explained with reference to the experimental results of the present inventors. Generally, the most important elasticity for a gland is expressed by the spring constant of the entire gland, and the spring constant of a gland with good elasticity is in the range of 1500 to 3500 kg/cm 2 . The pavement body according to the present invention is also made of a material having a spring constant falling within this range. That is, the intermediate layer 2 is particularly intended to ensure appropriate elasticity for the ground as a whole, and may be made of rubber chips, plastics, rice hulls, wood chips, a mixture thereof, or an elastic material with the same effect as these ( Materials with spring constant of 10 to 1000 Kg/cm 2 and water permeability of 1×10 -3 cm/sec or more)
is mixed with crushed stone, sand, crushed stone dust, etc. in an amount of 30 to 90% by volume, and the elasticity is adjusted depending on the proportion of this mixture to obtain appropriate elasticity as a pavement. Alternatively, a similar effect may be obtained by mixing rubber chips and urethane to form a synthetic resin plate with high water permeability and elasticity. On the other hand, the surface layer 3 is particularly excellent in abrasion resistance, drainage performance, dustproofness, and economy, and is formed of a surface material for dust paving made of relatively hard and coarse particles. In addition, dust pavement is ground whose surface layer material is crushed stone dust or crushed stone dust mixed with Arakida soil or loam at 30 to 70% by volume.
It has a Proctor needle value of 60 to 120 Lbs and a hydraulic conductivity of 6 x 10 -3 to 2 x 10 -4 cm/sec. Table A shows a comparison of elasticity, etc. between the pavement body of the present invention having such a configuration and various conventional grounds.
Shown below.

【表】 この表Aからも明らかなように、本発明の舗装
体は、前記中間層2をゴムチツプ等の弾性材料と
砕石等の混合割合を調整することによつてグラン
ド全体に必要な弾力性を確保するようにしている
ので、その弾力性を一般に適正とされる芝、クレ
イテニスコート、クレイ野球場等と同等のバネ定
数1500〜3500Kg/cm2に設定できる。また、本発明
の舗装体表面の固さは、前記表層3を比較的固め
で粗い粒子からなるダスト舗装表層材等で構成す
るので、ダスト舗装と同等にでき、クレイテニス
コート等に較べて固く、耐削離性に優れ、ひいて
は防塵性にも優れ、表面に凹凸もできにくいので
メンテナンスも容易で舗装体全体の耐久性にも優
れる。更に、本発明の舗装体の透水性は、表層3
と中間層2とをともに透水性に富んだ上記の如き
材料で構成したので、クレイテニスコート等に較
べ大幅に優れ、降雨時に泥濘化することもない。 また、中間層2の弾力性によつて表層3が適度
に撓むので、表層3の透水性及び表層3表面の固
さをほぼ永続的に保つことができる効果もある。 尚、上記表Aにおいて、弾力性試験とは、規定
の直径(10cm)の円形載荷板を測定面に設置し、
規定の重量(5Kg)の重錘を1mの高さから自由
落下させ、該落下した重錘によつて生じる衝撃を
ゴムバネを介して載荷板に伝え、該載荷板に伝え
られた衝撃によつて測定面に生じる最大変位量を
測定し、該測定値に基づき計算によつてバネ定数
を算定する試験である。 また、プロクターニードル試験とは、断面積1/
20inch2の円筒貫入棒を1/10inch/secの貫入速度
で1inch貫入させ、そのときの貫入抵抗値の最大
値(Lbs)で被貫入部の固さを表示するものであ
る。 次に、本発明にかかる実施例を第4図以下の図
面に基づいて説明する。 第4図に示す第1実施例の舗装体は、路床Aの
上に、ゴムチツプと砕石ダストを60:40容積%配
合した混合材料を大略15cmの厚さに舗装した中間
層11と、さらに該中間層11の上に、砕石ダス
トとロームと荒木田土を40:30:30容積%配合し
た混合材料を大略15cmの厚さに舗設した表層12
と、から構成した。 尚、本実施例によると、表層12のプロクター
ニードル値は65Lbsであり、透水係数は2×10-3
cm/secであり、また舗装体のバネ定数は2400
Kg/cm2である。 第5図に示す第2実施例の舗装体は、路床Aの
上に、破砕モミガラと砂を50:50容積%配合した
混合材料を大略15cmの厚さに舗設した中間層21
と、さらに該中間層21の上に、ローム土からな
る表層補助層22を大略10cmの厚さに、また該表
層補助層22上に砕石ダストを大略5cmの厚さに
舗設した表層23と、から構成した。 尚、本実施例によると、表層23のプロクター
ニードル値は76Lbsであり、透水係数は5×10-3
cm/secであり、また舗装体のバネ定数は2800
Kg/cm2である。 第6図に示す第3実施例の舗装体は、路床Aの
上に、大略10cmの厚さの下層路盤31と大略20cm
の厚さの中間層32とを舗設し、該中間層32の
上に大略10cmの厚さの表層33を舗設して構成し
た。この下層路盤31は砕石(切込砕石)で形成
され、中間層32は木片チツプと7号砕石を70:
30容積%配合した混合材料で形成され、また表層
33は砕石ダストとロームを60:40容積%配合し
た混合材料で形成されている。 尚、かかる舗装体は、表層33のプロクターニ
ードル値が72Lbsであり、透水係数が9×10-4
cm/secであり、また舗装体のバネ定数が3100
Kg/cm2である。 更に第7図には第4の実施例を示す。 本実施例の舗装体は、路床Aの上に、砕石(切
込砕石)を大略15cmの厚さに舗設する下層路盤4
1と、ゴムチツプとウレタンを混合した透水性か
つ弾力性に富む大略5cmの板を敷設した中間層4
2と、を形成し、かつ該中間層42の上に目詰り
を防止して良好な排水性を得るための不織布43
を敷設し、さらに砕石ダストと正土を60:40容積
%配合した混合材料からなる表層44を大略10cm
の厚さに舗設して構成した。 尚、かかる舗装体は、表層44のプロクターニ
ードル値が69Lbs、透水係数が7×10-4cm/sec
で、舗装体のバネ定数が2400Kg/cm2である。 以上説明したように、本発明の舗装体は、透水
性弾性材料からなる中間層と、透水性に富んだ耐
削離性材料からなる表層とを層状に舗設して構成
したので、弾力性はクレイグランド等と同様で適
当な弾力性を得ることができ、表面の固さはダス
ト舗装と同様で排水性、防塵性等に優れるととも
に、メンテナンスが少なくて良いものとすること
ができる。また、チツプ材の配合割合を変えて中
間層の弾力性を変えることにより、舗装体の弾力
性を使用目的に応じて自由に調整することがで
き、広範囲な使用を可能にできる。
[Table] As is clear from Table A, the pavement of the present invention has the elasticity required for the entire ground by adjusting the mixing ratio of an elastic material such as rubber chips and crushed stone in the intermediate layer 2. Therefore, its elasticity can be set to a spring constant of 1,500 to 3,500 kg/cm 2 , which is equivalent to that of grass, clay tennis courts, clay baseball fields, etc., which are generally considered appropriate. In addition, since the surface layer 3 of the present invention is made of a dust pavement surface material made of relatively hard and coarse particles, the hardness of the pavement surface of the present invention can be made equal to that of dust pavement, and is harder than that of a clay tennis court or the like. , it has excellent abrasion resistance, has excellent dust resistance, and does not easily form unevenness on the surface, so maintenance is easy and the pavement as a whole has excellent durability. Furthermore, the water permeability of the pavement of the present invention is as follows:
Since both the upper layer and the intermediate layer 2 are made of the above-mentioned materials with high water permeability, the court is much superior to clay tennis courts and the like, and does not become muddy when it rains. Further, since the surface layer 3 is appropriately bent due to the elasticity of the intermediate layer 2, there is an effect that the water permeability of the surface layer 3 and the hardness of the surface layer 3 can be maintained almost permanently. In addition, in Table A above, the elasticity test means that a circular loading plate with a specified diameter (10 cm) is installed on the measurement surface,
A weight with a specified weight (5 kg) is allowed to fall freely from a height of 1 m, and the impact generated by the falling weight is transmitted to the loading plate via a rubber spring, and the impact transmitted to the loading plate is This test measures the maximum amount of displacement that occurs on the measurement surface and calculates the spring constant based on the measured value. In addition, the Proctor needle test means that the cross-sectional area 1/
A 20 inch 2 cylindrical penetration rod is penetrated 1 inch at a penetration speed of 1/10 inch/sec, and the maximum value (Lbs) of penetration resistance at that time indicates the hardness of the penetrated part. Next, an embodiment according to the present invention will be described based on the drawings from FIG. 4 onwards. The pavement body of the first embodiment shown in FIG. 4 includes an intermediate layer 11 paved with a mixed material containing rubber chips and crushed stone dust in a ratio of 60:40 by volume to a thickness of approximately 15 cm on a subgrade A; On the intermediate layer 11, a surface layer 12 of approximately 15 cm thick is paved with a mixed material containing crushed stone dust, loam, and Arakida soil in a ratio of 40:30:30 by volume.
It was composed of. According to this example, the proctor needle value of the surface layer 12 is 65Lbs, and the hydraulic conductivity is 2×10 -3
cm/sec, and the spring constant of the pavement is 2400
Kg/ cm2 . The pavement of the second embodiment shown in FIG. 5 consists of an intermediate layer 21 on which a mixed material containing crushed rice husks and sand at a volume ratio of 50:50 is paved to a thickness of approximately 15 cm on a subgrade A.
Further, on the intermediate layer 21, a surface auxiliary layer 22 made of loam soil is approximately 10 cm thick, and a surface layer 23 is formed by paving crushed stone dust on the surface auxiliary layer 22 to a thickness of approximately 5 cm. It was composed of According to this example, the proctor needle value of the surface layer 23 is 76Lbs, and the hydraulic conductivity is 5×10 -3
cm/sec, and the spring constant of the pavement is 2800
Kg/ cm2 . The pavement body of the third embodiment shown in FIG.
An intermediate layer 32 having a thickness of 10 cm was formed, and a surface layer 33 approximately 10 cm thick was formed on the intermediate layer 32. The lower roadbed 31 is made of crushed stone (cut crushed stone), and the middle layer 32 is made of wood chips and No. 7 crushed stone.
The surface layer 33 is made of a mixed material containing crushed stone dust and loam at a ratio of 60:40 by volume. In addition, the surface layer 33 of this pavement has a Proctor needle value of 72Lbs and a hydraulic conductivity of 9×10 -4
cm/sec, and the spring constant of the pavement is 3100.
Kg/ cm2 . Further, FIG. 7 shows a fourth embodiment. The pavement of this embodiment consists of a lower roadbed 4 on which crushed stone (cut crushed stone) is paved to a thickness of approximately 15 cm on the roadbed A.
1, and an intermediate layer 4 made of a board made of a mixture of rubber chips and urethane and made of water-permeable and highly elastic material approximately 5 cm long.
2, and a nonwoven fabric 43 on the intermediate layer 42 to prevent clogging and obtain good drainage performance.
A surface layer 44 made of a mixed material containing 60:40% by volume of crushed stone dust and pure soil is laid to a depth of approximately 10 cm.
It was constructed by paving to a thickness of . In addition, the surface layer 44 of this pavement has a Proctor needle value of 69Lbs and a hydraulic conductivity of 7×10 -4 cm/sec.
The spring constant of the pavement is 2400Kg/ cm2 . As explained above, the pavement of the present invention is constructed by paving the intermediate layer made of a water-permeable elastic material and the surface layer made of a highly water-permeable and abrasion-resistant material in a layered manner. Similar to Craigland, suitable elasticity can be obtained, the surface hardness is similar to that of dust pavement, and it has excellent drainage and dustproof properties, and requires less maintenance. Furthermore, by changing the blending ratio of chips to change the elasticity of the intermediate layer, the elasticity of the pavement can be freely adjusted depending on the purpose of use, making it possible to use it over a wide range of areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ樹脂系グランド及
びクレイグランドの従来例を示す層状図、第3図
は本発明の基本構成を説明する層状図、第4図〜
第7図は本発明にかかる舗装体のそれぞれ異なる
実施例を説明する層状図である。 A……路床、1,31,41……下層路盤、
2,11,21,32,42……中間層、3,1
2,23,33,44……表層、22……表層補
助層。
FIGS. 1 and 2 are layer diagrams showing conventional examples of resin glands and Craigland, respectively. FIG. 3 is a layer diagram explaining the basic structure of the present invention, and FIGS.
FIG. 7 is a layer diagram illustrating different embodiments of the pavement body according to the present invention. A... Roadbed, 1, 31, 41... Lower roadbed,
2, 11, 21, 32, 42...Middle layer, 3, 1
2, 23, 33, 44... surface layer, 22... surface auxiliary layer.

Claims (1)

【特許請求の範囲】 1 地盤の上に、中間層と表層とを層状に舗設し
たバネ定数が1500〜3500Kg/cm2の舗装体であつ
て、前記中間層を、弾性係数が10〜1000Kg/cm2
つ透水係数が1×10-3cm/sec以上であるチツプ
材を砕石、砂又は砕石ダストに30〜90容積%混合
した材料で構成する一方、 前記表層を、透水係数が6×10-3〜2×10-4
cm/secかつプロクターニードル値が60〜120Lbs
であるダスト舗装用表層材で構成した ことを特徴とする舗装体。
[Scope of Claims] 1. A pavement having a spring constant of 1500 to 3500 Kg/cm 2 and having an intermediate layer and a surface layer paved in layers on the ground, wherein the intermediate layer has an elastic modulus of 10 to 1000 Kg/cm 2 . cm 2 and a hydraulic conductivity of 1 × 10 -3 cm/sec or more, the surface layer is composed of a material in which 30 to 90% by volume of crushed stone, sand, or crushed stone dust is mixed with chips having a hydraulic conductivity of 1 × 10 -3 cm/sec or more, while the surface layer has a hydraulic conductivity of 6 -3 ~2×10 -4
cm/sec and proctor needle value 60-120Lbs
A pavement body comprising a surface layer material for dust pavement.
JP15684682A 1982-09-10 1982-09-10 Pavement body Granted JPS5948504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15684682A JPS5948504A (en) 1982-09-10 1982-09-10 Pavement body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15684682A JPS5948504A (en) 1982-09-10 1982-09-10 Pavement body

Publications (2)

Publication Number Publication Date
JPS5948504A JPS5948504A (en) 1984-03-19
JPS6354083B2 true JPS6354083B2 (en) 1988-10-26

Family

ID=15636647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15684682A Granted JPS5948504A (en) 1982-09-10 1982-09-10 Pavement body

Country Status (1)

Country Link
JP (1) JPS5948504A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145004A (en) * 1984-08-07 1986-03-04 日瀝化学工業株式会社 Construction of pavement in athletic field
JP4766699B2 (en) * 2007-07-13 2011-09-07 隆久 折谷 Pavement method and grass prevention structure excellent in grass prevention
JP5166790B2 (en) * 2007-07-23 2013-03-21 祐一 塚田 Artificial turf base roadbed and its construction method

Also Published As

Publication number Publication date
JPS5948504A (en) 1984-03-19

Similar Documents

Publication Publication Date Title
US4337283A (en) Synthetic turf playing surface with resilient top-dressing
US3446122A (en) Elastic surfaces for sportsgrounds,playgrounds and footpaths
US4564310A (en) Resilient paving composition for playfields sports fields and recreation areas
US4389435A (en) Top dressed plating surface with resilient underpad
CA1055979A (en) Athletic playing surface with granular material between pile elements
US20050042032A1 (en) Method of constructing a multi-layered athletic field
JP2004501298A (en) Artificial lawn with resilient granular top surface layer
CA1202991A (en) Playing surfaces sports
JPS6354083B2 (en)
EP0020564A1 (en) Top dressed playing surface with resilient underpad
JP5166790B2 (en) Artificial turf base roadbed and its construction method
EP0140868B1 (en) Artificial turf playing fields
US2024158A (en) Playing court
CA1182484A (en) Synthetic turf playing surface with resilient top dressing
JPH0336961B2 (en)
JP3764240B2 (en) Pedestrian system pavement structure
JPS58110703A (en) Paving body
JPH0559204B2 (en)
JPS6294601A (en) Natural color ambient temperature mixture for pavement
JPS5996304A (en) Construction of ground such as athletic field
JPS63268802A (en) Paving ambient temperature mixture utilizing sewage sludge incinerated ash
JPS5996305A (en) Athletic field made of artificial turf
JPH0543803B2 (en)
JPH089847B2 (en) Playground surface
JPS5996308A (en) Athletic field made of artificial turf