JPS6246576B2 - - Google Patents

Info

Publication number
JPS6246576B2
JPS6246576B2 JP6679483A JP6679483A JPS6246576B2 JP S6246576 B2 JPS6246576 B2 JP S6246576B2 JP 6679483 A JP6679483 A JP 6679483A JP 6679483 A JP6679483 A JP 6679483A JP S6246576 B2 JPS6246576 B2 JP S6246576B2
Authority
JP
Japan
Prior art keywords
polyolefin
present
film
voltage
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6679483A
Other languages
Japanese (ja)
Other versions
JPS59191733A (en
Inventor
Hikari Yotsui
Fumio Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6679483A priority Critical patent/JPS59191733A/en
Publication of JPS59191733A publication Critical patent/JPS59191733A/en
Publication of JPS6246576B2 publication Critical patent/JPS6246576B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリオレフイン系シート状物の特性改
善方法に係り、特にポリオレフインの耐電圧性能
を改善し得る新規な方法を提供するものである。 一般にプラスチツクシート又は成型品は電気絶
縁用途として広く使用されている。近年機器の高
電圧化の要望によつて絶縁耐力の優れたプラスチ
ツクの開発が要望されている。特に電力ケーブ
ル、高電圧トランス、コンデンサー機器において
は省エネルギー、省資源の立場から高度の性能の
要求が出されてきている。例えばOFケーブルの
絶縁においては絶縁耐力の優れた新素材の研究が
鋭意行われている。即ち従来のクラフト紙絶縁に
代つて高耐電圧、低誘電損失の複合絶縁紙の開発
が進められている。その1例はクラフト紙と高結
晶性ポリオレフイン層とのサンドイツチ構造から
なるものである。しかしこの材料は絶縁耐力の改
良には有効であるが、低損失化には限界がある。 一方プラスチツクフイルム単独のものを積層し
て絶縁体層を形成すると短期間に膨潤が生じ著し
くその絶縁耐力が低下する。たとえ膨潤をおこさ
ない材料が見出されたとしても実用化が困難であ
る。従つて望ましくは誘電損失の小さいプラスチ
ツクで構成され且つ耐電圧の優れた新規な材料の
出現が要望されているものである。 本発明者等は高電界下においた溶融プラスチツ
クス中の荷電粒子の挙動について鋭意考察を進め
て来た結果不純物近傍に作用する電界は印加され
る外部電界より著るしく大きくなる現象があり、
不純物が含まれるプラスチツクスを交流電界下に
置くと絶縁体中の不純物を中心とした特定微小領
域が集中的に高電界下におかれる結果、交流破壊
の有力なトリガーとなる。そしてこれらの現象が
予め直流電界下でポリマーの溶融体を処理しなが
ら固化させることにより避けられることを見出し
た。この理由は詳らかではないがポリマーの微細
構造発生とその電気物性との境界領域に関するも
のであり、明確な因果関係は見出し難いが、おそ
らく、電気破壊のトリガーとなる不純物のポリマ
ー固体中での配位ポテンシヤルが等電位面に対し
て極小となることが原因していると思われる。 本発明方法においてポリオレフインとは、ポリ
プロピレン、高密度ポリエチレン、低密度ポリエ
チレン、短鎖低密度ポリエチレン、ポリブテン−
I、ポリ−4−メチルペンテン−Iの如き単独重
合体、又はエチレンとα−オレフイン、プロピレ
ン、ブテン−I、オフテン−I等との共重合体を
指すものである。なおこれらの重合体の架橋体も
含まれる。 本発明方法は前記ポリオレフイン系シート状物
を電極間におき、加熱する。このとき与えられる
電界強度は0.5kV/mm以上望ましくは10kV/mm以
上であるが、ポリオレフインの破壊電圧より遥に
低く且つポリオレフインの溶融状態の破壊値に近
いものである。 この溶融状態のポリオレフイン系シート状物を
前記電界下におく方法としては特に限定するもの
ではなく、例えば一対の平行電極間に加熱しなが
ら置く方法、或は連続的方法として例えば金属ロ
ール間に溶融フイルムを導きながらロール間に高
電圧を与えて処理するなどの方法がある。その処
理電圧としては特に限定するものではなく通常溶
融体の破壊電圧以下の直流電圧を印加する。 本発明方法においてポリオレフインの形態とし
てはフイルム状、シート状或はこれらを用いた複
合構造でもよい。例えばクラフト紙又は耐熱高分
子フイルムなど非溶融性の高誘電率シート材料と
ポリオレフインフイルムとによつて積層構造を形
成してもよい。このような複合構造体の場合でも
ポリオレフイン中を移動する荷電粒子はポリオレ
フイン層の界面近傍に集積され、クラフト紙など
の誘電率の高い相と一体化した構造となる。 又溶融状態又は軟化点以上のポリオレフイン温
度は融点又は軟化点の温度とこれより50℃高い温
度との間である。又その処理時間は被処理体の厚
さ又は構造例えば複合構造に依存するためこれを
定めることが出来ないものであるが、通常5〜
120秒である。 本発明方法により処理されたポリオレフインは
絶縁破壊の基因となる誘電的不純物を電気的に除
去したものであるため著しく電気特性を向上せし
めることが出来る。 次に本発明方法の実施例について説明する。 実施例 1 二枚の鉄板間に、ポリプロピレン(No.1)、高
密度ポリエチレン(No.2)、低密度ポリエチレン
(No.3)及び直鎖状低密度ポリエチレン(No.4)
を熱プレス法により夫々フイルムに成形し、厚さ
120μのフイルムをえた。これらのフイルムに直
径20mmの円形電極を取付け、第1表に示す加熱雰
囲気下に保持しつつ3.0kVの処理電圧をかけて
夫々70秒誘電処理した後高温まで冷却せしめて本
発明方法によるポリオレフインフイルム(本発明
品)をえた。 なお本発明方法と比較するために上記のポリオ
レフインフイルムについて課電処理することなく
その他はすべて実施例と同様にして比較例ポリオ
レフインフイルム(比較例品)をえた。 斯くしてえた本発明処理品と比較例処理品につ
いて室温における交流破壊電圧を測定した。その
結果は第1表に併記した通りである。
The present invention relates to a method for improving the properties of polyolefin sheet materials, and in particular provides a novel method capable of improving the voltage resistance performance of polyolefins. In general, plastic sheets or molded products are widely used for electrical insulation purposes. In recent years, with the demand for higher voltage equipment, there has been a demand for the development of plastics with superior dielectric strength. In particular, power cables, high voltage transformers, and capacitor equipment are increasingly required to have high performance from the standpoint of energy and resource conservation. For example, research is being carried out on new materials with excellent dielectric strength for the insulation of OF cables. That is, the development of composite insulating paper with high withstand voltage and low dielectric loss is underway to replace the conventional kraft paper insulation. One example is a sandwich structure of kraft paper and a layer of highly crystalline polyolefin. However, although this material is effective in improving dielectric strength, it has a limit in reducing loss. On the other hand, when an insulating layer is formed by laminating plastic films alone, swelling occurs in a short period of time, resulting in a significant decrease in dielectric strength. Even if a material that does not swell is found, it would be difficult to put it into practical use. Therefore, there is a need for a new material preferably made of plastic with low dielectric loss and with excellent withstand voltage. The inventors of the present invention have conducted intensive studies on the behavior of charged particles in molten plastics under high electric fields, and have found that the electric field acting near impurities becomes significantly larger than the applied external electric field.
When plastics containing impurities are placed under an alternating current electric field, a specific minute region centered on the impurities in the insulator is intensively exposed to a high electric field, which becomes a powerful trigger for alternating current breakdown. We have also found that these phenomena can be avoided by solidifying the polymer melt while processing it in advance under a DC electric field. The reason for this is not clear, but it is related to the boundary between the formation of the microstructure of the polymer and its electrical properties.Although it is difficult to find a clear causal relationship, it is probably due to the arrangement of impurities in the polymer solid that trigger electrical breakdown. This is thought to be caused by the fact that the potential becomes minimal with respect to the equipotential surface. In the method of the present invention, polyolefins include polypropylene, high density polyethylene, low density polyethylene, short chain low density polyethylene, polybutene.
It refers to homopolymers such as I, poly-4-methylpentene-I, or copolymers of ethylene and α-olefin, propylene, butene-I, oftene-I, and the like. Note that crosslinked products of these polymers are also included. In the method of the present invention, the polyolefin sheet is placed between electrodes and heated. The electric field strength applied at this time is 0.5 kV/mm or more, preferably 10 kV/mm or more, which is much lower than the breakdown voltage of polyolefin and close to the breakdown value of polyolefin in its molten state. The method of placing this molten polyolefin sheet under the electric field is not particularly limited; for example, it may be placed between a pair of parallel electrodes while being heated, or as a continuous method, for example, it may be melted between metal rolls. There are methods such as applying high voltage between rolls while guiding the film. The processing voltage is not particularly limited, and usually a DC voltage lower than the breakdown voltage of the melt is applied. In the method of the present invention, the polyolefin may be in the form of a film, a sheet, or a composite structure using these. For example, a laminated structure may be formed of a non-melting high dielectric constant sheet material such as kraft paper or a heat-resistant polymer film and a polyolefin film. Even in the case of such a composite structure, charged particles moving in the polyolefin are accumulated near the interface of the polyolefin layer, resulting in a structure integrated with a phase with a high dielectric constant such as kraft paper. The temperature of the polyolefin above the melting point or softening point is between the melting point or softening point and a temperature 50° C. higher than the melting point or softening point. The processing time cannot be determined because it depends on the thickness or structure of the object to be processed, such as a composite structure, but it is usually 5 to 50 minutes.
It is 120 seconds. Since the polyolefin treated by the method of the present invention has dielectric impurities that cause dielectric breakdown electrically removed, its electrical properties can be significantly improved. Next, examples of the method of the present invention will be described. Example 1 Polypropylene (No. 1), high-density polyethylene (No. 2), low-density polyethylene (No. 3), and linear low-density polyethylene (No. 4) were placed between two iron plates.
are each formed into a film using the heat press method, and the thickness
I got 120μ film. A circular electrode with a diameter of 20 mm was attached to each of these films, and a treatment voltage of 3.0 kV was applied to each film while holding it in the heating atmosphere shown in Table 1, dielectrically treating it for 70 seconds, and then cooling it to a high temperature to produce a polyolefin in film according to the method of the present invention. (product of the present invention) was obtained. For comparison with the method of the present invention, a comparative polyolefin film (comparative example product) was obtained in the same manner as in the example except that the polyolefin film described above was not subjected to any electrical treatment. The alternating current breakdown voltage at room temperature was measured for the thus obtained products treated in the present invention and the products treated in the comparative example. The results are also listed in Table 1.

【表】 上表より明らかの如く本発明処理品は著しく電
気特性が改善されている。 実施例 2 相互に電気的に絶縁され、且つ0.5〜1.0mmの間
隙を保つて設置した2本の80m/m径加熱ロール
(表面温度165℃)を表面速度180cm/分にて回転
し、このロール間に2.5kV/mmの直流電界を負荷
せしめた状態にて、ゲル分率96%の架橋ポリエチ
レンフイルム(1m/m厚)を通過させた後、冷
却ロールにより固化せしめて本発明方法による架
橋ポリエチレンフイルム(本発明処理品)をえ
た。 又本発明方法と比較するために上記の課電処理
を行なうことなくその他はすべて上記実施例と同
様にして比較例法による架橋ポリエチレンフイル
ム(比較例処理品)をえた。 斯くして得た本発明処理品及び比較例処理品に
ついて20m/m径の球と平面電極を用いて絶縁油
中にて交流破壊電圧を測定した。この結果は第2
表に示す通りである。
[Table] As is clear from the above table, the electrical properties of the products treated according to the present invention are significantly improved. Example 2 Two 80 m/m diameter heating rolls (surface temperature 165°C), electrically insulated from each other and installed with a gap of 0.5 to 1.0 mm, were rotated at a surface speed of 180 cm/min. A cross-linked polyethylene film (1 m/m thick) with a gel fraction of 96% is passed through a cross-linked polyethylene film (1 m/m thick) with a DC electric field of 2.5 kV/mm applied between the rolls, and then solidified by a cooling roll and cross-linked by the method of the present invention. A polyethylene film (product treated according to the present invention) was obtained. In addition, for comparison with the method of the present invention, a crosslinked polyethylene film (comparative example treated product) was obtained by the comparative method in the same manner as in the above example without performing the above-mentioned electrification treatment. The alternating current breakdown voltage of the thus obtained treated products of the present invention and the comparative treated products was measured in insulating oil using a sphere with a diameter of 20 m/m and a flat electrode. This result is the second
As shown in the table.

【表】 実施例 3 実施例2で用いた加熱ロールを使用し、30μ厚
のアイソタクテイツクポリプロピレンフイルムの
両面に45μ厚のセルローズ紙を熱貼着した複合絶
縁紙を以下の処理条件で課電処理した。ロール間
隙0.14mm、ロール表面温度200℃、表面速度180
cm/分、このロール間に300Vの直流電圧を印
加、然る後上記複合絶縁紙を直ちに冷却ロールに
より樹脂を冷却固化させて本発明方法による処理
複合絶縁紙(本発明品)をえた。 又本発明品と比較するために上記の課電処理を
行なうことなく、その他はすべて実施例と同様に
し処理複合絶縁紙(比較例品)をえた。 斯くして得た本発明品及び比較例品について室
温のドデシルベンゼン油中において交流破壊電を
測定した。その結果は第3表に示す通りである。
[Table] Example 3 Using the heating roll used in Example 2, a composite insulating paper with 45μ thick cellulose paper thermally attached to both sides of a 30μ thick isotactic polypropylene film was charged under the following processing conditions. Processed. Roll gap 0.14mm, roll surface temperature 200℃, surface speed 180
A DC voltage of 300 V was applied between the rolls at a rate of cm/min, and then the resin of the composite insulating paper was immediately cooled and solidified using a cooling roll to obtain a composite insulating paper treated by the method of the present invention (product of the present invention). In addition, for comparison with the product of the present invention, a treated composite insulating paper (comparative example product) was obtained in the same manner as in the example except that the above-mentioned electrification treatment was not performed. AC breakdown voltages of the products of the present invention and comparative products thus obtained were measured in dodecylbenzene oil at room temperature. The results are shown in Table 3.

【表】 以上詳述した如く本発明方法によればポリオレ
フインの固有耐電圧を飛躍的に向上せしめうると
共にポリオレフインフイルムの場合積層時の耐電
圧の低下が極めて少くすることが出来る。従つて
高圧電気機器に対する絶縁材料として極めて有用
なものである。
[Table] As detailed above, according to the method of the present invention, the specific withstand voltage of polyolefin can be dramatically improved, and in the case of polyolefin films, the drop in withstand voltage during lamination can be extremely minimized. Therefore, it is extremely useful as an insulating material for high-voltage electrical equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融点以上又は軟化点以上に加熱保持したポ
リオレフインからなるシート状物を所定の直流電
界の下でこれを冷却固化することを特徴とするポ
リオレフイン系シート状物の電気特性改善方法。
1. A method for improving the electrical properties of a polyolefin sheet material, which comprises cooling and solidifying a sheet material made of polyolefin heated to a temperature above its melting point or above its softening point under a predetermined direct current electric field.
JP6679483A 1983-04-15 1983-04-15 Improvement of electrical properties of polyolefin Granted JPS59191733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6679483A JPS59191733A (en) 1983-04-15 1983-04-15 Improvement of electrical properties of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6679483A JPS59191733A (en) 1983-04-15 1983-04-15 Improvement of electrical properties of polyolefin

Publications (2)

Publication Number Publication Date
JPS59191733A JPS59191733A (en) 1984-10-30
JPS6246576B2 true JPS6246576B2 (en) 1987-10-02

Family

ID=13326123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6679483A Granted JPS59191733A (en) 1983-04-15 1983-04-15 Improvement of electrical properties of polyolefin

Country Status (1)

Country Link
JP (1) JPS59191733A (en)

Also Published As

Publication number Publication date
JPS59191733A (en) 1984-10-30

Similar Documents

Publication Publication Date Title
KR19990064089A (en) Polypropylene Film and Capacitor Using It as Dielectric
Kahouli et al. Dielectric features of two grades of bi‐oriented isotactic polypropylene
CA1106982A (en) Polarization of a multi-ply stack of piezoelectric- forming resin pellicles
JPS6246576B2 (en)
CN110709948B (en) DC power cable
JPH04163042A (en) Polypropylene film for electric article
JP7375599B2 (en) Biaxially oriented polypropylene film, metal film laminate film and film capacitor
Mizutani et al. Interfacial polarization in silicone oil-polypropylene insulating system
Diego et al. TSDC study of XLPE recrystallization effects in the melting range of temperatures
JP3803139B2 (en) DC oil immersion power cable
Niwa et al. Studies on the improvement of breakdown strength of polyolefins
Zebouchi et al. Electric characterization of films peeled from the insulation of extruded HVDC cables
Abid et al. Differences in morphology and polarization properties of heat-treated XLPE and LDPE insulation
Kato et al. Characteristics of space charge behavior and conduction current in xlpe and annealed polyethylene under high DC stress
JPS6351323B2 (en)
Rytöluoto Application of polypropylene nanocomposites in metallized film capacitors under DC voltage
Cherifi et al. Influence of barium titanate (BaTiO/sub 3/) additive on space charge formation in polyethylene
JP3265717B2 (en) Positive resistance temperature coefficient heating element and method of manufacturing the same
Mizutani et al. Space charge behavior in LDPE and its blend polymers
JPS6367286B2 (en)
JP3547563B2 (en) DC oil immersion power cable
JPH02270209A (en) Insulating material for impregnation
JPS631735B2 (en)
JPH0648682Y2 (en) Polyolefin insulated power cable
JPS6353651B2 (en)