JPS6353989A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6353989A
JPS6353989A JP19754486A JP19754486A JPS6353989A JP S6353989 A JPS6353989 A JP S6353989A JP 19754486 A JP19754486 A JP 19754486A JP 19754486 A JP19754486 A JP 19754486A JP S6353989 A JPS6353989 A JP S6353989A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor laser
refractive index
stimulated emission
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19754486A
Other languages
Japanese (ja)
Inventor
Yoshinori Takeuchi
喜則 武内
Masaaki Oshima
大島 正晃
Nobuyasu Hase
長谷 亘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19754486A priority Critical patent/JPS6353989A/en
Publication of JPS6353989A publication Critical patent/JPS6353989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To vary an oscillation wavelength of a semiconductor laser easily while maintaining the state of longitudinal simple mode oscillation thereof by a construction wherein a laminate of a number of specific fundamental units is employed for a part of the structure of a semiconductor laser active layer or a semiconductor laser resonator. CONSTITUTION:A fundamental unit is prepared by laminating five layers of first thin films 1-1 and third thin films 1-3 and by laminating five layers of fourth thin films 1-4 and second thin films 1-2 in such a manner that the film 1-1 and the film 1-4 contact with each other. The refractive index of the films 1-1 and 1-3 is set to be slightly larger than 3. 4, while the refractive index of the films 1-2 and 1-4 is set to be slightly smaller than 3.4. The peak wavelength of a stimulated emission gain of the films 1-1, 1-2, 1-3 and 1-4 is about 1. 3 mum. The stimulated emission gains of a section (a) and a section (b) are made to differ from each other. The fundamental unit thus prepared is employed for a part of the structure of a semiconductor laser active layer or a semiconductor laser resonator. This construction enables the easy variation of an oscillation wavelength of a semiconductor laser.

Description

【発明の詳細な説明】 産業上の利用分野 大容量光通信に不可欠な分布帰還型(DFB)レーザ、
分布反射型(DBR)レーザに関するものである。
[Detailed description of the invention] Distributed feedback (DFB) lasers, which are essential for industrial applications and large-capacity optical communications,
The present invention relates to a distributed reflection type (DBR) laser.

従来の技術 現在、安定な縦シングルモード発振を達成できる半導体
レーザとして、DBRレーザやDFBレーザ等の光学的
周期構造をその共振器構造中&て有する半導体レーザが
、一般的となってきた(光通信素子工学、米津宏雄著、
工学図書刊、参照)。
2. Prior Art Currently, semiconductor lasers that have an optical periodic structure in their resonator structure, such as DBR lasers and DFB lasers, have become common as semiconductor lasers that can achieve stable longitudinal single mode oscillation (optical Communication device engineering, written by Hiroo Yonezu,
Published by Kogaku Tosho (Reference).

また、第3図に示す様に、半導体多層反射膜3−1で構
成された光学的周期構造とその上部に活性層3−2およ
びクラッド層3−3を積層した面発光DBRレーザも提
案されている(電子通信学会技術研究報告0QE84−
127参照)。
Furthermore, as shown in FIG. 3, a surface-emitting DBR laser has been proposed, which has an optical periodic structure composed of a semiconductor multilayer reflective film 3-1, and an active layer 3-2 and a cladding layer 3-3 laminated on top of the optical periodic structure. (IEICE technical research report 0QE84-
127).

従来、半導体レーザに応用されている光学的周期構造は
、単一周期のものと周期構造中央部でA波長だけ位相を
ずらせた単一周期のものの2種である。これらの光学的
周期構造は、安定な縦シングルモード発振実現に、大き
な効果を示す。特に、長波長通信用半導体レーザでは、
その効果は顕著であり、通常の縦マルチモード発振が抑
制される。
Conventionally, there are two types of optical periodic structures applied to semiconductor lasers: a single-period structure and a single-period structure in which the phase is shifted by wavelength A at the center of the periodic structure. These optical periodic structures are highly effective in realizing stable longitudinal single mode oscillation. In particular, in semiconductor lasers for long wavelength communications,
The effect is remarkable, and normal longitudinal multimode oscillation is suppressed.

また、高速変調時においても、縦シングルモード発振を
達成している。
Furthermore, even during high-speed modulation, longitudinal single mode oscillation is achieved.

発明が解決しようとする問題点 上記のような半導体レーザに従来用いられている光学的
周期構造は、安定な縦シングルモード発振の達成に大き
な効果を発揮するものの、この構造では縦シングルモー
ド発振状態を維持しつつ、発振波長を大きく変化させる
ことは不可能であった。
Problems to be Solved by the Invention Although the optical periodic structure conventionally used in semiconductor lasers as described above is highly effective in achieving stable longitudinal single mode oscillation, this structure does not allow longitudinal single mode oscillation. It has been impossible to significantly change the oscillation wavelength while maintaining the oscillation wavelength.

本発明は、縦シングルモード発振状態を保ちつつ、発振
波長を容易に変化させる事のできる光学的周期構造をも
つ半導体レーザを提供するものである。
The present invention provides a semiconductor laser having an optical periodic structure that allows the oscillation wavelength to be easily changed while maintaining a longitudinal single mode oscillation state.

問題点を解決するための手段 本発明は、屈折率と膜厚を乗じた値のほぼ等しい4種の
半導体薄膜の第1の薄膜と第2の薄膜の屈折率及び、第
3の薄膜と第4の薄膜の屈折率をそれぞれ等しく、同時
に前記第1の薄膜と前記第3の薄膜の吸収係数もしくは
誘導放出による利得及び、前記第2の薄膜の吸収係数も
しくは誘導放出による誘導放出による光の利得の等しい
各薄膜を、前記第1の薄膜と第3薄膜を交互に、合計奇
数層となる様に積層し、更に屈折率の等しくない層で接
する様に、前記第2の薄膜と第4の薄膜を交互に、前記
第1の薄膜と第4の薄膜を積層したものと合計層数が等
しくなる様に積層した多層膜を基本単位として、これを
多数積層したものを、半導体レーザ活性層あるいは、半
導体レーザ共振器構造の一部に用いる事によって、上記
問題2点を解決する。
Means for Solving the Problems The present invention provides four types of semiconductor thin films, the refractive index of which is approximately equal to the product of the refractive index and the film thickness, and the refractive index of the first thin film and the second thin film, and the refractive index of the third thin film and the third thin film. The refractive index of each of the four thin films is equal, and at the same time, the absorption coefficient of the first thin film and the third thin film or the gain due to stimulated emission, and the absorption coefficient of the second thin film or the optical gain due to stimulated emission due to stimulated emission. The first thin film and the third thin film are stacked alternately so that the total number of layers is an odd number, and the second thin film and the fourth thin film are stacked so that they are in contact with layers with unequal refractive index. A basic unit is a multilayer film in which thin films are alternately stacked so that the total number of layers is equal to the first thin film and the fourth thin film, and a large number of stacked films is used as a semiconductor laser active layer or , the above two problems are solved by using it as a part of the semiconductor laser resonator structure.

作用 本発明にかかる多層膜を、半導体レーザ活性層あるいは
半導体レーザ共振器構造の一部として用いると、発振モ
ードは主に特許請求の範囲記載の第1.第2の薄膜と、
第3.第4の薄膜との間の屈折率差による周期構造によ
って決まり、縦シングルモード発振が実現される。第1
.第3の薄膜を奇数層積層した部分と、第2.第4の薄
膜を奇数層積層した部分の間に、吸収係数もしくは誘導
放出利得の違いが無ければ、発振モードと密接な関係の
あるこの多層膜の透過率スペクトルは発振波長付近で概
ね対称となる。一方、違いがある場合には、屈折率差周
期構造と吸収係数差もしくは誘導放出利得差の周期構造
との間の相互作用によって、前記透過率スペクトルに非
対称性が出現する。吸収係数もしくは誘導放出利得の違
いの大きさを制御することによって、透過率スペクトル
の非対称性の度合が大きく変化する。透過率スペクトル
と発振モードは密接に関係しているので、透過率スペク
トルにおける非対称性の出現と、非対称性の度合の変化
は、発振モードの波長を、屈折率周期構造で決まる波長
から、僅かにシフトさせる。この場合でも、発振モード
は主に屈折率周期構造によって決まっているので、縦シ
ングルモード発振状態は保たれたままである。
Function When the multilayer film according to the present invention is used as a semiconductor laser active layer or a part of a semiconductor laser resonator structure, the oscillation mode is mainly in the first mode described in the claims. a second thin film;
Third. It is determined by the periodic structure due to the refractive index difference between the fourth thin film and the fourth thin film, and longitudinal single mode oscillation is realized. 1st
.. The third thin film is stacked in an odd number of layers, and the second thin film is laminated in an odd number of layers. If there is no difference in absorption coefficient or stimulated emission gain between the stacked odd number of fourth thin films, the transmittance spectrum of this multilayer film, which is closely related to the oscillation mode, will be approximately symmetrical around the oscillation wavelength. . On the other hand, if there is a difference, asymmetry appears in the transmittance spectrum due to interaction between the periodic structure of refractive index difference and the periodic structure of absorption coefficient difference or stimulated emission gain difference. By controlling the magnitude of the difference in absorption coefficient or stimulated emission gain, the degree of asymmetry in the transmittance spectrum can be greatly changed. Since the transmittance spectrum and the oscillation mode are closely related, the appearance of asymmetry in the transmittance spectrum and the change in the degree of asymmetry will cause the wavelength of the oscillation mode to slightly shift from the wavelength determined by the periodic refractive index structure. shift. Even in this case, since the oscillation mode is mainly determined by the periodic refractive index structure, the longitudinal single mode oscillation state remains maintained.

実施例 第1図は本発明の一実施例の概念図である。第1の薄膜
1−1と第3の薄膜1−3を5層積層し、第1の薄膜1
−1と第4の薄膜1−4が接する様に、第4の薄膜と第
2の薄膜を6層積層し、これを基本単位として110層
積層している。例えば第1、第3の薄膜の屈折率を3.
4よシ僅に大きく、第2.第4の薄膜の屈折率を3,4
より僅に小さいInG4ASPである。それぞれの薄膜
の誘導放出利得のピーク波長は約1.3μmである。膜
厚ば、1.3μmの光の前記1nGaAsP薄膜中での
A波長に相当する0、0956μmである。 この稈度
の膜厚制御は分子線エピタキシー、有機金属気相成長法
によって十分に可能である。
Embodiment FIG. 1 is a conceptual diagram of an embodiment of the present invention. Five layers of the first thin film 1-1 and the third thin film 1-3 are laminated, and the first thin film 1
Six layers of the fourth thin film and the second thin film are laminated so that -1 and fourth thin film 1-4 are in contact with each other, and 110 layers are laminated using this as a basic unit. For example, the refractive index of the first and third thin films is set to 3.
Slightly larger than 4, 2nd. The refractive index of the fourth thin film is 3,4
InG4ASP is slightly smaller. The peak wavelength of stimulated emission gain of each thin film is about 1.3 μm. The film thickness is 0.0956 μm, which corresponds to the A wavelength of 1.3 μm light in the 1nGaAsP thin film. This film thickness control of culmness is fully possible by molecular beam epitaxy and organometallic vapor phase epitaxy.

図中イ部分と、口部分の誘導放出利得は違えである。誘
導放出利得は、イ部分、口部分への注入電流もしくは電
界等によって制御し、イ部分と口部分の誘導放出利得の
差を制御する。
The stimulated emission gain in the part A in the figure and the mouth part is different. The stimulated emission gain is controlled by injection current or electric field into the A part and the mouth part, and the difference in stimulated emission gain between the A part and the mouth part is controlled.

この多層膜を半導体レーザ活性層に用いれば、基本発振
モードは、主に屈折率周期構造によって決まり、1.3
μm付近に発振モードがたつ。イ部分と口部分の誘導放
出利得差を変化させると、前記発振モードの波長がシフ
トする。誘導放出利得の差が、閾値平均誘導放出利得の
兜程度のとき、誘導放出利得差が無い場合に較べ、発振
波長が約0.5%、すなわち約5o入変化する。この時
、縦シングルモード発振状態は維持されている。
If this multilayer film is used in the active layer of a semiconductor laser, the fundamental oscillation mode is mainly determined by the refractive index periodic structure, and is 1.3
The oscillation mode is near μm. By changing the stimulated emission gain difference between the A part and the mouth part, the wavelength of the oscillation mode shifts. When the difference in stimulated emission gain is about the same as the threshold average stimulated emission gain, the oscillation wavelength changes by about 0.5%, that is, by about 5 degrees, compared to the case where there is no difference in stimulated emission gain. At this time, the longitudinal single mode oscillation state is maintained.

第2図は本発明にかかる半導体多層膜を活性層に用いた
半導体レーザの一実施例の活性層部分の断面概念図であ
る。図中3−1の多層膜は、混晶比と屈折率が僅かに異
なり、誘導放出利得のピークが、共に約1.3pmにあ
る2種のn型のInGILA!P薄膜を交互に110層
積層した半導体多層膜である。それぞれの屈折率は約3
.4であるが僅に異なる、膜厚は、1.3pmの光の前
記InG2LASP薄膜中でのA波長に相当する0、0
956μmである。この程度の膜厚制御は分子線エピタ
キシー、有機金属気相成長法によって十分に可能である
FIG. 2 is a conceptual cross-sectional view of an active layer portion of an embodiment of a semiconductor laser using the semiconductor multilayer film according to the present invention as an active layer. The multilayer film 3-1 in the figure is made of two types of n-type InGILA with slightly different mixed crystal ratios and refractive indexes, and both of which have peaks of stimulated emission gain at about 1.3 pm! This is a semiconductor multilayer film in which 110 P thin films are alternately laminated. The refractive index of each is approximately 3
.. 4, but slightly different, the film thickness is 0,0, which corresponds to the A wavelength in the InG2 LASP thin film of 1.3 pm light.
It is 956 μm. Film thickness control to this degree is fully possible by molecular beam epitaxy and metal organic vapor phase epitaxy.

この多層膜の一部に、不純物拡散等によって、p型領域
2−2を形成する。n型領域2−3とp型領域2−2の
境界領域2−4が2−1の多層膜部分が活性層2−6と
なる。この多層膜で構成された活性層へ6層ごとに、大
きさの異なる2種の注入電流を交互に注入すると、誘導
放出利得の異なる領域が5層ごとに形成され、第1図に
示した構造が、2−4に形成される。この構造を有する
半導体レーザは、約1.3μmで安定な縦シングルモー
ド発振する。2−4領域における誘導放出利得の差が、
閾値平均誘導放出利得の%程度のとき、誘導放出利得差
が無い場合に較べ、発振波長が約0.5%、すなわち約
50人変化する。この時、縦シングルモード発振状態は
維持される。
A p-type region 2-2 is formed in a part of this multilayer film by impurity diffusion or the like. The multilayer film portion where the boundary region 2-4 between the n-type region 2-3 and the p-type region 2-2 is 2-1 becomes the active layer 2-6. When two types of injection currents with different magnitudes are alternately injected into the active layer composed of this multilayer film every 6 layers, regions with different stimulated emission gains are formed every 5 layers, as shown in Figure 1. Structures are formed in 2-4. A semiconductor laser having this structure oscillates in a stable longitudinal single mode at about 1.3 μm. The difference in stimulated emission gain in the 2-4 region is
When the difference is about % of the threshold average stimulated emission gain, the oscillation wavelength changes by about 0.5%, that is, about 50, compared to the case where there is no difference in the stimulated emission gain. At this time, the longitudinal single mode oscillation state is maintained.

発明の効果 本発明にかかる半導体多層膜を持ってすれば、半導体レ
ーザの縦単一モード発振状態を維持したまま、その発振
波長を容易に変化させる事ができ、発振波長可変縦シン
グルモード半導体レーザが実現できる。この多層膜は、
半導体レーザに限らず、各種光デバイスに応用可能であ
る。
Effects of the Invention If the semiconductor multilayer film according to the present invention is used, the oscillation wavelength of the semiconductor laser can be easily changed while maintaining the longitudinal single mode oscillation state of the semiconductor laser, resulting in a tunable longitudinal single mode semiconductor laser. can be realized. This multilayer film is
It is applicable not only to semiconductor lasers but also to various optical devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の半導体装置の概念図、第
2図は半導体多層膜を用いた面発光半導体レーザの断面
略図、第3図は従来例の半導体レーザの側断面図である
。 1−1・・・・・・第1の薄膜、1−2・・・・・・第
2の薄膜、1−3・・・・・・第3の薄膜、1−4・・
・・・・第4の薄膜、2−1・・・・・・多層膜、2−
2・・・・・・3−1多層膜のp領域、2−3・・・・
・・3−1多層膜のn領域、2−6・・・・・・活性層
、2−6・・・・・・クラッド層、2−7・・・・・・
クラッド層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a conceptual diagram of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of a surface-emitting semiconductor laser using a semiconductor multilayer film, and FIG. 3 is a side cross-sectional view of a conventional semiconductor laser. be. 1-1...First thin film, 1-2...Second thin film, 1-3...Third thin film, 1-4...
...Fourth thin film, 2-1...Multilayer film, 2-
2...3-1 p region of multilayer film, 2-3...
...3-1 n region of multilayer film, 2-6... active layer, 2-6... cladding layer, 2-7...
cladding layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 屈折率と膜厚を乗じた値のほぼ等しい4種の半導体薄膜
の第1の薄膜と第2の薄膜の屈折率及び、第3の薄膜と
第4の薄膜の屈折率がそれぞれ等しく、前記第1の薄膜
と前記第3の薄膜の吸収係数もしくは誘導放出による光
の利得、及び、前記第2の薄膜と前記第4の薄膜の吸収
係数もしくは誘導放出による光の利得が等しい各薄膜を
、前記第1の薄膜と前記第3の薄膜を交互に、合計奇数
層となる様に積層し、更に屈折率の等しくない層で接す
る様に、前記第2の薄膜と前記第4の薄膜を交互に、前
記第1の薄膜と第3の薄膜を積層したものと合計層数が
等しくなる様に積層した多層膜を基本単位として、この
基本単位を多数積層したことを特徴とする半導体装置。
The refractive index of the first thin film and the second thin film and the refractive index of the third thin film and the fourth thin film of the four types of semiconductor thin films having substantially the same value multiplied by the refractive index and the film thickness are respectively equal, and The first thin film and the third thin film have the same absorption coefficient or light gain due to stimulated emission, and the second thin film and the fourth thin film have the same absorption coefficient or light gain due to stimulated emission. The first thin film and the third thin film are alternately laminated so that the total number of layers is an odd number, and the second thin film and the fourth thin film are alternately stacked so that they are in contact with layers having unequal refractive index. A semiconductor device characterized in that a basic unit is a multilayer film laminated so that the total number of layers is equal to the lamination of the first thin film and the third thin film, and a large number of these basic units are laminated.
JP19754486A 1986-08-22 1986-08-22 Semiconductor device Pending JPS6353989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19754486A JPS6353989A (en) 1986-08-22 1986-08-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19754486A JPS6353989A (en) 1986-08-22 1986-08-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6353989A true JPS6353989A (en) 1988-03-08

Family

ID=16376244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19754486A Pending JPS6353989A (en) 1986-08-22 1986-08-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6353989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949350A (en) * 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
US5034344A (en) * 1989-07-17 1991-07-23 Bell Communications Research, Inc. Method of making a surface emitting semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949350A (en) * 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
US5034344A (en) * 1989-07-17 1991-07-23 Bell Communications Research, Inc. Method of making a surface emitting semiconductor laser

Similar Documents

Publication Publication Date Title
JP2961964B2 (en) Semiconductor laser device
JPS5844785A (en) Semiconductor laser
JPH02177490A (en) Surface emitting type semiconductor laser device
JPH0348476A (en) Semiconductor light emitting element
JPH0335581A (en) Semiconductor laser and manufacture thereof
JPS6286883A (en) Semiconductor laser
JPS6353989A (en) Semiconductor device
JP2855729B2 (en) Surface emitting laser and method of manufacturing the same
JP2586671B2 (en) Semiconductor multilayer film
JPS58110087A (en) Semiconductor laser device
JP3800852B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JPH03239386A (en) Surface emitting type semiconductor laser
JPH0719928B2 (en) Optical filter element
GB2298958A (en) Optical integrated semiconductor laser and waveguide
JPH0346384A (en) Plane-type variable wavelength light emitting element
JPH11163469A (en) Fiber grating external resonator laser
JP2002014247A (en) Distributed reflection optical waveguide and optical device containing the same
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JP2849190B2 (en) Light switch
JPS63122188A (en) Photo-semiconductor device
JPS6010685A (en) Distributed feedback type plane light emitting semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPH04212938A (en) Wavelength converting element
JP2908124B2 (en) Semiconductor laser device and method of manufacturing the same