JPS635407A - Curved line interpolating system in numerical controller - Google Patents

Curved line interpolating system in numerical controller

Info

Publication number
JPS635407A
JPS635407A JP14907086A JP14907086A JPS635407A JP S635407 A JPS635407 A JP S635407A JP 14907086 A JP14907086 A JP 14907086A JP 14907086 A JP14907086 A JP 14907086A JP S635407 A JPS635407 A JP S635407A
Authority
JP
Japan
Prior art keywords
curve
points
curved line
data
digitizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14907086A
Other languages
Japanese (ja)
Other versions
JPH0682289B2 (en
Inventor
Masahiro Asano
浅野 雅裕
Hiroshi Yamawaki
宏 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP61149070A priority Critical patent/JPH0682289B2/en
Publication of JPS635407A publication Critical patent/JPS635407A/en
Publication of JPH0682289B2 publication Critical patent/JPH0682289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To make divided measuring by a digitizer unnecessary and NC work a smooth curved surface in a short time by extracting continuous points successively out of measuring point group data measured by a digitizer and making curved line interpolation operating each of them. CONSTITUTION:Various data and commands are inputted to a curved line interpolating condition setting section 2 from the inputting device 1 of an NC unit, and division accuracy for obtaining division points dividing two measuring points by specified division number. Various data of a model measured by a digitizer are stored in an NC data memory 4. Continuous points of data between curved line interpolating point string extracted from the memory 4 are added to a freecurved line generating section 6. Further, division accuracy from a curved line interpolation setting data memory 3 is added to a curved line interpolation operation processing section 7, and curved line interpolation is made by processing continuous point string group from the generating section 6 according to prescribed division accuracy. Thus, divided measuring by a digitizer is made unnecessary, and NC working is executed in a short time.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、数値制御(NG)装置における曲線補間方式
に関し、特に3次元の自由曲面形状(以下、車に“3次
元曲面形状”という)を有するモデルの曲面におけるデ
ィジタイズデータの曲線補間方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a curve interpolation method in a numerical control (NG) device, and in particular to a method for applying a three-dimensional free-form surface shape (hereinafter referred to as a "three-dimensional curved surface shape" to a vehicle). This invention relates to a curve interpolation method for digitized data on a curved surface of a model.

(発明の技術的背景とその問題点) 従来からNC装置を用いて加工する際には、モデル形状
をディジタイザ−で測定した後、当該測定点群データを
元にして°“輪郭制御”方式を用いてNG加工データが
作成されるようになっている。この“輪郭制御”方式に
おいては、単に、測定点データを与えるだけで指令の線
に沿ってNG加工できるように、すなわち、当該測定点
間を傾いた線分や円弧に沿って工具が移動できるように
、“直線補間”又は”円弧補間”等の機能が用いられて
いる。
(Technical background of the invention and its problems) Conventionally, when processing using an NC device, after measuring the model shape with a digitizer, a "contour control" method is applied based on the measured point cloud data. NG processed data is created using this method. In this "contour control" method, it is possible to perform NG machining along the commanded line simply by providing measurement point data, in other words, the tool can be moved along an inclined line segment or circular arc between the measurement points. Functions such as "linear interpolation" or "circular interpolation" are used.

ところが、−般の3次元曲面形状を有するモデルをNG
加工する際には、従来から上記°°直線補間“機能を用
いてNC加工データが作成されているため、上記測定点
間を補間した線分に沿ってNC加工が行なわれ、その加
工面は複数の線分で分割された複数の平面となってしま
い、モデル形状のように滑らかな曲面を加工できないと
いう問題点があった。
However, the model with the general three-dimensional curved shape is NG.
When machining, NC machining data has traditionally been created using the above-mentioned "degree linear interpolation" function, so NC machining is performed along the line segment interpolated between the measurement points, and the machined surface is This results in multiple planes divided by multiple line segments, which poses the problem of not being able to process smooth curved surfaces like model shapes.

第4図 (A)及び(B)は、上述のような一般の3次
元曲面形状を有するモデルをNC加工する際に従来から
用いられている上記“°直線補間”機能の一例を示す図
であり、同図(A)は上記測定、4の間隔を広く、すな
わちディジタイズデータが少なく測定が荒い場合の例を
示しており、同図(B)は上記測定点の間隔を細かく、
すなわちディジタイズデータが多く測定が細かい場合の
例を示している。
Figure 4 (A) and (B) are diagrams showing an example of the above-mentioned "degree linear interpolation" function that has been conventionally used when NC machining a model having a general three-dimensional curved surface shape as described above. The figure (A) shows an example in which the intervals in measurement 4 are widened, that is, the digitized data is small and the measurements are rough, and the figure (B) shows an example in which the intervals between the measurement points are made finer.
In other words, an example is shown in which there is a lot of digitized data and the measurements are detailed.

第4図(A)に示すように、本来のモデル形状の一断面
MO(図示点線部)に対して、ディジタイザ−により得
られた測定点01.D2.D3,04゜D5.・・・を
元にしてNC加工データを作成する場合、上記測定点D
1.D2.D3.D4.D5.・・・間がそれぞれ傾い
た線分(図示実線部)で補間されるので、当該NC加工
データを元にしてNC加工を行なうと、図示斜線部で示
すようにいわゆる“食込み”Wl、W2.W3や°゛削
り残し”W4が大きく発生してしまうことになる。そこ
で、上記“食込み”Wl、W2J3が発生しそうな部位
には予め制限値を設けておき、所定量以上には加工しな
いようにして“食い込み”が発生しないようにしなけれ
ばならず、その加工精度が問題となる上に、当該部位の
仕上げ加工の工数が増加するという問題点があった。
As shown in FIG. 4(A), measurement points 01. D2. D3,04°D5. When creating NC machining data based on..., the above measurement point D
1. D2. D3. D4. D5. . . . are interpolated by inclined line segments (solid line portions in the figure), so when NC machining is performed based on the NC machining data, so-called "intrusion" Wl, W2, W2, . This will result in a large amount of W3 and "uncut" W4.Therefore, limit values are set in advance for areas where the above-mentioned "cutting in" Wl and W2J3 are likely to occur, to prevent machining beyond a predetermined amount. It is necessary to prevent "biting" from occurring, which poses a problem of not only the machining accuracy but also the number of man-hours required for finishing machining of the part concerned.

そこで、第4図(B)に示すように上記モデル形状の一
断面MOをより細かく分割して測定し、当該測定点01
1〜D25.・・・間をそれぞれ傾いた線分で補間する
と、その加工精度は大幅に向上しモデル形状に近似した
曲面を加工できるようになるが、この場合、当該測定点
、すなわちディジタイズデータが増え、その都度測定す
るためにその処理の手間が大変な上に多くの時間がかか
るという問題点があった。
Therefore, as shown in FIG. 4(B), one cross-section MO of the above model shape was divided into smaller parts and measured, and the measurement point 01
1-D25. ...If the intervals are interpolated with inclined line segments, the machining accuracy will be greatly improved and it will be possible to machine curved surfaces that approximate the model shape, but in this case, the number of measurement points, that is, the digitized data, will increase, and the number of digitized data will increase. There is a problem in that the processing is laborious and takes a lot of time because the measurement is performed each time.

(発明の目的) 本発明は上述のような事情からなされたものであり、本
発明の目的は、−般の3次元曲面形状を有するモデルを
NC加工する際に、ディジタイザ−で細かく分割して測
定することなく、測定した測定点群データを元にしてモ
デル形状に近似した滑らかな曲面を再現できるようにし
たNC装者における曲線補間方式に関する6(発明の概
要) 本発明は、NG装置における曲線補間方式に関し、3次
元の自由曲面形状を有するモデルをディジタイザ−を用
いて測定した後、当該測定点のうち連続する4点を順次
抽出し、当該4測定点のうち第1.第2及び第3の測定
点を通る第1の自由曲線と、上記第2.上記第3及び第
4の測定点を通る第2の自由曲線とを生成して、上記第
2及び上記第3の測定点間において上記第1の自由曲線
及び上記第2の自由曲線を混ぜ合せ、予め設定しておい
た当該測定点間の分割精度に従い、上記第2及び上記第
3の測定点間においてX、Y、Zの補間データを算出し
て作成するようにしたものである。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to divide a model having a general three-dimensional curved shape into fine pieces using a digitizer when performing NC processing. 6 (Summary of the Invention) The present invention relates to a curve interpolation method for an NC user that can reproduce a smooth curved surface that approximates a model shape based on measured measurement point cloud data without measurement (Summary of the Invention) Regarding the curve interpolation method, after measuring a model having a three-dimensional free-form surface shape using a digitizer, four consecutive points are sequentially extracted from among the four measuring points, and the first... a first free curve passing through the second and third measurement points; A second free curve that passes through the third and fourth measurement points is generated, and the first free curve and the second free curve are mixed between the second and third measurement points. , X, Y, and Z interpolation data are calculated and created between the second and third measurement points according to preset division accuracy between the measurement points.

(発明の実施例) 本発明の曲線補間方式においては、ディジタイザ−で測
定された離散している測定点群を、2次Bezier曲
線等の自由曲線の混ぜ合せを用いて、滑らかな曲線に近
似できるように当該測定点群を曲線補間する。すなわち
、当該測定点群を補間した2次Bezier曲線の混ぜ
合せ曲線における、所定の分割精度で分割された分割点
毎のデータを演算して求めることにより上記曲線補間を
実現するようにしている。
(Embodiment of the invention) In the curve interpolation method of the present invention, a group of discrete measurement points measured by a digitizer is approximated to a smooth curve by using a mixture of free curves such as a quadratic Bezier curve. Curve interpolation is applied to the measurement points so that That is, the above-mentioned curve interpolation is realized by calculating and obtaining data for each division point divided with a predetermined division accuracy in a mixture curve of quadratic Bezier curves obtained by interpolating the measurement point group.

第1図は本発明方式を実現するNG装置の概略を示すブ
ロック構成図であり、1は各種データや指令を人力する
キーボード等から成る人力装置であり、2は、補間する
2測定点間の分割データを求めるために、当該2測定点
間を所定の分割数で分割した各分割点を求めるための分
割精度を規定する曲線補間条件設定部であり、3は上記
曲線補間条件設定部2で設定された当該分割精度等を記
憶しておく曲線補間設定データメモリである。ここにお
いて、上記曲線補間条件設定部2で設定された当該分割
精度等は、CRT表示画面9にも表示されて目視確認さ
れるようになっている。−方、4は図示しないディジタ
イザ−により測定されたモデルの各種測定データ(ディ
ジタイズデータ等)を記憶しているNCデータメモリで
あり、5は上記NCデータメモリ4に記憶されている測
定データのうち、測定点列データだけを抽出して記憶し
ておく曲線補間点列データメモリであり、6は上記曲線
補間点列データメモリ5に記憶されている測定点列デー
タより、連続する4測定点を抽出し、当該4測定点のう
ち隣接する3点(第1.第2及び第3の点、及び第2.
第3及び第4の点)により2本の自由曲線を生成する自
由曲線生成部である。そして、7は後述するようにして
、上記自由曲線生成部6で生成された2木の自由曲線が
存在する連続する4点(第1.第2.第3及び第4の点
)間の中間の2点(第2及び第3の点)において、上記
曲線補間設定データメモリ3に記憶された分割精度に従
い、当該2木の自由曲線を混ぜ合せ、X、Y、Zの補間
データを算出する曲線補間演算処理部であり、8は上記
曲線補間演算処理部7で算出されたX、Y、Zの補間デ
ータと、原点オフセット値及び工具オフセット値等とを
加味して、 X、Y、Z各軸制御指令値を発生するX、
Y、Z関数発生部である。また、10は上記X、Y、Z
関数発生部8で発生されたX、Y、Z各軸制御指令値に
従い、X、Y、Z制御軸11を駆動して所定のNC加工
を実行させるX、Y、Z制御軸駆動部である。
FIG. 1 is a block configuration diagram showing an outline of the NG device that realizes the method of the present invention. 1 is a human-powered device consisting of a keyboard etc. for manually inputting various data and commands, and 2 is a human-powered device between two measurement points to be interpolated. 3 is a curve interpolation condition setting section that defines the division accuracy for obtaining each division point obtained by dividing the two measurement points by a predetermined number of divisions in order to obtain division data; 3 is the curve interpolation condition setting section 2; This is a curve interpolation setting data memory that stores the set division accuracy and the like. Here, the division accuracy and the like set by the curve interpolation condition setting section 2 are also displayed on the CRT display screen 9 for visual confirmation. On the other hand, 4 is an NC data memory that stores various measurement data (digitized data, etc.) of the model measured by a digitizer (not shown), and 5 is among the measurement data stored in the NC data memory 4. , is a curve interpolation point sequence data memory that extracts and stores only the measurement point sequence data, and 6 is a curve interpolation point sequence data memory that extracts and stores only the measurement point sequence data. Out of the four measurement points, adjacent three points (first, second and third points, and second...
This is a free curve generation unit that generates two free curves based on the third and fourth points). 7 is the intermediate point between four consecutive points (first, second, third, and fourth points) where two free curves generated by the free curve generator 6 exist, as will be described later. At the two points (second and third points), the free curves of the two trees are mixed according to the division accuracy stored in the curve interpolation setting data memory 3, and the interpolated data of X, Y, and Z is calculated. A curve interpolation calculation processing unit 8 calculates X, Y, and Z by taking into account the X, Y, and Z interpolation data calculated by the curve interpolation calculation processing unit 7, the origin offset value, the tool offset value, etc. X, which generates each axis control command value;
This is a Y, Z function generation section. Also, 10 is the above X, Y, Z
This is an X, Y, and Z control axis drive section that drives the X, Y, and Z control axes 11 to execute predetermined NC machining according to the X, Y, and Z axis control command values generated by the function generation section 8. .

以上のような構成のNG装置において、上記曲線補間演
算IA埋部7におけるX、Y、Zの補間データ算出方法
について以下に説明する。
In the NG device having the above configuration, a method for calculating the X, Y, and Z interpolated data in the curve interpolation calculation IA embedding section 7 will be described below.

第3図(A)はディジタイザ−で測定された測定点群(
Pl) (i−1,N)のうち連続する4点PI。
Figure 3 (A) shows a group of measurement points (
Pl) PI of 4 consecutive points among (i-1, N).

7+1.Plや2.PI+3の一例を示す図であり、ま
ず、当該4点P1・P1◆I+PI・2・p、・3のう
ち・最初の3点p、、p、・l*Pl*2と、最後の3
点P t+1 +P 142.P L43とをそれぞれ
図示点線で示す2次Bexier曲線に近似した第1の
2次Bazier曲線Rt(u)と、第2の2次Bez
ier曲線n+、+(v> とを求める。
7+1. Pl and 2. This is a diagram showing an example of PI+3. First, among the four points P1, P1◆I+PI, 2, p, and 3, the first three points p,, p, and l*Pl*2, and the last three
Point P t+1 +P 142. A first quadratic Bazier curve Rt(u), which approximates P
Find the ier curve n+, +(v>).

ここにおいて、上記第1の2次Bezier曲線R1(
u)は R,(0)・Pi、Rt(0,5)−P+*+、 Rt
(1)・P【、2とし、上記第2の2次Bezier曲
線R+++(V)はI(I+、(0)−P、。1.R1
゜+(0,5)−P+や2゜R+++(1)=hや。
Here, the first quadratic Bezier curve R1 (
u) is R, (0)・Pi, Rt(0,5)−P+++, Rt
(1) · P
゜+(0,5)-P+ or 2゜R+++(1)=h.

とする。shall be.

このような第1の2次Bezier曲線R1(u)  
と第2の2次Bezier曲線n+、+(v)  とを
混ぜ合せると、当該同曲線が重なる点Pl++、P1*
2間において、次式で表されるような混ぜ合せた曲線C
(t)を求めることができる(図示実線)。
Such a first quadratic Bezier curve R1(u)
and the second quadratic Bezier curve n+, +(v), the points where the same curves overlap are Pl++, P1*
2, a mixed curve C as expressed by the following formula
(t) can be obtained (solid line shown).

C(t)=(1−t) 4+ (u)+t・Rt、+ 
(v)     ++++ (1)ここにおいて、tは
上記分割精度により分割数に応じて応0〜1の間の分割
された数値と成り、そ[)て、上記混ぜ合せた曲線C(
t)はC(0)峠+ (0,5)−Rtや+(0)−h
□C(1)−R11l)−Rt、+ (o、5)−p+
や。
C(t)=(1-t) 4+ (u)+t・Rt,+
(v) +++++ (1) Here, t becomes a divided numerical value between 0 and 1 depending on the number of divisions depending on the division accuracy, and the above-mentioned mixed curve C (
t) is C(0) pass + (0,5)-Rt or +(0)-h
□C(1)-R11l)-Rt, + (o, 5)-p+
or.

となる。そこで、t、u、vは線形であるとすると、次
式が成立する。
becomes. Therefore, assuming that t, u, and v are linear, the following equation holds true.

一方、上記第1の2次Bezier曲線R+(u)及び
上記第2の2次Bezier曲線R1l (V)は、そ
れぞれ2次Bezier曲線であるから、制御点Q1を
用いて次式のように表すことができる。
On the other hand, since the first quadratic Bezier curve R+(u) and the second quadratic Bezier curve R1l (V) are each quadratic Bezier curves, they can be expressed as follows using the control point Q1. be able to.

R1(u)−(t−u)’−oA+2(t−u) ・u
−Qi+u”Q4R+++(ν)−(1−V)2・QA
”+2(1−v)−v−Qiol、v2.q4+1  
         、・、、、・(3)そこで、上記(
1) 、 (2) 、 (31式より上記混ぜ合せた曲
線C(0は制御点q]を用いて次式のように表すことが
できる。
R1(u)-(t-u)'-oA+2(t-u) ・u
-Qi+u"Q4R+++(ν)-(1-V)2・QA
”+2(1-v)-v-Qiol,v2.q4+1
, , , , , (3) Therefore, the above (
1) , (2) , (From Equation 31, it can be expressed as the following equation using the above-mentioned mixed curve C (0 is the control point q).

C(t) −(1−t) ・Ri (u)+t−Ri、
I (V)・ (1−t)  ((l−u)2・QA◆
2(1−u)・u−Qi・u’ ・Q4  1”  (
(l−v) 2・Qo”2 (1−v) ・v−Qio
l + v 2 、 q li゛l  ]−方、上記(
3)式において、上記%lの2次Bezier曲線11
1(u)  は Ri (0)−QA−P+、 Ri fl)・QA・P
lや、。
C(t) −(1−t) ・Ri (u)+t−Ri,
I (V)・(1-t) ((lu-u)2・QA◆
2(1-u)・u-Qi・u'・Q4 1" (
(l-v) 2・Qo”2 (1-v) ・v-Qio
l + v 2 , q li゛l ] - the above (
3) In the formula, the quadratic Bezier curve 11 of the above %l
1(u) is Ri (0)-QA-P+, Ri fl)・QA・P
l or.

R1や+ (o)−QA”・Pl、。R1 and +(o)-QA”・Pl.

nt、+o)−qA″’−P1*3 となる。そこで、第3図(ロ) に示すように上記4測
定点P+、h−+、h。2+P:+3と$制御点Qシと
の関係は、 qE−(4・P1++−PI−P++2)q!”−(4
・P1+2−P1*ビPt−*)PI◆1+P1中3 −pt◆2” P++2−□ ・・・・・・(5) と求まる。
nt. The relationship is qE-(4・P1++-PI-P++2)q!"-(4
・P1+2-P1*BiPt-*) PI◆1+3 in P1 -pt◆2" P++2-□ ......(5) is found.

そこで、上記(4) 、 (5)式より、上記混ぜ合せ
た曲線C(t)は次式のように表すことができる。
Therefore, from the above equations (4) and (5), the above-mentioned mixed curve C(t) can be expressed as the following equation.

ここにおいて、この(昆ぜ合せた曲線C(シ)はその内
部点において1次微係数が連続である。そこで、上記(
1) 、 (2)式より次式が求まる。
Here, the first-order differential coefficient of this (combined curve C) is continuous at its internal points. Therefore, the above (
The following equation can be found from equations 1) and (2).

C(t) −R+ (ul +しくft+ −+ (v
)−J (u))ここにおいて、1−0ではv−0,u
−0,5であるから、R,やI ((1) −Rt +
0.5)・P、。1であり、又t−1ではv=0.5.
u−1であるから、口+−+(0,5)−11,(1)
”h42である。よって、 となり、上記4測定点P+、P、*1.P1+2.P1
*3のうち点P1゜1.P++2間について1次微係数
まで連続にその曲線補間を行なうことかできる。そして
、このような曲線補間を、次の4測定点P、、、、Pし
2+PL”3+Pi+4について実施し点Pi*2*P
1やコを曲線補間するという動作を繰返すことにより、
全測定点について曲線補間を終了する。
C(t) −R+ (ul + ft+ −+ (v
)-J (u)) Here, for 1-0, v-0,u
Since −0,5, R, and I ((1) −Rt +
0.5)・P. 1, and at t-1 v=0.5.
Since it is u-1, mouth+-+(0,5)-11,(1)
"h42. Therefore, the above four measurement points P+, P, *1.P1+2.P1
*Point P1゜1 out of 3. It is possible to continuously perform curve interpolation up to the first-order differential coefficient between P++2. Then, such curve interpolation is performed for the following four measurement points P, 2+PL"3+Pi+4, and the point Pi*2*P
By repeating the operation of interpolating curves 1 and ,
Finish curve interpolation for all measurement points.

以上のような曲線補間動作について、第2図のフローチ
ャートを用いて以下に詳細に説明する。
The above-described curve interpolation operation will be explained in detail below using the flowchart shown in FIG.

まず、上記人力装置1を操作して求める曲線補間の精度
(分割数等)を°入力すると、上記曲線補間条件設定部
2で設定された分割精度が上記曲線補間設定データメモ
リ3に記憶される(ステップSl)。−方、上記NCデ
ータメモリ4に記憶されている測定点群データのうち、
第3図(A)に示すようにまず最初に補間すべき連続す
る4点P1.P1*1.PHや2.Plや。の点列デー
タを抽出して上記曲線補間点列データメモリ5に記憶す
る(ステップ52)。そこで、上記自由曲線生成部6に
おいて、上述のように2次BeZier曲線を用いて、
上記4点p、、p、や1.P、や2+Pl+3のうち最
初の3点P1.jl+1 、P1+2を通る第1の自由
曲線と、最後の3点p、□、PI+2.PI+3を通る
第2の自由曲線とを生成しくステップS3)、上記曲線
補間演算処理部7において、上述のように2次Bezi
er曲線の混ぜ合せを用いて、上記4点のうち中間の2
点P1+1.PL。2を通る当該2木の自由曲線を混ぜ
合せ、上記曲線補間データメモリ3に設定された分割精
度に従い当該2点P、。、。
First, when the precision of curve interpolation (number of divisions, etc.) to be obtained is input by operating the human-powered device 1, the division precision set by the curve interpolation condition setting section 2 is stored in the curve interpolation setting data memory 3. (Step Sl). - On the other hand, among the measurement point group data stored in the NC data memory 4,
As shown in FIG. 3(A), first, four consecutive points P1 to be interpolated. P1*1. PH and 2. Pl. point sequence data is extracted and stored in the curve interpolation point sequence data memory 5 (step 52). Therefore, the free curve generation section 6 uses the quadratic BeZier curve as described above,
The above four points p,, p, and 1. P, the first three points of 2+Pl+3 P1. jl+1, the first free curve passing through P1+2, and the last three points p, □, PI+2. In step S3), the curve interpolation calculation processing section 7 generates a second free curve passing through PI+3.
Using a mixture of er curves, the middle 2 of the above 4 points
Point P1+1. P.L. 2, the free curves of the two trees that pass through P are combined, and the two points P are obtained according to the division precision set in the curve interpolation data memory 3. ,.

PI+12間のX、Y、Z補間データを算出する(ステ
ップ54)。そして、上記X、Y、Z関数発生部8が当
該X、Y、Z補間データに原点オフセット値及び工具オ
フセット値等を加味してX、Y、Z各軸制御指令値を算
出しくステップS5)、上記X、Y、2制御軸駆動部l
Oを介してX、Y、Z制御軸11を駆動させる(ステッ
プ56)。そして、上記補間すべき測定点が残っていれ
ば(ステップS7)、上記ステップS2に戻って次の連
続する4測定点(この場合は、点P1゜1.7+2.P
I。3.Pi+4)を抽出して補間処理し、さらに上記
ステップ52〜S7を繰返すことにより、ディジタイザ
−で測定された全測定点を曲線補間して終了する。
X, Y, Z interpolation data between PI+12 is calculated (step 54). Then, the X, Y, Z function generating section 8 calculates the control command values for each of the X, Y, and Z axes by adding the origin offset value, tool offset value, etc. to the X, Y, and Z interpolation data (step S5). , the above X, Y, 2 control axis drive unit l
The X, Y, and Z control axes 11 are driven via O (step 56). If the measurement points to be interpolated remain (step S7), the process returns to step S2 and the next four consecutive measurement points (in this case, point P1°1.7+2.P
I. 3. Pi+4) is extracted and subjected to interpolation processing, and the steps 52 to S7 described above are further repeated to perform curve interpolation on all measurement points measured by the digitizer, and the process ends.

第5図は、このようにしてディジタイザで測定された全
測定点DDI−DDIO(その座標値の一例を同図に示
す)が曲線補間された軌跡の一例を示す図であり、上述
のように、まず測定点001.DD2.DD3から求め
た第1の自由曲線B1(−八〇)と、測定点DD2 、
DD3 、DD4から求めた第2の自由曲線B2 (−
C1)  とを混ぜ合せ、測定点D112 。
FIG. 5 is a diagram showing an example of a trajectory obtained by curve interpolation of all measurement points DDI-DDIO (an example of the coordinate values are shown in the figure) measured by the digitizer in this way, and as described above. , first measurement point 001. DD2. The first free curve B1 (-80) obtained from DD3 and the measurement point DD2,
The second free curve B2 (-
C1) and measurement point D112.

DD3間において、図示実線で示す軌跡80を生成する
。次に上記第2の自由曲線C1(−82) と、測定点
DD3 、DD4 、DD5から求めた第3の自由曲線
C2とを混ぜ合せ、測定点DD3.DD4間において、
図示実線で示す軌跡GOを生成する。そして、以下同様
にこれらの動作を全測定点間について繰返すことにより
、第5図に示すように、全測定点間を図示実線で示すよ
うな軌跡により曲線補間して求めることができるように
なる。
Between DD3, a trajectory 80 shown by a solid line in the figure is generated. Next, the second free curve C1 (-82) and the third free curve C2 obtained from the measurement points DD3, DD4, and DD5 are mixed, and the measurement point DD3. Between DD4,
A trajectory GO shown by a solid line in the figure is generated. Then, by repeating these operations between all measurement points, it becomes possible to interpolate curves between all measurement points using the trajectory shown by the solid line in the figure, as shown in Figure 5. .

(発明の効果) 以上のように本発明方式によれば、−般の3次元曲面形
状を有するモデルをNG加工する際に、ディジタイザ−
で測定した測定点群データのうち連続する4点を順次抽
出し、それぞれ演算して曲線補間することにより、ディ
ジタイザ−で細かく分割して測定することなく、従来ど
おりの簡単な操作でモデル形状に近似した滑らかな曲面
を短時間でNG加工により再現できるようになる。
(Effects of the Invention) As described above, according to the method of the present invention, when performing NG processing on a model having a general three-dimensional curved surface shape, the digitizer
By sequentially extracting four consecutive points from the measurement point cloud data measured by the digitizer, calculating each point, and interpolating the curve, it is possible to create a model shape with the same simple operations as before, without having to divide it into smaller pieces with a digitizer and measure it. Approximately smooth curved surfaces can be reproduced in a short time by NG processing.

施例の概略を示すブロック構成図、第2図は本発明方式
の動作例を説明するためのフローチャート、第3図(A
) 、 (B)及び第5図は本発明方式を説明するため
の図、第4図 (A)及び(B)は従来の補間方式の一
例を説明するための図である。
FIG. 2 is a block diagram showing the outline of the embodiment, FIG. 2 is a flowchart for explaining an example of the operation of the system of the present invention, and FIG.
), (B) and FIG. 5 are diagrams for explaining the method of the present invention, and FIGS. 4 (A) and (B) are diagrams for explaining an example of the conventional interpolation method.

l・・・入力装置、2・・・曲線補間条件設定部、3・
・・曲線補間設定データメモリ、4・・・NCデータメ
モリ、5・・・曲線補間点列データメモリ、6・・・自
由曲線生成部、7・・・曲線補間演算処理部、8・ X
、Yj関数発生部、9 ・<RT 、 10−X、Y、
Z制御軸駆動部、11・・・X、Y、Z制御軸。
l...input device, 2...curve interpolation condition setting section, 3.
...Curve interpolation setting data memory, 4...NC data memory, 5...Curve interpolation point sequence data memory, 6...Free curve generation section, 7.Curve interpolation calculation processing section, 8.
, Yj function generator, 9 ・<RT, 10-X, Y,
Z control axis drive unit, 11...X, Y, Z control axes.

出願人代理人  安 形 雄 三 吊2図 吊3図 胃4 N=−と15 第   4   図Applicant's agent: Yuzo Angata Hanging diagram 2 Hanging diagram 3 stomach 4 N=- and 15 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 3次元の自由曲面形状を有するモデルをディジタイザー
を用いて測定した後、当該測定点のうち連続する4点を
順次抽出し、当該4測定点のうち第1、第2及び第3の
測定点を通る第1の自由曲線と、前記第2、前記第3及
び第4の測定点を通る第2の自由曲線とを生成して、前
記第2及び前記第3の測定点間において前記第1の自由
曲線及び前記第2の自由曲線を混ぜ合せ、予め設定して
おいた当該測定点間の分割精度に従い、前記第2及び前
記第3の測定点間においてX、Y、Zの補間データを算
出して作成するようにしたことを特徴とする数値制御装
置における曲線補間方式。
After measuring a model having a three-dimensional free-form surface shape using a digitizer, four consecutive points are sequentially extracted from among the four measurement points, and the first, second, and third measurement points are extracted from among the four measurement points. and a second free curve passing through the second, third and fourth measurement points, and generating the first free curve between the second and third measurement points. and the second free curve, and interpolated X, Y, and Z data between the second and third measurement points according to the preset division accuracy between the measurement points. A curve interpolation method for a numerical control device, characterized in that the curve is created by calculation.
JP61149070A 1986-06-25 1986-06-25 Curve interpolation method in numerical controller Expired - Fee Related JPH0682289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149070A JPH0682289B2 (en) 1986-06-25 1986-06-25 Curve interpolation method in numerical controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149070A JPH0682289B2 (en) 1986-06-25 1986-06-25 Curve interpolation method in numerical controller

Publications (2)

Publication Number Publication Date
JPS635407A true JPS635407A (en) 1988-01-11
JPH0682289B2 JPH0682289B2 (en) 1994-10-19

Family

ID=15467028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149070A Expired - Fee Related JPH0682289B2 (en) 1986-06-25 1986-06-25 Curve interpolation method in numerical controller

Country Status (1)

Country Link
JP (1) JPH0682289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200410A (en) * 1988-02-05 1989-08-11 Fanuc Ltd Program generating method and program data input device
WO1989009954A1 (en) * 1988-04-08 1989-10-19 Fanuc Ltd Method and apparatus for generating spatial curve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672704A (en) * 1979-11-19 1981-06-17 Koyo Seiko Co Ltd Determining method for profiling work information of profiling work system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672704A (en) * 1979-11-19 1981-06-17 Koyo Seiko Co Ltd Determining method for profiling work information of profiling work system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200410A (en) * 1988-02-05 1989-08-11 Fanuc Ltd Program generating method and program data input device
WO1989009954A1 (en) * 1988-04-08 1989-10-19 Fanuc Ltd Method and apparatus for generating spatial curve

Also Published As

Publication number Publication date
JPH0682289B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
Lin Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools
EP0770941B1 (en) Method and device for interpolating free-form surface
WO1982003474A1 (en) Digital control machining method
JPH0252283B2 (en)
JPS6190206A (en) Nc data making device for die machining
JPS62264307A (en) Normal line vector arithmetic method
JPS635407A (en) Curved line interpolating system in numerical controller
JPH0457008B2 (en)
US5175689A (en) Apparatus for processing tool path to obtain workpiece examination data
JPH096424A (en) Cad and cam device and working simulation method
EP1398683A2 (en) Method and system for generating numerically controlled tool paths on a solid model
EP0303706A1 (en) Method of generating curved surfaces
Kawalec et al. An influence of the number of measurement points on the accuracy of measurements of free-form surfaces on CNC machine tool
JPS62169210A (en) System for generating tool locus in nc data generating device
JPH0728514A (en) Machine error deriving method
JPS62106505A (en) Preparing device for numerical control data for working of 3-dimensional form
KR100263442B1 (en) The method of self-compensation for robot cell using the data of size of manufactured articles
JPH0619992A (en) Cad system
JPS62235606A (en) Nc data originating method for composite curved surface
JPH01120604A (en) Numerically controlled working method
EP0146629B1 (en) Apparatus for controlling profiling
JPH0827184B2 (en) Free-form surface generation method
JPS60214010A (en) Control system for interlocking between industrial robot and slider
JPH05228790A (en) Correcting method for machine parameter of machine tool and device thereof
JPH01244506A (en) Digitizing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees