JPS6351323B2 - - Google Patents

Info

Publication number
JPS6351323B2
JPS6351323B2 JP403281A JP403281A JPS6351323B2 JP S6351323 B2 JPS6351323 B2 JP S6351323B2 JP 403281 A JP403281 A JP 403281A JP 403281 A JP403281 A JP 403281A JP S6351323 B2 JPS6351323 B2 JP S6351323B2
Authority
JP
Japan
Prior art keywords
insulating paper
polypropylene film
composite
paper
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP403281A
Other languages
Japanese (ja)
Other versions
JPS57118309A (en
Inventor
Kyoshi Nakayama
Shunsuke Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP403281A priority Critical patent/JPS57118309A/en
Publication of JPS57118309A publication Critical patent/JPS57118309A/en
Publication of JPS6351323B2 publication Critical patent/JPS6351323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paper (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリプロピレンフイルムの少くとも片
面にクラフト繊維紙を加圧接着させた複合電気絶
縁紙の特性、特に絶縁油中でのポリプロピレンフ
イルムとクラフト繊維紙との接着性および膨潤性
を大幅に改善する方法に関するものである。 ポリプロピレンフイルムの少くとも片面にクラ
フト繊維紙を貼合わせた複合電気絶縁紙は、誘電
損失が小さい、耐電圧値が高い等の特長を持つ故
に、超高圧OFケーブル用の絶縁体として世界的
に注目されている。超高圧OFケーブル用絶縁体
としては、その誘電特性として誘電率εが2.5程
度、誘電正接tanδが0.05(%)程度の性能が要求
されており、これを満足するには複合電気絶縁紙
におけるポリプロピレンフイルムの占める割合を
例えば60%以上に大きくする必要がある。しか
し、ポリプロピレンフイルムが60%以上を占める
複合電気絶縁紙では、絶縁油中での厚さ増加率、
即ち膨潤率が大きくなり、例えばケーブルを曲げ
た場合に絶縁紙に「しわ」および「切れ」を生じ
ケーブルの耐電圧値を低下させるという問題があ
る。 また、従来複合電気絶縁紙は、T−ダイを有す
る押出機から押出されたポリプロピレンフイルム
の少くとも片面にクラフト繊維紙を沿わせた後に
加圧水冷ロールで接着一体化することにより製造
されている。この場合、T−ダイから押出された
ポリプロピレンフイルムは、加圧水冷ロールに至
る迄の間に溶融状態で自重がかかるために、引落
されて成形したフイルムが押出方向に配向し、そ
のため得られた複合電気絶縁紙を絶縁油中に浸漬
すると、ポリプロピレンフイルム層が膨潤の異方
性を示し、クラフト繊維紙層とポリピロピレンフ
イルム層とが剥離し易くなるという事が判明し
た。 本発明はかかる問題点を克服するためになされ
たもので、複合電気絶縁紙の特性、特に絶縁中で
のポリプロピレンフイルムとクラフト繊維紙との
接着性および膨潤性を改善するための特性改善方
法を提供するものである。 本発明は、押出機により押出成形されたポリプ
ロピレンフイルムの片面若しくは両面にクラフト
繊維紙を加圧接着させて得た複合電気絶縁紙を、
該複合電気絶縁紙に用いたポリプロピレンフイル
ム層が該ポリプロピレンフイルムの結晶融点以上
の温度となり、かつ上記複合電気絶縁紙に加わる
面圧力が10g/cm2以上になる様に加熱ロールに掛
けた後、ポリプロピレンフイルム層の温度が該ポ
リプロピレンフイルムの結晶融点より30℃以上低
い温度になる迄空気中で放冷することを特徴とす
るものである。 本発明においてポリプロピレンフイルムとは、
誘電特性の優れたポリプロピレンのペレツトを押
出機によりT−ダイ等を用いて溶融押出成形する
事により得られるフイルムである。 本発明においては、先ず従来方法によつて、押
出機により押出成形されたポリプロピレンフイル
ムの片面若しくは両面にクラフト繊維紙を重ね合
わせて加圧接着することにより複合電気絶縁紙を
得る。次いで、このようにして得た複合電気絶縁
紙を加熱ロールに掛ける事により複合電気絶縁紙
に用いたポリプロピレンフイルム層の温度を該ポ
リプロピレンの結晶融点以上の温度とし、かつこ
の際複合電気絶縁紙に加わる面圧力を10g/cm2
上、好ましくは50〜100g/cm2程度に保持する。
ポリプロピレンフイルム層の温度を該ポリプロピ
レンの結晶融点以上の温度に限定する理由は、ポ
リプロピレンフイルムに加わつている配向を緩和
できるからである。ポリプロピレンの結晶融点よ
り低い温度では加熱ロール掛けを行つても絶縁油
中におけるポリプロピレンフイルムとクラフト繊
維紙との接着性に対して全く効果が無い。また複
合電気絶縁紙に加わる面圧力を10g/cm2以上に限
定する理由は、かかる面圧力を加える事により溶
融ポリプロピレンがクラフト繊維紙の繊維間隙に
充分めり込み、ポリプロピレンフイルムとクラフ
ト繊維紙との接着性が格段に改善されるからであ
る。 得られた複合電気絶縁紙を加熱ロールに掛ける
場合に、複合電気絶縁紙は加熱ロールに押圧され
るので該加熱ロールの複合電気絶縁紙への熱伝達
が良好であり、従つて加熱ロールの表面温度はポ
リプロピレンフイルムの結晶融点より10〜20℃高
い温度であれば充分である。加熱ロールとしては
金属ロール2本以上を用い、複合電気絶縁紙を各
ロールに充分接触させながら通過させる事が、一
定の面圧力を加える事ができるので好適である。 本発明においては複合電気絶縁紙を加熱ロール
に掛けた後に冷却する。この冷却工程では、ポリ
プロピレンフイルム層の温度が該ポリプロピレン
フイルムの結晶融点より30℃以上低い温度になる
迄は、空気中で放冷する事が必要である。この理
由は、ポリプロピレンフイルムの結晶化温度範囲
がポリプロピレンフイルムの結晶融点以下で、か
つ結晶融点より30℃低い温度迄であるので、少く
ともこの温度範囲内では充分徐冷を施す事がポリ
プロピレンフイルムの結晶化度を増大させるのに
効果があり、従つて得られる複合電気絶縁紙の絶
縁油中での厚さ増加率、即ち膨潤率を低減せしめ
る事に効果があるからである。空気中で放冷する
場合には、熱放散のみで冷却が行われるため熱伝
達が悪く、充分な徐冷が行われるので、結晶化度
の増大効果が大きい。通常加熱ロールを通過して
から2〜3m程度の間では空気中で放冷し、次い
で水冷ロール等で冷却する事が生産性の点から好
ましい。 本発明方法の実施は、押出機により押出成形さ
れたポリプロピレンフイルムの少くとも片面にク
ラフト繊維紙を加圧接着させる工程の直後に引続
いて行う事が、生産性良く特性を改善できるので
特に好ましい。 次に本発明を実施例および比較例について説明
する。 比較例 1 ポリプロピレン(結晶融点170℃)を押出機に
より厚さ90μのフイルムに押出成形し、この両面
に厚さ30μのクラフト繊維紙を重ね合わせて加圧
ロール(表面温度15℃)により接着一体化させ、
複合電気絶縁紙を得た。 実施例 1 比較例1で得た複合電気絶縁紙を、表面温度
185℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後2m離れた地
点迄は空気中で放冷した。なお、この時の複合電
気絶縁紙の温度は130℃になつた。次いで冷却ロ
ール(表面温度15℃)に導き、更に冷却した。 実施例 2 比較例1で得た複合電気絶縁紙を、表面温度
175℃の加熱ロール間を面圧力50〜70g/cm2にな
るように通過させ、加熱ロールの直後2m離れた
地点迄は空気中で放冷した。複合電気絶縁紙の温
度は120℃になつた。次いで水冷ロール(表面温
度15℃)に導き更に冷却した。 実施例 3 比較例1で得た複合電気絶縁紙を、表面温度
185℃の加熱ロール間を面圧力100〜150g/cm2
なるように通過させ、加熱ロールの直後2m離れ
た地点迄は空気中で放冷した。なお、この時の複
合電気絶縁紙の温度は130℃になつた。次いで水
冷ロール(表面温度15℃)に導き、更に冷却し
た。 実施例 4 比較例1で得た複合電気絶縁紙を、表面温度
185℃の加熱ロール間を面圧力10〜30g/cm2にな
るように通過させ、加熱ロールの直後2m離れた
地点迄は空気中で放冷した。複合電気絶縁紙の温
度は130℃になつた。次いで水冷ロール(表面温
度15℃)に導き、更に冷却した。 比較例 2 比較例1で得た複合電気絶縁紙を、表面温度
160℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後2m離れた地
点迄は空気中で放冷した。なおこの時の複合電気
絶縁紙の温度は110℃になつた。次いで水冷ロー
ル(表面温度15℃)に導き、更に冷却した。 比較例 3 比較例1で得た複合電気絶縁紙を、表面温度
185℃の加熱ロールを軽く接触する程度に通過さ
せ、加熱ロールの直後2m離れた地点迄は空気中
で放冷した。複合電気絶縁紙の温度は130℃にな
つた。次いで水冷ロール(表面温度15℃)に導
き、更に冷却した。 比較例 4 比較例1で得た複合電気絶縁紙を、表面温度
185℃の加熱ロール間を面圧力50〜70g/cm2にな
る様に通過させ、加熱ロールの直後10cm離れた地
点迄は空気中で放冷した。なお、この時の複合電
気絶縁紙の温度は180℃になつた。次いで水冷ロ
ール(表面温度15℃)に導き、更に冷却した。 上述の実施例1〜4および比較例1〜4で得た
複合電気絶縁紙をそれぞれ100℃、0.1mmHgの条
件下に24時間乾燥し、これにドデシルベンゼン
(DDB)を含浸させて得た油浸紙の誘電特性を測
定した。この結果、いずれも誘電率とは2.44〜
2.50であり、80℃における誘電正接tanδは0.045
〜0.054(%)で、良好であつた。 また、得られた複合電気絶縁紙を同様に真空乾
燥し、次いで100℃のDDBに浸漬し、240時間放
置後の厚さ増加率を測定し、この結果を第1表に
示した。 更に、得られた複合電気絶縁紙を同様に真空乾
燥し、次いで100℃のDDBに浸漬し、24時間放置
後にクラフト繊維紙とポリプロピレンフイルム層
との接着強度を測定した。この結果を第1表に示
した。
The present invention significantly improves the properties of composite electrical insulating paper in which kraft fiber paper is pressure-adhered to at least one side of a polypropylene film, particularly the adhesion and swelling properties of the polypropylene film and kraft fiber paper in insulating oil. It is about the method. Composite electrical insulating paper, which is made by laminating kraft fiber paper on at least one side of a polypropylene film, has features such as low dielectric loss and high withstand voltage, so it is attracting worldwide attention as an insulator for ultra-high voltage OF cables. has been done. Insulators for ultra-high voltage OF cables are required to have dielectric properties such as a dielectric constant ε of about 2.5 and a dielectric loss tangent tan δ of about 0.05 (%). It is necessary to increase the ratio occupied by film to, for example, 60% or more. However, for composite electrical insulating paper in which polypropylene film accounts for 60% or more, the rate of increase in thickness in insulating oil,
That is, the swelling ratio becomes large, and when the cable is bent, for example, the insulating paper becomes "wrinkled" and "cut", which causes a problem of lowering the withstand voltage value of the cable. Conventionally, composite electrical insulating paper has been manufactured by applying kraft fiber paper along at least one side of a polypropylene film extruded from an extruder having a T-die, and then bonding and integrating the film with a pressurized water-cooled roll. In this case, the polypropylene film extruded from the T-die is subjected to its own weight in a molten state before reaching the pressurized water-cooled roll, so that the formed film is oriented in the extrusion direction, and the resulting composite film is It has been found that when electrically insulating paper is immersed in insulating oil, the polypropylene film layer exhibits swelling anisotropy, making it easy for the kraft fiber paper layer and the polypropylene film layer to separate. The present invention has been made to overcome these problems, and provides a method for improving the properties of composite electrical insulating paper, particularly the adhesion and swelling properties between polypropylene film and kraft fiber paper during insulation. This is what we provide. The present invention is a composite electrically insulating paper obtained by bonding kraft fiber paper under pressure to one or both sides of a polypropylene film extruded using an extruder.
After applying the polypropylene film layer used in the composite electrically insulating paper to a heating roll so that the temperature is higher than the crystal melting point of the polypropylene film and the surface pressure applied to the composite electrically insulating paper is 10 g/cm 2 or more, It is characterized in that it is allowed to cool in air until the temperature of the polypropylene film layer becomes 30° C. or more lower than the crystalline melting point of the polypropylene film. In the present invention, polypropylene film is
This film is obtained by melt-extruding polypropylene pellets with excellent dielectric properties using an extruder using a T-die or the like. In the present invention, first, a composite electrically insulating paper is obtained by superimposing and pressurizing kraft fiber paper on one or both sides of a polypropylene film extruded using an extruder using a conventional method. Next, the temperature of the polypropylene film layer used in the composite electrically insulating paper was set to be higher than the crystalline melting point of the polypropylene by placing the composite electrically insulating paper obtained in this way on a heating roll, and at this time, the composite electrically insulating paper was The applied surface pressure is maintained at 10 g/cm 2 or more, preferably about 50 to 100 g/cm 2 .
The reason why the temperature of the polypropylene film layer is limited to a temperature higher than the crystal melting point of the polypropylene is that the orientation imparted to the polypropylene film can be relaxed. At temperatures lower than the crystalline melting point of polypropylene, heating rolls have no effect on the adhesion between polypropylene film and kraft fiber paper in insulating oil. Also, the reason why the surface pressure applied to the composite electrical insulating paper is limited to 10 g/cm2 or more is that by applying such surface pressure, the molten polypropylene sufficiently sinks into the fiber gaps of the kraft fiber paper, and the adhesion between the polypropylene film and the kraft fiber paper is achieved. This is because the quality is greatly improved. When the obtained composite electrically insulating paper is placed on a heating roll, the composite electrically insulating paper is pressed against the heating roll, so that the heat transfer from the heating roll to the composite electrically insulating paper is good, and therefore the surface of the heating roll is It is sufficient that the temperature is 10 to 20°C higher than the crystalline melting point of the polypropylene film. It is preferable to use two or more metal rolls as the heating rolls and to pass the composite electrically insulating paper through each roll while being in sufficient contact with the rolls, since a constant surface pressure can be applied. In the present invention, the composite electrically insulating paper is placed on a heated roll and then cooled. In this cooling step, it is necessary to allow the polypropylene film layer to cool in air until the temperature of the polypropylene film layer becomes 30° C. or more lower than the crystalline melting point of the polypropylene film. The reason for this is that the crystallization temperature range of polypropylene film is below the crystal melting point of polypropylene film and up to a temperature 30°C lower than the crystal melting point, so it is important to perform sufficient slow cooling within this temperature range at least. This is because it is effective in increasing the degree of crystallinity, and therefore in reducing the rate of increase in thickness of the obtained composite electrically insulating paper in insulating oil, that is, the rate of swelling. When cooling in air, cooling is performed only by heat dissipation, resulting in poor heat transfer, and sufficient slow cooling is performed, resulting in a large effect of increasing the degree of crystallinity. Generally, from the viewpoint of productivity, it is preferable to let the material cool in the air for about 2 to 3 m after passing through the heating roll, and then cool it with a water-cooled roll or the like. It is particularly preferable to carry out the method of the present invention immediately after the step of pressurizing and adhering kraft fiber paper to at least one side of a polypropylene film extruded using an extruder, since this can improve productivity and properties. . Next, the present invention will be explained with reference to Examples and Comparative Examples. Comparative Example 1 Polypropylene (crystal melting point 170℃) was extruded into a 90μ thick film using an extruder, and 30μ thick kraft fiber paper was layered on both sides of the film and bonded together using a pressure roll (surface temperature 15℃). to become
A composite electrical insulation paper was obtained. Example 1 The composite electric insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 185°C at a surface pressure of 50 to 70 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. Note that the temperature of the composite electrically insulating paper at this time reached 130°C. Then, it was introduced into a cooling roll (surface temperature: 15°C) and further cooled. Example 2 The composite electrical insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 175°C at a surface pressure of 50 to 70 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. The temperature of the composite electrical insulation paper reached 120℃. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Example 3 The composite electrical insulating paper obtained in Comparative Example 1 was
The sample was passed between heated rolls at 185°C at a surface pressure of 100 to 150 g/cm 2 and left to cool in the air up to a point 2 m away from the heated roll. Note that the temperature of the composite electrically insulating paper at this time reached 130°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Example 4 The composite electrically insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 185°C at a surface pressure of 10 to 30 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. The temperature of the composite electrical insulation paper reached 130℃. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Comparative Example 2 The composite electrical insulating paper obtained in Comparative Example 1 was
The sample was passed between heating rolls at 160°C at a surface pressure of 50 to 70 g/cm 2 and left to cool in the air up to a point 2 m away from the heating roll. At this time, the temperature of the composite electrically insulating paper reached 110°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Comparative Example 3 The composite electrical insulating paper obtained in Comparative Example 1 was
The material was passed through a heating roll at 185° C. to the extent that it lightly touched the material, and was allowed to cool in the air up to a point 2 m away from the heating roll. The temperature of the composite electrical insulation paper reached 130℃. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. Comparative Example 4 The composite electrical insulating paper obtained in Comparative Example 1 was
The sample was passed between heated rolls at 185°C at a surface pressure of 50 to 70 g/cm 2 and allowed to cool in the air up to a point 10 cm away from the heated roll. Note that the temperature of the composite electrically insulating paper at this time reached 180°C. Then, it was introduced into a water-cooled roll (surface temperature: 15°C) and further cooled. The composite electrically insulating papers obtained in Examples 1 to 4 and Comparative Examples 1 to 4 described above were each dried at 100°C and 0.1 mmHg for 24 hours, and an oil obtained by impregnating them with dodecylbenzene (DDB). The dielectric properties of the soaked paper were measured. As a result, the dielectric constant is 2.44~
2.50, and the dielectric loss tangent tanδ at 80℃ is 0.045
It was 0.054 (%), which was good. Further, the obtained composite electrically insulating paper was vacuum-dried in the same manner, then immersed in DDB at 100°C, and the rate of increase in thickness after being left for 240 hours was measured. The results are shown in Table 1. Furthermore, the resulting composite electrically insulating paper was similarly vacuum dried, then immersed in DDB at 100°C, and after being left for 24 hours, the adhesive strength between the kraft fiber paper and the polypropylene film layer was measured. The results are shown in Table 1.

【表】【table】

【表】 第1表に示したように、本発明方法で製造した
複合電気絶縁紙は、絶縁油に浸漬後の厚さ増加
率、即ち膨潤率が小さくかつ接着強度が大きく、
優れた物理特性を有していた。 次に2000mm2銅導体上に半導電層を設け、この上
に実施例1および比較例1で得た複合電気絶縁紙
をそれぞれ15mm厚に巻付け、同一の外部半導電層
およびアルミ被を施したケーブルを作り、これら
のケーブルを100℃、0.1mmHgにおいて120時間真
空乾燥した。この後、DDBを含浸させ、導体通
電により導体温度が85℃になる様に6時間加熱
し、室温迄冷却し、20倍ベンドを行つた後に、衝
撃破壊電圧を測定し、第2表に示す結果を得た。
[Table] As shown in Table 1, the composite electrical insulating paper produced by the method of the present invention has a small thickness increase rate after immersion in insulating oil, that is, a small swelling rate, and a high adhesive strength.
It had excellent physical properties. Next, a semiconducting layer was provided on the 2000 mm 2 copper conductor, and the composite electrically insulating paper obtained in Example 1 and Comparative Example 1 was wrapped around this to a thickness of 15 mm, and the same external semiconducting layer and aluminum covering were applied. These cables were vacuum dried at 100°C and 0.1mmHg for 120 hours. After this, the conductor was impregnated with DDB, heated for 6 hours so that the conductor temperature reached 85℃ by energizing the conductor, cooled to room temperature, and after bending 20 times, the impact breakdown voltage was measured and shown in Table 2. Got the results.

【表】 また、このケーブルを解体した結果、実施例1
の複合絶縁紙を用いたケーブルでは、絶縁紙層に
紙しわおよび切断部分が全く認められず、健全な
状態であつた。これに対し、比較例1の複合絶縁
紙を用いたケーブルでは、絶縁紙層に紙しわの発
生および切断部分の存在が認められ、絶縁破壊は
切断部で起つていた。
[Table] Also, as a result of disassembling this cable, Example 1
In the cable using composite insulating paper, no paper wrinkles or cut parts were observed in the insulating paper layer, and the cable was in good condition. On the other hand, in the cable using the composite insulating paper of Comparative Example 1, the occurrence of paper wrinkles and the presence of cut portions in the insulating paper layer were observed, and dielectric breakdown occurred at the cut portions.

Claims (1)

【特許請求の範囲】[Claims] 1 押出機により押出成形されたポリプロピレン
フイルムの少くとも片面にクラフト繊維紙を加圧
接着させて得た複合電気絶縁紙を、該複合電気絶
縁紙に用いたポリプロピレンフイルム層が該ポリ
プロピレンの結晶融点以上の温度となり、かつ上
記複合電気絶縁紙に加わる面圧力が10g/cm2以上
になる様に加熱ロールに掛けた後、ポリプロピレ
ンフイルム層の温度が該ポリプロピレンフイルム
の結晶融点より30℃以上低い温度になる迄空気中
で放冷することを特徴とする複合電気絶縁紙の特
性改善方法。
1 Composite electrical insulating paper obtained by bonding kraft fiber paper under pressure to at least one side of a polypropylene film extruded using an extruder, the polypropylene film layer used for the composite electrical insulating paper having a temperature higher than the crystalline melting point of the polypropylene. and the surface pressure applied to the composite electric insulating paper is 10 g/cm 2 or more, and then the temperature of the polypropylene film layer is lowered by 30 ° C or more than the crystalline melting point of the polypropylene film. A method for improving the properties of composite electrically insulating paper, characterized by cooling it in air until it becomes dry.
JP403281A 1981-01-14 1981-01-14 Method of improving characteristics of composite electrically insulating paper Granted JPS57118309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP403281A JPS57118309A (en) 1981-01-14 1981-01-14 Method of improving characteristics of composite electrically insulating paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP403281A JPS57118309A (en) 1981-01-14 1981-01-14 Method of improving characteristics of composite electrically insulating paper

Publications (2)

Publication Number Publication Date
JPS57118309A JPS57118309A (en) 1982-07-23
JPS6351323B2 true JPS6351323B2 (en) 1988-10-13

Family

ID=11573614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP403281A Granted JPS57118309A (en) 1981-01-14 1981-01-14 Method of improving characteristics of composite electrically insulating paper

Country Status (1)

Country Link
JP (1) JPS57118309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463443U (en) * 1990-10-12 1992-05-29
JPH08106145A (en) * 1990-07-31 1996-04-23 Eastman Kodak Co Film cassette

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106145A (en) * 1990-07-31 1996-04-23 Eastman Kodak Co Film cassette
JPH0463443U (en) * 1990-10-12 1992-05-29

Also Published As

Publication number Publication date
JPS57118309A (en) 1982-07-23

Similar Documents

Publication Publication Date Title
US2463054A (en) Apparatus for heating insulating material by subjecting it to a highfrequency field of electric force
US2363324A (en) Electrical insulation
US4853490A (en) Laminated paper-plastic insulating tape and cable including such tape
JPS6351323B2 (en)
US1497449A (en) Molded condenser
JPS6353654B2 (en)
CN110053111A (en) A kind of laminating technology of electrical laminated wood
US3614299A (en) Low thermal conductivity cable core wrap
JPS6353653B2 (en)
JPH04255617A (en) Stacked insulator
JPS6137726B2 (en)
JPS6255483B2 (en)
JPS5935318A (en) Method of producing oil-immersed power cable
JPH0312407B2 (en)
JPS59191733A (en) Improvement of electrical properties of polyolefin
JPS5855602B2 (en) Plastic tape insulation pressure type power cable
JPS6046497B2 (en) composite electrical insulation paper
JPS6129087B2 (en)
JPS6145326B2 (en)
JPH0730417U (en) Fireproof cable
JPS6038812B2 (en) Manufacturing method of plastic insulated oil immersed power cable
JPH059777Y2 (en)
JPS6353652B2 (en)
JPS6140189B2 (en)
JPS6224886B2 (en)