JPS6353913A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6353913A
JPS6353913A JP19780886A JP19780886A JPS6353913A JP S6353913 A JPS6353913 A JP S6353913A JP 19780886 A JP19780886 A JP 19780886A JP 19780886 A JP19780886 A JP 19780886A JP S6353913 A JPS6353913 A JP S6353913A
Authority
JP
Japan
Prior art keywords
temperature
substrate
growth
gaas
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19780886A
Other languages
Japanese (ja)
Inventor
Kazushi Sugawara
菅原 和士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19780886A priority Critical patent/JPS6353913A/en
Publication of JPS6353913A publication Critical patent/JPS6353913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To suppress dislocations and make high quality GaAs system compound grow by a method wherein high concentration impurity doping and a temperature cycle growth method are jointly employed in a growth process such as molecular beam epitaxial growth. CONSTITUTION:A GaAs layer 2a is made to grow on an Si substrate 1 while being doped with an impurity 5 composed of Te with a concentration of 1X10<18>-1X10<20>cm<-3>, preferably 10<19>cm<-2>. Then the growth is discontinued and the temperature of the substrate 1 is lowered to near a room temperature. Accompanying the temperature, mutual reaction between dislocations 4 and the Te impurity is created and the breaking effect of the dislocations is induced. Then, the temperature is made to rise and a GaAs layer 2b is made to grow while being doped with the impurity 5. Then the temperature is allowed to drop to a room temperature. With this process, the dislocations 4 are further suppressed. If the cycle like this is repeated a plurality of times, the dislocation density decreases with an increase in the growth layer thickness. Then a GaAs layer 2A is made to grow on the growth layers as the active layer of a device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法に関し、もつと詳しく
はGaAs系化合物半導体層またはInP系化合物半導
体層の成長時に発生する転位の発生を抑制する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for suppressing the generation of dislocations that occur during the growth of a GaAs-based compound semiconductor layer or an InP-based compound semiconductor layer. Regarding.

背景技術 最近、シリコン(Si)基板上へのへテロエピタキシャ
ルG a A s成長技術が注目されている。当形態の
半導体材料は、技術的に確立すれば、ガリウム・ヒ素(
G aA s)Mデバイス、たとえば光デバイスや高速
デバイスなどの低価格化のみならず、GnAsI<デバ
イスと81デバイスを同一ツエバ上に集積した複合デバ
イスを作製することが可能となる。
BACKGROUND ART Recently, heteroepitaxial GaAs growth technology on silicon (Si) substrates has been attracting attention. If the semiconductor material of this form is technically established, gallium arsenide (
This not only makes it possible to reduce the price of GaAs)M devices, such as optical devices and high-speed devices, but also makes it possible to fabricate a composite device in which GnAsI< devices and 81 devices are integrated on the same device.

上記GaA’s層の成長には、有82金属気相戊民法(
MOCVD)や分子線エピタキシャル成長法(MBE)
等がよく使用されているが、GaAsとSiの格子定数
には約4%の差があり、がっ、線膨張係数も異なるため
、GaAs層内には転位が発生し、高品位G a A 
sの成長は極めて困難である。
The above GaA's layer was grown using the 82 Metal Vapor Phase Civil Law (
MOCVD) and molecular beam epitaxial growth (MBE)
However, there is a difference of about 4% in the lattice constants of GaAs and Si, and the linear expansion coefficients are also different, so dislocations occur within the GaAs layer, resulting in high-quality GaAs.
The growth of s is extremely difficult.

転位密度は成長条件に依存するが、従来の成長法では、
310”c−一2のオーダーである。
Dislocation density depends on growth conditions, but with conventional growth methods,
It is on the order of 310"c-12.

発明が解決しようとする問題点 上記へテロエピタキシャルG aA s/ S i ウ
ェハを各種半導体デバイス (光半導体デバイスや高速
トランツスタ′!?)へ応用するには、転位密度の低減
化が不可欠である。低転位化の方法としては、たとえ1
rGaAs/1とSi基板の間の中間層としてデルマニ
ウム(G e)やGaAノA s/ G aA s f
fi格子等を挿入する方法が挙げられるが、現段階では
高品位へテロエピタキシャルGaAsの成長技術は確立
されていない。このような現状は、高品位のヘテロエピ
タキシャルInP  の成長技術においても同様である
Problems to be Solved by the Invention In order to apply the above-mentioned heteroepitaxial GaAs/Si wafer to various semiconductor devices (optical semiconductor devices and high-speed transistors!?), it is essential to reduce the dislocation density. As a method of lowering dislocation, even if 1
Delmanium (Ge) or GaAs/GaAs f as an intermediate layer between rGaAs/1 and Si substrate.
Although a method of inserting an fi lattice or the like may be mentioned, at present, a growth technique for high-quality heteroepitaxial GaAs has not been established. The current situation is similar to the growth technology of high-quality heteroepitaxial InP.

本発明の目的は、J%種基板上に転位密度の少ない高品
位GaAs系化合物半導体層またはInP  系化合物
半導体層の成長を可能とした半導体装置の製造方法を提
供することである。
An object of the present invention is to provide a method for manufacturing a semiconductor device that enables the growth of a high-quality GaAs-based compound semiconductor layer or InP-based compound semiconductor layer with low dislocation density on a J% seed substrate.

問題点を解決するための手段 本発明は、GaAsと異なる基板上に、有機金属気相成
長法または分子線エピタキシャル成長法により、GaA
s系半導体を成長させる半導体装置の製造方法において
、 結晶成長一基板の降温→基板の昇温→結晶成長なる工程
を少なくとも一回含み、 かつ、基板の降温前の結晶成長中に、Zn と異なる不
純物であって、GaまたはAsとの結合エネルギがGa
−Asの結合エネルギより大きい、そのような不純物を
、I X 10 ”−I X 1020am−コの濃度
となるように添加することを特徴とする半導体vcI?
!の91造方法である。
Means for Solving the Problems The present invention provides GaAs on a substrate different from GaAs by metal organic vapor phase epitaxy or molecular beam epitaxial growth.
A method for manufacturing a semiconductor device in which an s-based semiconductor is grown, which includes at least one step of crystal growth, cooling of the substrate → heating of the substrate → crystal growth, and during the crystal growth before cooling of the substrate, a substance different from Zn is grown. An impurity whose binding energy with Ga or As is Ga
A semiconductor vcI?, characterized in that such an impurity having a binding energy greater than that of -As is added to a concentration of I x 10'' - I x 1020 am-co.
! This is the 91 construction method.

本発明は、InP  と異なる基板上に、有機金属気相
成長法または分子線エビダキシャル成長法によりInP
  系半導体を成長させる半導体装置の製造方法におい
て、 結晶成長一基板の降温→基板の昇温→結晶成長なる工程
を少なくとも一回含み、 がっ基板の降温前の結晶成長中に、InまたはPとの結
合エネルギがI n −P  の結合エネルギより大き
い不純物を、1×1018〜1×1020cm〜I X
 10 ”c■−コの濃度となるように添加することを
特徴とする半導体装置の製造方法である。
In the present invention, InP is grown on a substrate different from InP by metal organic vapor phase epitaxy or molecular beam evidaxial growth.
A method of manufacturing a semiconductor device for growing a semiconductor based on crystal growth includes at least one step of cooling down the substrate → heating up the substrate → crystal growth, and during the crystal growth before cooling down the substrate, In or P and Impurities whose bond energy is larger than that of I n −P are separated from 1×1018 to 1×1020 cm to I
This is a method for manufacturing a semiconductor device, characterized in that the addition is carried out so that the concentration is 10''c■-co.

作  用 本発明に従えば、G a A s系化合物半導体または
InP  系化合物半導体を、それと異質の基板上に有
機金属気相成長法または分子線エピタキシャル成長法で
成長し、この成長工程中において高濃度不純物添加およ
び温度サイクル成長法を併用する。
According to the present invention, a GaAs-based compound semiconductor or an InP-based compound semiconductor is grown on a different substrate by metal organic vapor phase epitaxy or molecular beam epitaxial growth, and during this growth process, a high concentration A combination of impurity addition and temperature cycle growth methods is used.

これによって転位を抑制することができ、高品位のGa
As系化合物半導体層またはInP  系化合物半導体
層を成長させることができる。
This makes it possible to suppress dislocations and produce high-grade Ga.
An As-based compound semiconductor layer or an InP-based compound semiconductor layer can be grown.

実施例 一般に、GaAs中の転位と不純物間には相互作用があ
る。この相互作用の大きさは、不純物の電荷や質量に微
妙に依存する。電気的に中性でも、転位と強い相互作用
をおこす不純物(たとえばIn等)がある、一般には、
G&イオンまたはAsイオンとの結合力の大きい不純物
は、転位との相互作用も大きいとみなされる。たとえば
GaAs中の各種不純物とGaまたはAsとの結合力を
Pt5l&に示す。
EXAMPLE Generally, there is an interaction between dislocations and impurities in GaAs. The magnitude of this interaction slightly depends on the charge and mass of the impurity. Although electrically neutral, there are impurities (such as In) that strongly interact with dislocations.
Impurities that have a large bonding force with G& ions or As ions are considered to have a large interaction with dislocations. For example, the bond strength between various impurities in GaAs and Ga or As is shown in Pt5l&.

(以下余白) 第     1     表 単結晶GaAsの引上げにインノウム(In)を添加す
ることにより、転位密度が減少することはよく知られて
いるが、ヘテロエピタキシャル成長においては、不純物
を添加するだけでは、後述する不純物による転位のブレ
ーキング効果は有効に発生しない。基板の昇温工程が不
可欠である。
(Leaving space below) Table 1 It is well known that the dislocation density is reduced by adding innoum (In) to the pulling of single crystal GaAs, but in heteroepitaxial growth, simply adding impurities will not be sufficient as described below. The dislocation braking effect due to impurities does not occur effectively. A step to raise the temperature of the substrate is essential.

以下、ブレーキング効果について説明する。第1図(1
)に示すように、Si基板1上に有機金属気相成長法ま
たは分子線エビタキンヤル成長法によりGaAs層2を
成長させる。GaAsとSi の格子定数の違いのため
、GaAsN2と5iJJiFj、1との界面3から発
生した転位4は、GaAs層2の成長と同時にGaAs
N2の表面まで到達する。しかし、このような状態のへ
テロエピタキシャルウェハをたとえば700°Cの成長
温度からたとえば300’Cに降温すると、GaAsと
Siの#i膨張係数の違いにより、GaAs層2内に内
部応力が発生し、転位4が移動する。
The braking effect will be explained below. Figure 1 (1
), a GaAs layer 2 is grown on a Si substrate 1 by metal organic vapor phase epitaxy or molecular beam epitaxy. Due to the difference in lattice constant between GaAs and Si, dislocations 4 generated from the interface 3 between GaAsN2 and 5iJJiFj,1 grow simultaneously with the growth of the GaAs layer 2.
It reaches the surface of N2. However, when the temperature of a heteroepitaxial wafer in such a state is lowered from the growth temperature of, for example, 700°C to, for example, 300'C, internal stress is generated in the GaAs layer 2 due to the difference in the #i expansion coefficients of GaAs and Si. , dislocation 4 moves.

そこでGaAs層2内に予め不純物5を添加しておくと
、転位4と不純物5は相互作用をおこし、第1図(2)
で示すように転位4のポテンシャルエネルギーが低い状
態となる。このような状態となった転位は、さらにG 
aA s#、艮温度まで昇温しでも、転位は元の状態に
戻らなくなる。これは、転位のブレーキング効果または
ピニング効果として知られている。ブレーキング効果の
原因は、転位(または転位ループ)4 と不純物5との
相互作用に基づく。この相互作用の大きさは第2図に示
したように、不純物濃度に依存し、一般に約1019a
m−’のオーダーの高濃度で極大となることが論理的に
計算される。なお、fjS2図において横軸は不純物濃
度を示し、縦軸は転位と不純物との相互作用(転位#i
t1cm当り)を示している。
Therefore, if the impurity 5 is added to the GaAs layer 2 in advance, the dislocation 4 and the impurity 5 interact, and as shown in Fig. 1 (2).
As shown, the potential energy of the dislocation 4 becomes low. Dislocations in this state are further stimulated by G.
Even if the temperature is raised to aA s#, the dislocation does not return to its original state. This is known as the dislocation braking or pinning effect. The cause of the braking effect is based on the interaction between dislocations (or dislocation loops) 4 and impurities 5. The magnitude of this interaction depends on the impurity concentration, as shown in Figure 2, and is generally about 1019a.
It is logically calculated that a maximum occurs at high concentrations on the order of m-'. In the fjS2 diagram, the horizontal axis shows the impurity concentration, and the vertical axis shows the interaction between dislocations and impurities (dislocation #i
(per t1cm).

第1表に示したようにZnとAsの結合エネルギーキン
グ効果が期待さ°れるが、現実には亜鉛(Zo)による
ブレーキング効果は極めて小さい、このパラドックスは
次のように説明でさる。ZnはGaサイトに存在すると
き、Zn−Asの相互作用は84゜4Kcal、’j+
ol  である。しかしZnの拡散定数は非常に大きい
ので、Znは、Gaと、Asの中間(すなわち格子間)
に入り易い。格子間Z n と、GaまたはAsの相互
作用は弱いので、Znによる転位のブレーキング効果は
現実には期待できない。
As shown in Table 1, a binding energy king effect between Zn and As is expected, but in reality, the braking effect of zinc (Zo) is extremely small. This paradox can be explained as follows. When Zn is present at the Ga site, the Zn-As interaction is 84°4Kcal, 'j+
It is ol. However, since the diffusion constant of Zn is very large, Zn is located between Ga and As (i.e., interstitial).
Easy to get into. Since the interaction between the interstitial Z n and Ga or As is weak, a dislocation braking effect due to Zn cannot be expected in reality.

第1表から明らかなように、■族のホウ素(B)や■族
の千ノ素(N )、リン(P)、アンチモン(s b)
および■族のイオウ(S)、セレン(S e)、テルル
(Te)と、AsまたはGaとの結合力はGa−Asの
結合力(47,7Kca)/嶋of)より大きいので強
いブレーキング効果が期待できる。
As is clear from Table 1, boron (B) of group ■, 1,000 elements (N), phosphorus (P), and antimony (s b) of group ■
The bonding force between sulfur (S), selenium (S e), and tellurium (Te) of group II and As or Ga is stronger than the bonding force of Ga-As (47.7Kca)/Shima of), so it provides strong braking. You can expect good results.

本発明の一実施例を第3図を用いて説明する。An embodiment of the present invention will be described using FIG. 3.

先ず第3図(1)に示すようにSi基板1上に、Teか
ら成る不純物5を濃度が約I Q 19cm−3になる
ように添加してGaAs層2aを成長させる。ここで有
機金属気相成長法によってTeを添加するには、ジエチ
ルテルル(またはツメチルテルル)から成る育成金属を
使用するとよい。
First, as shown in FIG. 3(1), a GaAs layer 2a is grown on a Si substrate 1 by adding an impurity 5 made of Te to a concentration of about IQ 19 cm-3. In order to add Te by organometallic vapor phase epitaxy, it is preferable to use a growing metal consisting of diethyl tellurium (or trimethyl tellurium).

次に成長を停止し、Si基板1の温度を至温近くに降温
する。温度降温に伴い、第3図(2)で示士ように転位
4とTe不純vlJ5との相互作用が発生し、転位のブ
レーキング効果がおこる。次に、Pt53図(3)で示
すように再び成長温度まで昇温し、上記と同様の要領で
Te不純物5を添加しつつGaAs層2bを成長させる
。次に前述と同様に室温まで降温する。これによってt
53図(4)で示すように転位4が一層抑制される。以
下、上記と同様のサイクルを複数回行うと、転位密度は
成長層厚の増加に件って減少する。そして第3図(5)
で示すようにデバイス活性層としてのGaAs層2Aを
、その上に成長させる。
Next, the growth is stopped and the temperature of the Si substrate 1 is lowered to near the lowest temperature. As the temperature decreases, an interaction occurs between the dislocation 4 and the Te impurity vlJ5, as shown in FIG. 3(2), and a braking effect of the dislocation occurs. Next, as shown in the Pt layer 53 (3), the temperature is raised again to the growth temperature, and the GaAs layer 2b is grown while adding Te impurity 5 in the same manner as described above. Next, the temperature is lowered to room temperature in the same manner as described above. This allows t
As shown in Figure 53 (4), dislocations 4 are further suppressed. Thereafter, when the same cycle as above is repeated multiple times, the dislocation density decreases as the thickness of the grown layer increases. And Figure 3 (5)
As shown in , a GaAs layer 2A as a device active layer is grown thereon.

以上の説明は、ヘテロエピタキシャルGaAsの成長を
中心に述べたが、G a、A 1xA s(0< x<
 1 )などの3元系化合物半導体層を成長させる場合
にも成り立つ、さらに同様の原理は、ヘテロエピタキシ
ャルrnPについても成り立つ。InP中の不純物と、
In またはPとの相互作用を第2表に示す。
The above explanation has focused on the growth of heteroepitaxial GaAs, but Ga, A 1xA s (0<x<
The same principle that holds true when growing a ternary compound semiconductor layer such as 1) also holds true for heteroepitaxial rnP. Impurities in InP and
Interactions with In or P are shown in Table 2.

(以下余白) PtS2     表   ゛ 効  果 以上のように本発明によれば、異種基板上に転位密度の
少ない高品位のG a A s系化合物半導体層または
InP  系化合物半導体層の成長が可能となる。
(The following is a blank space) PtS2 Table ゛Effects As described above, according to the present invention, it is possible to grow a high-quality GaAs-based compound semiconductor layer or InP-based compound semiconductor layer with low dislocation density on a heterogeneous substrate. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は降温によりおこる転位のブレーキング効果を説
明する図、第2図は転位と不純物との相互作用と不純物
濃度との関係を示すグラフ、1llS3図は本発明の一
実施例の断面図である。 1・・・基板、 2.2a、2b、2A−GaAs層、
3・・・基板とGaAs層との界面、4・・・転位、5
・・・不純物代理人  弁理士 画数 圭一部 第1図 第 3 図 第3図
Fig. 1 is a diagram explaining the braking effect of dislocations caused by temperature fall, Fig. 2 is a graph showing the relationship between the interaction between dislocations and impurities, and the impurity concentration, and Fig. 1llS3 is a cross-sectional view of one embodiment of the present invention. It is. 1... Substrate, 2.2a, 2b, 2A-GaAs layer,
3... Interface between substrate and GaAs layer, 4... Dislocation, 5
...Impurity agent Patent attorney Number of strokes Keibe 1st figure 3 3rd figure

Claims (2)

【特許請求の範囲】[Claims] (1)GaAsと異なる基板上に、有機金属気相成長法
または分子線エピタキシャル成長法により、GaAs系
半導体を成長させる半導体装置の製造方法において、 結晶成長→基板の降温→基板の昇温→結晶成長なる工程
を少なくとも一回含み、 かつ、基板の降温前の結晶成長中に、Znと異なる不純
物であって、GaまたはAsとの結合エネルギがGa−
Asの結合エネルギより大きい、そのような不純物を、
1×10^1^8〜1×10^2^0cm^−^3の濃
度となるように添加することを特徴とする半導体装置の
製造方法。
(1) In a method for manufacturing a semiconductor device in which a GaAs-based semiconductor is grown on a substrate different from GaAs by metal-organic vapor phase epitaxy or molecular beam epitaxial growth, the steps are: crystal growth → lowering the temperature of the substrate → increasing the temperature of the substrate → crystal growth During the crystal growth before the temperature of the substrate is lowered, an impurity different from Zn whose bonding energy with Ga or As is Ga-
Such an impurity with a binding energy greater than that of As,
1. A method for manufacturing a semiconductor device, characterized in that the additive is added to a concentration of 1×10^1^8 to 1×10^2^0 cm^-^3.
(2)InPと異なる基板上に、有機金属気相成長法ま
たは分子線エピタキシャル成長法によりInP系半導体
を成長させる半導体装置の製造方法において、 結晶成長→基板の降温→基板の昇温→結晶成長なる工程
を少なくとも一回含み、 かつ基板の降温前の結晶成長中に、InまたはPとの結
合エネルギがIn−Pの結合エネルギより大きい不純物
を、1×10^1^8〜1×10^2^0cm^−^3
の濃度となるように添加することを特徴とする半導体装
置の製造方法。
(2) In a method for manufacturing a semiconductor device in which an InP-based semiconductor is grown on a substrate different from InP by metal organic vapor phase epitaxy or molecular beam epitaxial growth, the following steps occur: crystal growth → lowering the temperature of the substrate → increasing the temperature of the substrate → crystal growth step, and during crystal growth before the temperature of the substrate is lowered, impurities whose bond energy with In or P is larger than that of In-P are added at 1×10^1^8 to 1×10^2. ^0cm^-^3
1. A method for manufacturing a semiconductor device, characterized in that the additive is added to a concentration of .
JP19780886A 1986-08-23 1986-08-23 Manufacture of semiconductor device Pending JPS6353913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19780886A JPS6353913A (en) 1986-08-23 1986-08-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19780886A JPS6353913A (en) 1986-08-23 1986-08-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6353913A true JPS6353913A (en) 1988-03-08

Family

ID=16380690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19780886A Pending JPS6353913A (en) 1986-08-23 1986-08-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6353913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239614A (en) * 1989-03-13 1990-09-21 Fujitsu Ltd Hetero-epitaxial growth method
US5159413A (en) * 1990-04-20 1992-10-27 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239614A (en) * 1989-03-13 1990-09-21 Fujitsu Ltd Hetero-epitaxial growth method
US5159413A (en) * 1990-04-20 1992-10-27 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5164359A (en) * 1990-04-20 1992-11-17 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5356831A (en) * 1990-04-20 1994-10-18 Eaton Corporation Method of making a monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate

Similar Documents

Publication Publication Date Title
EP0331467B1 (en) Method of forming semiconductor thin film
JPH04242985A (en) Gallium nitride group compound semiconductor laser diode
JPS63169717A (en) Semiconductor device
JP3024584B2 (en) Method for manufacturing semiconductor device
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
EP0430562B1 (en) Semiconductor heterostructure and method of producing the same
JPS6353913A (en) Manufacture of semiconductor device
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JPH0729825A (en) Semiconductor substrate and production thereof
JP2006019648A (en) Iron-silicide light emitting element and its manufacturing method
JPH02260628A (en) Manufacture of semiconductor device
WO2007114033A1 (en) Method for manufacturing light emitting element, compound semiconductor wafer, and light emitting element
EP0196245B1 (en) Compound semiconductor layer having high carrier concentration and method of forming same
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
JP2565908B2 (en) Compound semiconductor device
US7195991B2 (en) Method for producing an electromagnetic radiation-emitting semiconductor chip and a corresponding electromagnetic radiation-emitting semiconductor chip
TW550709B (en) Method of producing III nitride compound semiconductor
JPH08335695A (en) Compound semiconductor device and manufacture thereof
US5183778A (en) Method of producing a semiconductor device
CN114300556B (en) Epitaxial structure, epitaxial growth method and photoelectric device
JPS63184320A (en) Semiconductor device
JP3421234B2 (en) Semiconductor device and manufacturing method thereof
JPH08236453A (en) Method for growing crystal of compound semiconductor
JPS62291914A (en) Formation of compound semiconductor layer