JPS6353654B2 - - Google Patents

Info

Publication number
JPS6353654B2
JPS6353654B2 JP404181A JP404181A JPS6353654B2 JP S6353654 B2 JPS6353654 B2 JP S6353654B2 JP 404181 A JP404181 A JP 404181A JP 404181 A JP404181 A JP 404181A JP S6353654 B2 JPS6353654 B2 JP S6353654B2
Authority
JP
Japan
Prior art keywords
methylpentene
insulating paper
film
poly
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP404181A
Other languages
Japanese (ja)
Other versions
JPS57118311A (en
Inventor
Kyoshi Nakayama
Shunsuke Sakurai
Isao Maeda
Hidemitsu Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tomoegawa Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tomoegawa Paper Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP404181A priority Critical patent/JPS57118311A/en
Publication of JPS57118311A publication Critical patent/JPS57118311A/en
Publication of JPS6353654B2 publication Critical patent/JPS6353654B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paper (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリ4−メチルペンテン−1フイルム
の少くとも片面にクラフト繊維紙を加圧接着させ
た複合電気絶縁紙の特性、特に絶縁油中における
ポリ4−メチルペンテン−1フイルムとクラフト
繊維との接着性および膨潤性を大幅に改善する方
法に関するものである。 ポリ4−メチルペンテン−1フイルムの少くと
も片面にクラフト繊維紙を貼合わせた複合電気絶
縁紙は、誘電損失が小さい、耐電圧値が高い等の
特長を持つ故に、超高圧OFケーブル用の絶縁体
として世界的に注目されている。超高圧OFケー
ブル用絶縁体としては、その誘電特性として誘電
率εが2.5程度、誘電正接tanδが0.05(%)程度の
性能が要求されており、これを満足するには複合
電気絶縁紙におけるポリ4−メチルペンテン−1
フイルムの占める割合を例えば60%以上に大きく
する必要がある。しかし、ポリ4−メチルペンテ
ン−1フイルムが60%以上を占める複合電気絶縁
紙では、絶縁油中での厚さ増加率、即ち膨潤率が
大きくなり、例えばケーブルを曲げた場合に絶縁
紙に「しわ」および「切れ」を生じ、ケーブルの
耐電圧値を低下させるという問題がある。 また、従来複合電気絶縁紙は、T−ダイを有す
る押出機から押出されたポリ4−メチルペンテン
−1フイルムの少くとも片面にクラフト繊維紙を
沿わせた後に加圧水冷ロールで接着一体化するこ
とにより製造されている。この場合、T−ダイか
ら押出されたポリ4−メチルペンテン−1フイル
ムは、加圧水冷ロールに至る迄の間に溶融状態で
自重がかかるために、引落されて成形したフイル
ムが押出方向に配向し、そのため得られた複合電
気絶縁紙を絶縁油中に浸漬すると、ポリ4−メチ
ルペンテン−1フイルム層が膨潤の異方性を示
し、クラフト繊維紙層とポリ4−メチルペンテン
−1フイルム層とが剥離し易くなるという事が判
明した。 本発明はかかる問題点を克服するためになされ
たもので、複合電気絶縁紙の特性、特に絶縁油中
でのポリ4−メチルペンテン−1フイルムとクラ
フト繊維紙との接着性および膨潤性を改善するた
めの特性改善方法を提供するものである。 本発明方法は、押出機により押出成形されたポ
リ4−メチルペンテン−1フイルムの片面若しく
は両面にクラフト繊維紙を加圧接着させて得た複
合電気絶縁紙を、該複合電気絶縁紙に用いたポリ
4−メチルペンテン−1フイルム層が該ポリ4−
メチルペンテン−1フイルムの結晶融点以上の温
度となり、かつ上記複合電気絶縁紙に加わる面圧
力が10g/cm2以上になる様に加熱ロールに掛け、
次いで該ポリ4−メチルペンテン−1フイルムの
結晶融点より30℃以上低い温度になる迄は空気中
で放冷することを特徴とするものである。 本発明においてポリ4−メチルペンテン−1フ
イルムとは、誘電特性の優れたポリ4−メチルペ
ンテン−1のペレツトを押出機によりT−ダイ等
を用いて溶融押出成形する事により得られるフイ
ルムである。 本発明においては、先ず従来方法によつて、押
出機により押出成形されたポリ4−メチルペンテ
ン−1フイルムの片面若しくは両面にクラフト繊
維紙を重ね合わせて加圧接着することにより複合
電気絶縁紙を得る。次いで、このようにして得た
複合電気絶縁紙を加熱ロールに掛ける事により複
合電気絶縁紙に用いたポリ4−メチルペンテン−
1フイルム層の温度を該ポリ4−メチルペンテン
−1の結晶融点以上の温度とし、かつこの際複合
電気絶縁紙に加わる面圧力を10g/cm2以上、好ま
しくは50〜100g/cm2程度に保持する。ポリ4−
メチルペンテン−1フイルム層の温度を該ポリ4
−メチルペンテン−1の結晶融点以上の温度に限
定する理由は、ポリ4−メチルペンテン−1フイ
ルムに加わつている配向を緩和できるからであ
る。ポリ4−メチルペンテン−1の結晶融点より
低い温度では加熱ロール掛けを行つても絶縁油中
におけるポリ4−メチルペンテン−1フイルムと
クラフト繊維紙との接着性に対して全く効果が無
い。また複合電気絶縁紙に加わる面圧力を10g/
cm2以上に限定する理由は、かかる面圧力を加える
事により溶融ポリ4−メチルペンテン−1がクラ
フト繊維紙の繊維間〓に充分めり込み、ポリ4−
メチルペンテン−1フイルムとクラフト繊維紙と
の接着性が格段に改善されるからである。 得られた複合電気絶縁紙を加熱ロールに掛ける
場合に、複合電気絶縁紙は加熱ロールに押圧され
るので該加熱ロールの複合電気絶縁紙への熱伝達
が良好であり、従つて加熱ロールの表面温度はポ
リ4−メチルペンテン−1フイルムの結晶融点よ
り10〜20℃高い温度であれば充分である。加熱ロ
ールとしては金属ロール2本以上を用い、複合電
気絶縁紙を各ロールに充分接触させながら通過さ
せる事が、一定の面圧力を加える事ができるので
好適である。 本発明においては複合電気絶縁紙を加熱ロール
に掛けた後に冷却する。この冷却工程では、ポリ
4−メチルペンテン−1フイルム層の温度が該ポ
リ4−メチルペンテン−1フイルムの結晶融点よ
り30℃以上低い温度になる迄は、空気中で放冷す
る事が必要である。この理由は、ポリ4−メチル
ペンテン−1フイルムの結晶化温度範囲がポリ4
−メチルペンテン−1フイルムの結晶融点以下で
かつ結晶融点より30℃低い温度迄であるので、少
くともこの温度範囲内では充分徐冷を施す事がポ
リ4−メチルペンテン−1フイルムの結晶化度を
増大させるのに効果があり、従つて得られる複合
電気絶縁紙の絶縁油中での厚さ増加率、即ち膨潤
率を低減せしめる事に効果があるからである。空
気中で放冷する場合には、熱放散のみで冷却が行
われるため熱伝達が悪く、充分な徐冷が行われる
ので、結晶化度の増大効果が大きい。通常加熱ロ
ールを通過してから2〜3m程度の間では空気中
で放冷し、次いで水冷ロール等で冷却する事が生
産性の点から好ましい。 本発明方法の実施は、押出機により押出成形さ
れたポリ4−メチルペンテン−1フイルムの少く
とも片面にクラフト繊維紙を加圧接着させる工程
の直後に引続いて行う事が、生産性良く特性を改
善できるので特に好ましい。 次に本発明を実施例および比較例について説明
する。 比較例 1 ポリ−4−メチルペンテン−1(結晶融点235
℃)を押出機により厚さ90μのフイルムに押出成
形し、この両面に厚さ30μのクラフト繊維紙を重
ね合せて加圧ロール(表面温度15℃)により接着
一体化させて複合電気絶縁紙を得た。 実施例 1 比較例1で得た複合電気絶縁紙を、表面温度
250℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後2m離れた地
点迄は空気中で放冷した。なお、この時の複合電
気絶縁紙の温度は200℃になつた。次いで水冷ロ
ール(表面温度15℃)に導き、更に冷却した。 比較例 2 比較例1で得た複合電気絶縁紙を、表面温度
230℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後2m離れた地
点迄は空気中で放冷した。この時の複合電気絶縁
紙の温度は180℃になつた。次いで水冷ロール
(表面温度15℃)に導き、更に冷却した。 比較例 3 比較例1で得た複合電気絶縁紙を、表面温度
250℃の加熱ロール間を軽く接触する程度に通過
させ、加熱ロールの直後2m離れた地点迄は空気
中で放冷した。この時の複合電気絶縁紙の温度は
200℃になつた。次いで水冷ロール(表面温度15
℃)に導き、更に冷却した。 比較例 4 比較例1で得た複合電気絶縁紙を、表面温度
250℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後10cm離れた地
点迄は空気中で放冷した。なお、この時の複合電
気絶縁紙の温度は245℃になつた。次いで水冷ロ
ール(表面温度15℃)に導き、更に冷却した。 実施例 2 比較例1で得た複合電気絶縁紙を、引続き加圧
ロールから50cm離れた地点に設置した表面温度
250℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後2m離れた地
点迄は空気中で放冷した。なお、この時の複合電
気絶縁紙の温度は200℃になつた。次いで水冷ロ
ール(表面温度15℃)に導き、更に冷却した。 実施例 3 比較例1で得た複合電気絶縁紙を、表面温度
240℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後2m離れた地
点迄は空気中で放冷した。なお、この時の複合電
気絶縁紙の温度は190℃になつた。次いで水冷ロ
ール(表面温度15℃)に導き、更に冷却した。 実施例 4 比較例1で得た複合電気絶縁紙を、表面温度
250℃の加熱ロール間を面圧力100〜150g/cm2
なる様に通過させ、加熱ロールの直後2m離れた
地点迄は空気中で放冷した。なお、こ時の複合電
気絶縁紙の温度は200℃になつた。次いで水冷ロ
ール(表面温度15℃)に導き冷却した。 上述の実施例1〜4および比較例1〜4で得た
複合電気絶縁紙をそれぞれ100℃、0.1mmHgの条
件下に24時間乾燥し、これにドデシルベンゼン
(DDB)を含浸させて得た油浸紙の誘電特性を測
定した。この結果、いずれも誘電率εは2.45〜
2.50であり、80℃における誘電正接tanδは0.045
〜0.055(%)で、良好であつた。 また、得られた複合電気絶縁紙を同様に真空乾
燥し、次いで100℃のDDBに浸漬し、240時間放
置後の厚さ増加率を測定し、この結果を第1表に
示した。 更に、得られた複合電気絶縁紙を同様に真空乾
燥し、次いで100℃のDDBに浸漬し、24時間放置
後にクラフト繊維紙とポリ4−メチルペンテン−
1フイルム層との接着強度を測定した。この結果
を第1表に示した。
The present invention is concerned with the characteristics of composite electrical insulating paper in which kraft fiber paper is bonded under pressure to at least one side of a poly-4-methylpentene-1 film, and particularly the characteristics of the poly-4-methylpentene-1 film and kraft fibers in insulating oil. The present invention relates to a method for significantly improving adhesion and swelling properties. Composite electrical insulating paper, which is made by laminating kraft fiber paper on at least one side of poly-4-methylpentene-1 film, has features such as low dielectric loss and high withstand voltage, so it is suitable for insulation for ultra-high voltage OF cables. It is attracting attention worldwide as a body. Insulators for ultra-high voltage OF cables are required to have dielectric properties such as a dielectric constant ε of about 2.5 and a dielectric loss tangent tan δ of about 0.05 (%). 4-methylpentene-1
It is necessary to increase the ratio occupied by film to, for example, 60% or more. However, with composite electrical insulating paper in which poly-4-methylpentene-1 film accounts for 60% or more, the rate of increase in thickness in insulating oil, that is, the rate of swelling, becomes large, and for example, when a cable is bent, the insulating paper This causes problems such as wrinkles and cuts, which reduce the withstand voltage value of the cable. Conventionally, composite electrical insulating paper is produced by applying kraft fiber paper along at least one side of a poly-4-methylpentene-1 film extruded from an extruder equipped with a T-die, and then bonding and integrating the film with a pressurized water-cooled roll. Manufactured by. In this case, the poly-4-methylpentene-1 film extruded from the T-die is subjected to its own weight in a molten state before reaching the pressurized water-cooled roll, so that the formed film is oriented in the extrusion direction. Therefore, when the obtained composite electrical insulating paper is immersed in insulating oil, the poly-4-methylpentene-1 film layer exhibits swelling anisotropy, and the kraft fiber paper layer and the poly-4-methylpentene-1 film layer exhibit swelling anisotropy. It was found that it became easy to peel off. The present invention has been made to overcome these problems, and improves the properties of composite electrical insulating paper, particularly the adhesion and swelling properties of poly-4-methylpentene-1 film and kraft fiber paper in insulating oil. This provides a method for improving characteristics. In the method of the present invention, a composite electrically insulating paper obtained by adhering kraft fiber paper under pressure to one or both sides of a poly-4-methylpentene-1 film extruded using an extruder is used as the composite electrically insulating paper. The poly 4-methylpentene-1 film layer is
Apply it to a heated roll so that the temperature is higher than the crystal melting point of the methylpentene-1 film and the surface pressure applied to the composite electrical insulating paper is 10 g/cm 2 or higher,
The film is then allowed to cool in air until the temperature reaches a temperature 30° C. or more lower than the crystalline melting point of the poly-4-methylpentene-1 film. In the present invention, poly-4-methylpentene-1 film is a film obtained by melt-extruding poly-4-methylpentene-1 pellets with excellent dielectric properties using an extruder using a T-die or the like. . In the present invention, first, by a conventional method, a composite electrically insulating paper is produced by overlapping and pressurizing kraft fiber paper on one or both sides of a poly-4-methylpentene-1 film extruded using an extruder. obtain. Next, the composite electrically insulating paper obtained in this way was placed on a heating roll to form the poly(4-methylpentene) used in the composite electrically insulating paper.
The temperature of one film layer is set to a temperature higher than the crystal melting point of the poly-4-methylpentene-1, and at this time, the surface pressure applied to the composite electrically insulating paper is set to 10 g/cm 2 or more, preferably about 50 to 100 g/cm 2 Hold. Poly 4-
The temperature of the methylpentene-1 film layer was
The reason for limiting the temperature to the crystal melting point of -methylpentene-1 is that the orientation imparted to the poly-4-methylpentene-1 film can be relaxed. At temperatures lower than the crystal melting point of poly-4-methylpentene-1, heating rolls have no effect on the adhesion between poly-4-methylpentene-1 film and kraft fiber paper in insulating oil. In addition, the surface pressure applied to the composite electrical insulating paper is 10g/
The reason why it is limited to cm 2 or more is that by applying such surface pressure, the molten poly(4-methylpentene-1) sinks sufficiently between the fibers of the kraft fiber paper.
This is because the adhesion between the methylpentene-1 film and the kraft fiber paper is significantly improved. When the obtained composite electrically insulating paper is placed on a heating roll, the composite electrically insulating paper is pressed against the heating roll, so that the heat transfer from the heating roll to the composite electrically insulating paper is good, and therefore the surface of the heating roll is It is sufficient that the temperature is 10 to 20 DEG C. higher than the crystalline melting point of the poly-4-methylpentene-1 film. It is preferable to use two or more metal rolls as the heating rolls and to pass the composite electrically insulating paper through each roll while being in sufficient contact with the rolls, since a constant surface pressure can be applied. In the present invention, the composite electrically insulating paper is placed on a heated roll and then cooled. In this cooling step, it is necessary to allow the poly-4-methylpentene-1 film layer to cool in air until the temperature of the poly-4-methylpentene-1 film becomes at least 30°C lower than the crystal melting point of the poly4-methylpentene-1 film. be. The reason for this is that the crystallization temperature range of poly-4-methylpentene-1 film is
-The crystallinity of the poly-4-methylpentene-1 film is below the crystalline melting point of the poly-4-methylpentene-1 film and is 30°C lower than the crystalline melting point. This is because it is effective in increasing the thickness of the obtained composite electrically insulating paper, and accordingly, it is effective in reducing the rate of increase in thickness in insulating oil, that is, the rate of swelling of the obtained composite electrically insulating paper. When cooling in air, cooling is performed only by heat dissipation, resulting in poor heat transfer, and sufficient slow cooling is performed, resulting in a large effect of increasing the degree of crystallinity. Generally, from the viewpoint of productivity, it is preferable to let the material cool in the air for about 2 to 3 m after passing through the heating roll, and then cool it with a water-cooled roll or the like. The method of the present invention can be carried out immediately after the step of pressurizing and adhering kraft fiber paper to at least one side of a poly-4-methylpentene-1 film extruded by an extruder, resulting in good productivity and characteristics. This is particularly preferable because it can improve. Next, the present invention will be explained with reference to Examples and Comparative Examples. Comparative Example 1 Poly-4-methylpentene-1 (crystal melting point 235
℃) is extruded into a 90μ thick film using an extruder, and 30μ thick kraft fiber paper is layered on both sides of the film and bonded together using a pressure roll (surface temperature 15℃) to form composite electrical insulating paper. Obtained. Example 1 The composite electric insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 250°C at a surface pressure of 50 to 70 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. The temperature of the composite electrically insulating paper at this time reached 200°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Comparative Example 2 The composite electrical insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 230°C at a surface pressure of 50 to 70 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. At this time, the temperature of the composite electric insulating paper reached 180℃. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Comparative Example 3 The composite electrical insulating paper obtained in Comparative Example 1 was
The material was passed between 250° C. heating rolls to the extent that they were in slight contact with each other, and the material was left to cool in the air up to a point 2 m away from the heating rolls. The temperature of the composite electrical insulation paper at this time is
The temperature reached 200℃. Next, a water-cooled roll (surface temperature 15
℃) and further cooled. Comparative Example 4 The composite electrical insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 250°C at a surface pressure of 50 to 70 g/cm 2 and allowed to cool in the air up to a point 10 cm away from the heating roll. The temperature of the composite electrically insulating paper at this time reached 245°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Example 2 The surface temperature of the composite electrically insulating paper obtained in Comparative Example 1 was subsequently placed at a point 50 cm away from the pressure roll.
The sample was passed between heating rolls at 250°C at a surface pressure of 50 to 70 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. The temperature of the composite electrically insulating paper at this time reached 200°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Example 3 The composite electric insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 240°C at a surface pressure of 50 to 70 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. The temperature of the composite electrically insulating paper at this time reached 190°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Example 4 The composite electrically insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 250°C at a surface pressure of 100 to 150 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. The temperature of the composite electrically insulating paper at this time reached 200°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and cooled. The composite electrically insulating papers obtained in Examples 1 to 4 and Comparative Examples 1 to 4 described above were each dried at 100°C and 0.1 mmHg for 24 hours, and an oil obtained by impregnating them with dodecylbenzene (DDB). The dielectric properties of the soaked paper were measured. As a result, the dielectric constant ε is 2.45~
2.50, and the dielectric loss tangent tanδ at 80℃ is 0.045
It was good at ~0.055 (%). Further, the obtained composite electrically insulating paper was vacuum-dried in the same manner, then immersed in DDB at 100°C, and the rate of increase in thickness after being left for 240 hours was measured. The results are shown in Table 1. Furthermore, the obtained composite electric insulating paper was vacuum dried in the same way, then immersed in DDB at 100°C, and after being left for 24 hours, it was mixed with kraft fiber paper and poly-4-methylpentene.
The adhesive strength with one film layer was measured. The results are shown in Table 1.

【表】 第1表に示したように、本発明方法で製造した
複合電気絶縁紙は、絶縁油に浸漬後の厚さ増加
率、即ち膨潤率が小さくかつ接着強度が大きく、
優れた物理特性を有していた。 次に2000mm2銅導体上に半導電層を設け、この上
に実施例1および比較例1で得た複合電気絶縁紙
をそれぞれ15mm厚に巻付け、同一の外部半導電層
およびアルミ被を施したケーブルを作り、これら
のケーブルを100℃、0.1mmHgにおいて120時間真
空乾燥した。この後、DDBを含浸させ、導体通
電により導体温度が85℃になる様に6時間加熱
し、室温迄冷却し、20倍ベンドを行つた後に、衝
撃破壊電圧を測定し、第2表に示す結果を得た。
[Table] As shown in Table 1, the composite electrical insulating paper produced by the method of the present invention has a small thickness increase rate after immersion in insulating oil, that is, a small swelling rate, and a high adhesive strength.
It had excellent physical properties. Next, a semiconducting layer was provided on the 2000 mm 2 copper conductor, and the composite electrically insulating paper obtained in Example 1 and Comparative Example 1 was wrapped around this to a thickness of 15 mm, and the same external semiconducting layer and aluminum covering were applied. These cables were vacuum dried at 100°C and 0.1mmHg for 120 hours. After this, the conductor was impregnated with DDB, heated for 6 hours so that the conductor temperature reached 85℃ by energizing the conductor, cooled to room temperature, and after bending 20 times, the impact breakdown voltage was measured and shown in Table 2. Got the results.

【表】 また、このケーブルを解体した結果、実施例1
の複合絶縁紙を用いたケーブルでは、絶縁紙層に
紙しわおよび切断部分が全く認められず、健全な
状態であつた。これに対し、比較例1の複合絶縁
紙を用いたケーブルでは、絶縁紙層に紙しわの発
生および切断部分の存在が認められ、絶縁破壊は
切断部で起つていた。
[Table] Also, as a result of disassembling this cable, Example 1
In the cable using composite insulating paper, no paper wrinkles or cut parts were observed in the insulating paper layer, and the cable was in good condition. On the other hand, in the cable using the composite insulating paper of Comparative Example 1, the occurrence of paper wrinkles and the presence of cut portions in the insulating paper layer were observed, and dielectric breakdown occurred at the cut portions.

Claims (1)

【特許請求の範囲】[Claims] 1 押出機により押出成形されたポリ4−メチル
ペンテン−1フイルムの少くとも片面にクラフト
繊維紙を加圧接着させて得た複合電気絶縁紙を、
該複合電気絶縁紙に用いたポリ4−メチルペンテ
ン−1フイルム層が該ポリ4−メチルペンテン−
1の結晶融点以上の温度となり、かつ上記複合電
気絶縁紙に加わる面圧力が10g/m2以上になる様
に加熱ロールに掛け、次いで該ポリ4−メチルペ
ンテン−1フイルムの結晶融点より30℃以上低い
温度になる迄は空気中で放冷することを特徴とす
る複合電気絶縁紙の特性改善方法。
1 Composite electrical insulating paper obtained by adhering kraft fiber paper under pressure to at least one side of a poly-4-methylpentene-1 film extruded using an extruder,
The poly-4-methylpentene-1 film layer used in the composite electrical insulating paper is
The poly4-methylpentene-1 film was heated to 30°C above the crystalline melting point of the poly4-methylpentene- 1 film. A method for improving the characteristics of composite electrically insulating paper, characterized by cooling it in the air until the temperature reaches a temperature lower than that.
JP404181A 1981-01-14 1981-01-14 System for improving characteristics of composite electrically insulating paper Granted JPS57118311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP404181A JPS57118311A (en) 1981-01-14 1981-01-14 System for improving characteristics of composite electrically insulating paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP404181A JPS57118311A (en) 1981-01-14 1981-01-14 System for improving characteristics of composite electrically insulating paper

Publications (2)

Publication Number Publication Date
JPS57118311A JPS57118311A (en) 1982-07-23
JPS6353654B2 true JPS6353654B2 (en) 1988-10-25

Family

ID=11573852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP404181A Granted JPS57118311A (en) 1981-01-14 1981-01-14 System for improving characteristics of composite electrically insulating paper

Country Status (1)

Country Link
JP (1) JPS57118311A (en)

Also Published As

Publication number Publication date
JPS57118311A (en) 1982-07-23

Similar Documents

Publication Publication Date Title
US2363324A (en) Electrical insulation
EP0222291B1 (en) Composite tape for the insulation of electric cables and electric cable using said tape in its insulation
JPS6351323B2 (en)
JPS6353654B2 (en)
CN110053111A (en) A kind of laminating technology of electrical laminated wood
JPS6353653B2 (en)
JPS6136329B2 (en)
JP2817254B2 (en) Laminate
JPH04255617A (en) Stacked insulator
JPS6046497B2 (en) composite electrical insulation paper
JPS5935318A (en) Method of producing oil-immersed power cable
JPS6145326B2 (en)
JPS6137726B2 (en)
JPH0312407B2 (en)
JPS6255483B2 (en)
JPS6129087B2 (en)
JPS59191733A (en) Improvement of electrical properties of polyolefin
JPS6115536B2 (en)
JPS5855602B2 (en) Plastic tape insulation pressure type power cable
JPH0244086B2 (en)
JPS6137728B2 (en)
KR19980042478A (en) ELECTRICALLY INSULATED LAMINATED PAPER, METHOD FOR MANUFACTURING THE SAME,
JPS6224886B2 (en)
JPS6233726B2 (en)
JPS6353652B2 (en)