JPS6353529B2 - - Google Patents

Info

Publication number
JPS6353529B2
JPS6353529B2 JP56013234A JP1323481A JPS6353529B2 JP S6353529 B2 JPS6353529 B2 JP S6353529B2 JP 56013234 A JP56013234 A JP 56013234A JP 1323481 A JP1323481 A JP 1323481A JP S6353529 B2 JPS6353529 B2 JP S6353529B2
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
display device
crystal molecules
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56013234A
Other languages
Japanese (ja)
Other versions
JPS57125919A (en
Inventor
Fumiaki Funada
Masataka Matsura
Tomio Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1323481A priority Critical patent/JPS57125919A/en
Priority to US06/327,229 priority patent/US4443065A/en
Priority to GB8136949A priority patent/GB2092769B/en
Priority to DE19813148447 priority patent/DE3148447A1/en
Publication of JPS57125919A publication Critical patent/JPS57125919A/en
Publication of JPS6353529B2 publication Critical patent/JPS6353529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133636Birefringent elements, e.g. for optical compensation with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、ツイステツドネマテツク電界効果型
液晶表示装置に係り、特にツイステツドネマテツ
ク液晶表示装置において楕円偏光により生じる干
渉色による色付き現象を、光学的色補正板として
の液晶層を重ねることにより軽減した二層型液晶
表示装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a twisted nematic field effect liquid crystal display device, and more particularly, to a twisted nematic liquid crystal display device, a coloring phenomenon caused by interference color caused by elliptically polarized light can be solved by optical color correction. This invention relates to a two-layer liquid crystal display device in which the weight is reduced by stacking liquid crystal layers as plates.

近年、液晶表示装置の分野に於いても表示情報
量の拡大化が要求されるようになり、従来のセグ
メント型表示からマトリツクス型表示へ需要動向
が移行しつつある。しかしながら、マトリツクス
型表示で表示情報量を拡大するためには必然的に
いわゆるマルチプレツクス駆動の度数(デユーテ
イ比)を増加する必要があり、それに伴なつて表
示コントラストの低下や視角範囲の狭在化という
問題が生じる。この問題を解決する手段の1つと
して、液晶層厚dと液晶の複屈析Δn(=ne−np
ne;異常光に対する屈折率、np:正常光に対する
屈折率)をそれぞれ減少させればよいことが提案
されている{D.Meyerhofer:J.Appl.Phys.48
1179(1977)}。しかしながら、ツイステツドネマ
テイツク電界効果型液晶表示装置に於いて、dと
Δnを減少させると、その液晶中を伝播する光の
モードが直線偏光ではなくなり、楕円偏光とな
る。その結果偏光子と組み合わせると干渉色を生
じるという現象が現われる。この効果はモーガン
(Mauguin)効果とも呼ばれているが、d・Δn
2μmで著しい。この現象は表示装置にとつては
表示の非活性部分が着色されることを意味し、活
性部分との表示コントラストが低下することとな
り、表示品位の劣化を招く。
In recent years, there has been a demand for an expanded amount of display information in the field of liquid crystal display devices, and demand trends are shifting from conventional segment-type displays to matrix-type displays. However, in order to expand the amount of displayed information with a matrix display, it is necessary to increase the so-called multiplex drive frequency (duty ratio), which results in a decrease in display contrast and a narrowing of the viewing angle range. A problem arises. One way to solve this problem is to calculate the liquid crystal layer thickness d and the liquid crystal birefringence Δn (= ne −n p ;
It has been proposed that n e ; refractive index for extraordinary light, n p : refractive index for normal light) should be decreased respectively {D. Meyerhofer: J. Appl. Phys. 48
1179 (1977)}. However, in a twisted nematic field effect liquid crystal display device, when d and Δn are decreased, the mode of light propagating in the liquid crystal is no longer linearly polarized, but becomes elliptically polarized. As a result, a phenomenon occurs in which interference colors occur when combined with a polarizer. This effect is also called the Mauguin effect, and is d・Δn
Significant at 2 μm. For display devices, this phenomenon means that inactive areas of the display are colored, resulting in a decrease in display contrast with active areas, leading to deterioration in display quality.

第1図は、従来から用いられているツイステツ
ドネマテイツク電界効果型液晶表示装置の模式断
面図である。ここで1a,1bは透明基板、2
a,2bは透明電極、3a,3bは液晶分子配向
層、4はツイステツドネマテイツク液晶層、5は
スペーサを兼ねたシール材料、6a,6bは偏光
フイルター、7は駆動回路である。この構造の表
示装置では、マルチプレツクス駆動に適したもの
とするためには、液晶層4の層厚dと液晶層4を
構成する液晶材料の可視光波長領域における複屈
折Δnとの積を小さな値として、例えば0.36μm
d・Δn2.0μmに設定すれば良好なマルチプレ
ツクス駆動を確立し得ることが実験的に確かめら
れている。尚、この下限の値は可視光最短波長域
の直線偏光がツイステツドネマテイツク液晶層を
直線偏光として90゜回転する最少のd・Δn値に相
当する。これらは理論的にC・H.Gooch and H.
A.Tarry著のJ.Phys.D:Appl.Phys. 1575
(1975)に詳細に述べられている。ところで一方、
d・Δnが2μmよりも小さい値となると、液晶層
を透過した光線が、旋光分散現象のために楕円偏
光となり、一対の偏光子を通過させると干渉色を
呈する効果が生じる。
FIG. 1 is a schematic cross-sectional view of a conventionally used twisted nematic field effect liquid crystal display device. Here, 1a and 1b are transparent substrates, 2
3a and 2b are transparent electrodes, 3a and 3b are liquid crystal molecular alignment layers, 4 is a twisted nematic liquid crystal layer, 5 is a sealing material that also serves as a spacer, 6a and 6b are polarizing filters, and 7 is a drive circuit. In order to make the display device with this structure suitable for multiplex driving, the product of the layer thickness d of the liquid crystal layer 4 and the birefringence Δn of the liquid crystal material constituting the liquid crystal layer 4 in the visible wavelength region must be kept small. As a value, for example 0.36μm
It has been experimentally confirmed that good multiplex drive can be established by setting d·Δn to 2.0 μm. Incidentally, this lower limit value corresponds to the minimum d.Δn value at which linearly polarized light in the shortest wavelength range of visible light is rotated by 90° through the twisted nematic liquid crystal layer as linearly polarized light. These are theoretically based on C.H.Gooch and H.
J.Phys.D by A.Tarry: Appl.Phys. 8 1575
(1975). By the way, on the other hand,
When d·Δn becomes a value smaller than 2 μm, the light beam transmitted through the liquid crystal layer becomes elliptically polarized light due to the optical rotation dispersion phenomenon, and when it passes through a pair of polarizers, an interference color effect is produced.

本発明は、技術的手段を駆使することにより上
述の問題点を解決するものであり、マルチプレツ
クス駆動に適したd・Δnの値が小さい液晶セル
に対して、非活性化部分の干渉色による色付き現
象を大幅に軽減化させるために、従来の単層型ツ
イステツドネマテイツク電界効果型液晶表示セル
に給電手段を具設しないツイステツドネマテイツ
ク液晶層を重畳した二層型構造、換言すれば、従
来の単層型セルに色付き現象を軽減化させるため
の光学的補正板(コンペンセーター)を組み合せ
た液晶表示装置の効果を得るために補正板を代え
てツイステツドネマテイツク液晶層を配設した新
規有用な多層型液晶表示装置を提供することを目
的とするものである。
The present invention solves the above-mentioned problems by making full use of technical means.The present invention solves the above-mentioned problems by making full use of technical means. In order to significantly reduce the coloring phenomenon, we developed a two-layer structure in which a conventional single-layer twisted nematic field effect liquid crystal display cell is superimposed with a twisted nematic liquid crystal layer that does not have a power supply means. In order to obtain the effect of a liquid crystal display device that combines a conventional single-layer cell with an optical compensator to reduce the coloring phenomenon, the compensator is replaced with a twisted nematic liquid crystal layer. The object of the present invention is to provide a new and useful multilayer liquid crystal display device.

本発明によれば、基板に対して概ね垂直方向に
捩れ螺旋軸を有するツイステツドネマテイツク液
晶層を具備する表示用液晶セルにおいて、液晶分
子がツイスト配向されることによつてこの液晶セ
ルで楕円偏光となつた透過光は、補正板として働
く液晶層を透過する過程で、逆方向にツイスト配
向された液晶分子のため、逆方向への旋光作用を
受け、さらに1層目から2層目への入射偏光の異
常光成分と正常光成分が、最初接する液晶分子が
略々直交するよう成された配向方位のため、相互
に入れ代わることによつて、楕円偏光が相殺され
て元の直線偏光へ復帰しようとする。従つて、一
対の偏光子を通過させて得られる偏光は楕円偏光
成分のない直線偏光となり、光の干渉に起因する
着色がない高コントラストを得ることができる。
According to the present invention, in a display liquid crystal cell including a twisted nematic liquid crystal layer having a twisted helical axis in a direction substantially perpendicular to a substrate, liquid crystal molecules are twisted and oriented. The transmitted light, which has become elliptically polarized light, undergoes optical rotation in the opposite direction due to the liquid crystal molecules twisted in the opposite direction during the process of transmitting through the liquid crystal layer that acts as a correction plate. The extraordinary light component and the normal light component of the incident polarized light are exchanged with each other because the liquid crystal molecules that initially come into contact with each other are approximately orthogonal to each other, and the elliptically polarized light is canceled out to form the original linearly polarized light. trying to return to. Therefore, the polarized light obtained by passing through the pair of polarizers becomes linearly polarized light without an elliptically polarized component, and high contrast without coloring due to light interference can be obtained.

第2図は、本発明の1実施例を示す二層型液晶
表示装置の模式断面図である。ここで1a,1
b,1cは透明基板、2a,2bは透明電極、3
a,3b,3c,3dは液晶分子配向層、4a,
4bはツイステツドネマテイツク液晶層、5はス
ペーサーを兼ねたシール材料、6a,6bが偏光
フイルターである。また8は必要に応じて設置さ
れる反射板である。図において、上側の液晶セル
が色補正板として作用するものであり、下側の液
晶セルは駆動回路7が接続されて表示用液晶セル
として作用する。
FIG. 2 is a schematic cross-sectional view of a two-layer liquid crystal display device showing one embodiment of the present invention. Here 1a, 1
b, 1c are transparent substrates, 2a, 2b are transparent electrodes, 3
a, 3b, 3c, 3d are liquid crystal molecule alignment layers; 4a,
4b is a twisted nematic liquid crystal layer, 5 is a sealing material which also serves as a spacer, and 6a and 6b are polarizing filters. Further, 8 is a reflecting plate installed as necessary. In the figure, the upper liquid crystal cell acts as a color correction plate, and the lower liquid crystal cell is connected to a drive circuit 7 and acts as a display liquid crystal cell.

第3図は第2図の実施例における各基板表面上
の液晶分子長軸方位γ(デイレクターと称す)を
示す説明図である。図中の矢印の方向は第4図に
示す如く基板に対してテイルト角Δθを有する液
晶分子長軸の方向と定義する。
FIG. 3 is an explanatory diagram showing the long axis orientation γ (referred to as director) of liquid crystal molecules on the surface of each substrate in the embodiment of FIG. 2. The direction of the arrow in the figure is defined as the direction of the long axis of the liquid crystal molecules having a tilt angle Δθ with respect to the substrate as shown in FIG.

次に本実施例に使用される各構成要素の具体的
な材料、材質を以下に示す。
Next, specific materials of each component used in this example are shown below.

透明基板1a,1b,1cとしては、0.1mm〜
3mm厚のソーダガラスを用いる。透明電極2a,
2bは300Å〜4000Å厚のIn2O3(SnO2添加)を用
いフオトリソグラフイ等により適宜パターンニン
グして透明基板に形成する。液晶分子配向層3
a,3b,3c,3dはSiOの斜方蒸着やSiO2
るいはポリイミド層の絶縁層上を直接あるいはシ
ランカツプリング剤を処理した上を琢磨布等でラ
ビング処理することにより形成される。ツイステ
ツドネマテイツク液晶層4a,4bは、ビフエニ
ール系液晶、エステル系液晶、シクロヘキサン系
液晶、アゾキシ系液晶等のネマテイツク液晶相を
有する材料より選定され、更にツイスト方向を規
定し、ツイストデイスクリネーシヨンを防止する
ために光学活性物質が少量添加される。具体的に
は例えば次のものが用いられる。シクロヘキサン
系液晶であるMerck社のZLI−1646液晶に、右ね
じ系ツイスト方向を与える場合にはBDH社のCB
−15を約0.1wt%添加し、左ねじ系ツイスト方向
を与える場合には、イーストマンコダツク社のコ
レステリールノナノエイトを約0.1wt%添加した
混合液晶が適する。この混合液晶のΔnは、左ね
じ系、右ねじ系ツイスト方向とも室温20℃で
589nmの光に対して0.08である。膜厚dは、本実
施例では液晶層4a,4bともそれぞれd=6.2μ
mとした。なお、液晶層4a,4bの層厚は、同
じΔnを有する液晶材料の場合には、ほぼ等しい
ことが望ましく相対的にその差約30%以内が許容
範囲である。また、液晶層4aと4bの液晶材料
のΔnが異なる場合には、各層のd・Δnの相対値
がほぼ等しいことが望ましく、相対的にd・Δn
の差約30%以内が許容範囲である。更にこのd・
Δnの値は0.4〜0.6μm、0.8〜1.2μmまたは1.5〜
1.8μmの範囲に選定される。液晶分子配向方位
は、中央部に位置する透明基板1a上の各液晶層
4a,4bの液晶分子配向方位がそれぞれ直交し
ていることが望ましい。また各液晶層4a,4b
のツイスト方向がそれぞれ逆方向、例えば液晶層
4aが右ねじ方向ツイストであり、液晶層4bが
左ねじ方向ツイストとなるように分子配向を設定
する。シール材料は、スペーサー兼用し6.2μmの
直径のガラスフアイバー等を混入させたエポキシ
樹脂が用いられる偏光板はヨーソ系、染料系やポ
リエン系のフイルム状のものが用いられ、例えば
三立電機のL−82−18型が適する。反射板には、
アルミをサンドブラストしたものやアクリル板を
散乱板化しアルミを蒸着したもの等が用いられ
る。
For transparent substrates 1a, 1b, 1c, 0.1mm~
Use 3mm thick soda glass. transparent electrode 2a,
2b is formed on a transparent substrate by appropriately patterning by photolithography or the like using In 2 O 3 (SnO 2 added) having a thickness of 300 Å to 4000 Å. Liquid crystal molecule alignment layer 3
The elements a, 3b, 3c, and 3d are formed by oblique vapor deposition of SiO or by rubbing the insulating layer of SiO 2 or polyimide directly or with a polishing cloth after treatment with a silane coupling agent. The twisted nematic liquid crystal layers 4a, 4b are selected from materials having a nematic liquid crystal phase such as biphenyl liquid crystal, ester liquid crystal, cyclohexane liquid crystal, azoxy liquid crystal, etc. A small amount of optically active substance is added to prevent this. Specifically, for example, the following are used. When giving a right-handed twist direction to Merck's ZLI-1646 liquid crystal, which is a cyclohexane-based liquid crystal,
When approximately 0.1 wt % of -15 is added to provide a left-handed twist direction, a mixed liquid crystal containing approximately 0.1 wt % of cholesteryl nonanoate from Eastman Kodak is suitable. The Δn of this mixed liquid crystal is at room temperature of 20°C in both left-handed and right-handed twist directions.
It is 0.08 for light of 589 nm. In this embodiment, the film thickness d is 6.2μ for each of the liquid crystal layers 4a and 4b.
It was set as m. Note that, in the case of liquid crystal materials having the same Δn, it is desirable that the layer thicknesses of the liquid crystal layers 4a and 4b be approximately equal, and a relative difference within about 30% is an allowable range. Furthermore, when the liquid crystal materials of the liquid crystal layers 4a and 4b have different Δn, it is desirable that the relative values of d·Δn of each layer are approximately equal;
A difference of approximately 30% or less is acceptable. Furthermore, this d・
The value of Δn is 0.4~0.6μm, 0.8~1.2μm or 1.5~
The range is selected to be 1.8 μm. It is preferable that the orientation directions of liquid crystal molecules in each of the liquid crystal layers 4a and 4b on the centrally located transparent substrate 1a are orthogonal to each other. In addition, each liquid crystal layer 4a, 4b
The molecular orientation is set such that the twist directions of the liquid crystal layer 4a are opposite to each other, for example, the liquid crystal layer 4a is twisted in the right-handed direction, and the liquid crystal layer 4b is twisted in the left-handed direction. The sealing material is an epoxy resin mixed with glass fibers with a diameter of 6.2 μm, which also serves as a spacer.The polarizing plate is a film-like material made of iodine, dye, or polyene, such as Sanritsu Electric's L- 82-18 type is suitable. On the reflective plate,
Sandblasted aluminum or a scattering plate made of acrylic plate and aluminum vapor-deposited are used.

第5図は本実施例の効果を示すスペクトル図で
ある。第5図の縦軸は透過光強度を示し、横軸は
光の波長を示す。第1図に示す従来構造の単層型
ツイステツドネマテイツク電界効果型液晶表示装
置で一対の偏光フイルターの偏光方向をそれぞれ
平行とした場合の透過光スペクトルを曲線(A)で、
第2図に示す本発明の1実施例である二層液晶表
示装置の偏光フイルタ1対の偏光方向を直交状態
とした場合の透過光スペクトルをBで示す。この
第5図のスペクトルで最も望ましい曲線は、Ts
=0がすべての波長で成立することであり、この
場合には、上述の干渉色による色付き現象が見ら
れないことになる。本発明の(B)曲線は、実質的に
この理想値にほぼ等しい曲線が得られ、従来装置
に見られた色付き現象が事実上無くなつている。
FIG. 5 is a spectrum diagram showing the effect of this example. The vertical axis in FIG. 5 shows the intensity of transmitted light, and the horizontal axis shows the wavelength of light. Curve (A) represents the transmitted light spectrum when the polarization directions of the pair of polarizing filters are parallel to each other in the conventional single-layer twisted nematic field effect liquid crystal display device shown in FIG.
B shows the transmitted light spectrum when the polarization directions of a pair of polarizing filters of a two-layer liquid crystal display device according to an embodiment of the present invention shown in FIG. 2 are orthogonal to each other. The most desirable curve in the spectrum shown in Figure 5 is Ts
= 0 holds true for all wavelengths, and in this case, the above-mentioned coloring phenomenon due to interference color will not be observed. The curve (B) of the present invention is substantially equal to this ideal value, and the coloring phenomenon observed in conventional devices is virtually eliminated.

この様に本発明を用いることによりマルチプレ
ツクス駆動に適したd・Δn値が2.0μmより小な
る値のツイステツドネマテイツク電界効果型液晶
表示装置に於いても、干渉色が無く表示品位の高
い表示装置が実現される。
As described above, by using the present invention, even in a twisted nematic field effect liquid crystal display device with a d/Δn value smaller than 2.0 μm, which is suitable for multiplex driving, there is no interference color and the display quality can be improved. A high quality display device is realized.

ところで、二層型のツイステツドネマテイツク
電界効果型液晶表示装置においても、上述の第3
図に示す液晶分子配向方位(二層の液晶分子ツイ
スト方向と中間基板1aでの相対的液晶分子長軸
方向)以外では、十分な効果が得られない。その
例を第6図に示す。第6図に於いて、曲線Aは第
3図に示す液晶分子配向方向を有する場合であ
り、曲線Bは液晶層4a,4bとも第7図に示す
ツイスト方向、曲線Cは液晶層4aと4bのツイ
スト方向を第8図に示す如く逆方向とし、基板1
a上の最近接液晶分子長軸方向を平行とした場合
である。第6図より明らかな如く第3図の液晶分
子配向方位を有する場合はTs=0の条件をほぼ
全波長で満足するが、第7図、第8図の液晶分子
配向方位ではこの条件は満たされていない。従つ
て液晶分子配向方位は第3図に示す如く設定する
ことが望ましい。また電極2a,2b間に電圧を
印加しない場合は楕円偏光による干渉色は補正さ
れるが、電極2a,2b間に充分な電圧を印加す
るとコンペンセーターとなる液晶層4b単層の干
渉色が生じる。この干渉色を可視感度の最も高い
波長550nmの光に対して最小とする条件はd・
Δnの値を0.5μm、1.0μmあるいは1.65μmとする
ことである。このそれぞれの値は実際には若干の
許容範囲があり、従つて実質的にはd・Δnの値
を0.4μm〜0.6μm、0.8〜1.2μmまたは1.5〜1.8μm
の範囲内に設定することが必要となる。第9図
は、第2図及び第3図の構成において、偏光方向
を平行として電圧印加時に暗、電圧無印加時に明
の状態を形成し、測定光の透過光量を求めたもの
で、Δn=0.08μmの液晶を用い測定波長550nmの
光に対してd・Δnの値を0.7μm、0.5μmに変化さ
せた場合の印加電圧対光透過率の関係を示すた説
明図である。曲線l1はd・Δn=0.7μm、l2はd・
Δn=0.5μmのデータである。第9図より明らか
な如くd・Δn=0.5μmに設定すると表示品位が
より一層向上する。
Incidentally, even in a two-layer twisted nematic field effect liquid crystal display device, the above-mentioned third
A sufficient effect cannot be obtained in any direction other than the alignment direction of the liquid crystal molecules shown in the figure (the twist direction of the liquid crystal molecules in the two layers and the relative long axis direction of the liquid crystal molecules in the intermediate substrate 1a). An example is shown in FIG. In FIG. 6, curve A is for the case where the liquid crystal molecules have the orientation direction shown in FIG. 3, curve B is for the liquid crystal layers 4a and 4b in the twist direction shown in FIG. 7, and curve C is for the liquid crystal layers 4a and 4b. The twist direction of the substrate 1 is reversed as shown in FIG.
This is a case where the long axis directions of the nearest liquid crystal molecules on a are parallel. As is clear from Figure 6, when the liquid crystal molecules have the orientation shown in Figure 3, the condition of Ts = 0 is satisfied at almost all wavelengths, but this condition is not satisfied with the orientation of the liquid crystal molecules shown in Figures 7 and 8. It has not been. Therefore, it is desirable to set the alignment direction of the liquid crystal molecules as shown in FIG. In addition, when no voltage is applied between the electrodes 2a and 2b, the interference color due to elliptically polarized light is corrected, but when a sufficient voltage is applied between the electrodes 2a and 2b, the interference color of a single layer of the liquid crystal layer 4b, which serves as a compensator, occurs. . The conditions for minimizing this interference color for light with a wavelength of 550 nm, which has the highest visible sensitivity, are d.
The value of Δn is set to 0.5 μm, 1.0 μm or 1.65 μm. Each of these values actually has a certain tolerance range, so in practice the value of d・Δn can be set to 0.4 μm to 0.6 μm, 0.8 to 1.2 μm, or 1.5 to 1.8 μm.
It is necessary to set it within the range of . Figure 9 shows the amount of transmitted light of the measurement light obtained by setting the polarization directions parallel to each other in the configurations of Figures 2 and 3 to form a dark state when voltage is applied and a bright state when no voltage is applied. FIG. 3 is an explanatory diagram showing the relationship between applied voltage and light transmittance when the value of d·Δn is changed to 0.7 μm and 0.5 μm for light having a measurement wavelength of 550 nm using a 0.08 μm liquid crystal. The curve l 1 is d・Δn=0.7μm, and the curve l 2 is d・Δn=0.7μm.
The data is Δn=0.5 μm. As is clear from FIG. 9, setting d·Δn=0.5 μm further improves display quality.

以上の如く、本発明の液晶層による補正板を合
体化した二層型液晶表示装置は、マルチプレツク
スに対する特性を劣化させることなく干渉色のな
い表示品位の高い表示駆動を行なうことができ
る。従つて、本発明を適用することにより、小型
コンピユータの端末表示や電話回線による文字図
形表示、文字放送を始め、小型テレビジヨン等情
報量の多い低消費電力型インフオーメーシヨンデ
イスプレイが可能となる。
As described above, the two-layer liquid crystal display device incorporating the correction plate of the liquid crystal layer of the present invention can drive a high-quality display without interference colors without deteriorating the characteristics for multiplexing. Therefore, by applying the present invention, low power consumption information displays with a large amount of information, such as terminal displays of small computers, character and graphic displays over telephone lines, text broadcasting, and small televisions, become possible. .

尚、上記実施例はガラス基板を3枚積層した構
成のものについて説明したが第10図に示す如く
液晶層4a,4bを4枚のガラス基板1a,1
b,1c,1dを用いて独立のセルとして重ね合
わせた構成とすることも可能である。第10図に
於ける他の符号は第3図の符号と対応する。
In the above embodiment, three glass substrates were laminated, but as shown in FIG.
It is also possible to use a structure in which cells b, 1c, and 1d are stacked as independent cells. Other symbols in FIG. 10 correspond to those in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のツイステツドネマテイツク電界
効果型液晶表示装置の模式断面図である。第2図
は本発明の1実施例を示す二層型液晶表示装置の
模式断面図である。第3図は第2図に示す実施例
に於ける各基板表面上の液晶分子長軸方位を示す
説明図である。第4図はテイルト角θを有する液
晶分子長軸方位を定義する説明図である。第5図
は第2図に示す実施例の効果を説明するスペクト
ル図である。第6図は液晶分子配向方位によつて
変化するスペクトルの説明図である。第7図及び
第8図は第6図に於けるスペクトルに対応する液
晶分子配向方位を示す説明図である。第9図は
d・Δnの値を変化させた時の印加電圧対光透過
率の関係を示す説明図である。第10図は本発明
の他の実施例を示す二層型液晶表示の模式断面図
である。 1a,1b,1c,1d……透明基板、2a,
2b……透明電極、3a,3b,3c,3d……
液晶分子配向層、4a,4b……ツイステツドネ
マテイツク液晶層、5……シール材料、6a,6
b……偏光フイルター、7……駆動回路、8……
反射板。
FIG. 1 is a schematic cross-sectional view of a conventional twisted nematic field effect liquid crystal display device. FIG. 2 is a schematic cross-sectional view of a two-layer liquid crystal display device showing one embodiment of the present invention. FIG. 3 is an explanatory diagram showing the long axis direction of liquid crystal molecules on the surface of each substrate in the embodiment shown in FIG. FIG. 4 is an explanatory diagram defining the long axis direction of liquid crystal molecules having a tail angle θ. FIG. 5 is a spectrum diagram illustrating the effect of the embodiment shown in FIG. 2. FIG. 6 is an explanatory diagram of a spectrum that changes depending on the alignment direction of liquid crystal molecules. FIGS. 7 and 8 are explanatory diagrams showing liquid crystal molecule orientation directions corresponding to the spectra in FIG. 6. FIG. 9 is an explanatory diagram showing the relationship between applied voltage and light transmittance when the value of d·Δn is changed. FIG. 10 is a schematic cross-sectional view of a two-layer liquid crystal display showing another embodiment of the present invention. 1a, 1b, 1c, 1d...transparent substrate, 2a,
2b...transparent electrode, 3a, 3b, 3c, 3d...
Liquid crystal molecular alignment layer, 4a, 4b... Twisted nematic liquid crystal layer, 5... Sealing material, 6a, 6
b...Polarizing filter, 7...Drive circuit, 8...
a reflector.

Claims (1)

【特許請求の範囲】[Claims] 1 液晶分子の長軸方向を螺旋状に配向した液晶
層を螺旋軸方向に二層重ね、上下一対の偏光子間
に介在させてなる二層型液晶表示装置において、
前記液晶層は相互に最近接する液晶分子の配向方
位が略々直交する配向方位となるように積層され
かつそれぞれの旋回方向が互いに逆方向となる液
晶分子を有し、前記液晶層各々の層厚d1,d2と複
屈折値Δn1,Δn2が0.7×d1・Δn1<d2・Δn2<1.3
×d1・Δn1なる条件で、かつそれらの値を0.4μm
〜0.6μm、0.8μm〜1.2μmまたは1.5μm〜1.8μm
のいずれかの範囲内に設定し、液晶分子の配向を
変換する駆動電圧の印加される電極を前記液晶層
の一方のみに配置し他方の液晶層を光学的色補正
板としたことを特徴とする二層型液晶表示装置。
1. In a two-layer liquid crystal display device in which two liquid crystal layers in which the long axis direction of liquid crystal molecules is helically aligned are stacked in the helical axis direction and are interposed between a pair of upper and lower polarizers,
The liquid crystal layer has liquid crystal molecules stacked such that the orientation directions of the liquid crystal molecules closest to each other are substantially orthogonal, and the respective rotation directions are opposite to each other, and the layer thickness of each of the liquid crystal layers is d 1 , d 2 and birefringence values Δn 1 , Δn 2 are 0.7×d 1・Δn 1 <d 2・Δn 2 <1.3
×d 1・Δn 1 , and their values are 0.4 μm
~0.6μm, 0.8μm~1.2μm or 1.5μm~1.8μm
An electrode to which a driving voltage for changing the orientation of liquid crystal molecules is applied is arranged in only one of the liquid crystal layers, and the other liquid crystal layer is used as an optical color correction plate. A two-layer liquid crystal display device.
JP1323481A 1980-12-09 1981-01-30 Two layer type liquid crystal display device Granted JPS57125919A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1323481A JPS57125919A (en) 1981-01-30 1981-01-30 Two layer type liquid crystal display device
US06/327,229 US4443065A (en) 1980-12-09 1981-12-03 Interference color compensation double layered twisted nematic display
GB8136949A GB2092769B (en) 1980-12-09 1981-12-08 Double-layered twisted nematic liquid crystal display device
DE19813148447 DE3148447A1 (en) 1980-12-09 1981-12-08 LIQUID CRYSTAL DISPLAY DEVICE WITH TWO TWISTED NEMATIC LAYERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323481A JPS57125919A (en) 1981-01-30 1981-01-30 Two layer type liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS57125919A JPS57125919A (en) 1982-08-05
JPS6353529B2 true JPS6353529B2 (en) 1988-10-24

Family

ID=11827492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323481A Granted JPS57125919A (en) 1980-12-09 1981-01-30 Two layer type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS57125919A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091328A (en) * 1983-10-25 1985-05-22 Hamamatsu Photonics Kk Spatial optical modulating device
JPS6173922A (en) * 1984-09-20 1986-04-16 Ricoh Co Ltd Liquid crystal display element
JPS61156222A (en) * 1984-12-28 1986-07-15 Hamamatsu Photonics Kk Electronic image projecting device
JPH0682181B2 (en) * 1985-12-25 1994-10-19 スタンレー電気株式会社 Liquid crystal display
JPS63234225A (en) * 1987-03-23 1988-09-29 Sharp Corp Liquid crystal display device
JP2615715B2 (en) * 1987-12-10 1997-06-04 セイコーエプソン株式会社 Manufacturing method of electro-optical element
JPH01136920U (en) * 1988-03-11 1989-09-19
JPH01136922U (en) * 1988-03-11 1989-09-19
JP2520682Y2 (en) * 1988-03-11 1996-12-18 カシオ計算機株式会社 Liquid crystal display element
JPH02130521A (en) * 1988-11-11 1990-05-18 Nippon I B M Kk Twisted nematic liquid crystal display device
JPH0289432U (en) * 1988-12-27 1990-07-16
JP5193540B2 (en) * 2007-09-18 2013-05-08 テスコム株式会社 Liquid crystal display
CN102257428B (en) 2008-12-04 2014-04-16 泰斯康有限公司 Liquid crystal display device
JP5473764B2 (en) * 2010-05-07 2014-04-16 テスコム株式会社 Liquid crystal display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588225A (en) * 1970-01-27 1971-06-28 Rca Corp Electro-optic devices for portraying closed images
JPS5364533A (en) * 1976-11-19 1978-06-09 Seiko Epson Corp Liquid crystal display device
JPS54104855A (en) * 1978-02-03 1979-08-17 Seiko Epson Corp Multilayer liquid crystal display panel
JPS54135551A (en) * 1978-04-12 1979-10-20 Sharp Corp Multilayer liquid crystal display device
JPS55110216A (en) * 1979-02-16 1980-08-25 Sharp Corp Multilayer liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588225A (en) * 1970-01-27 1971-06-28 Rca Corp Electro-optic devices for portraying closed images
JPS5364533A (en) * 1976-11-19 1978-06-09 Seiko Epson Corp Liquid crystal display device
JPS54104855A (en) * 1978-02-03 1979-08-17 Seiko Epson Corp Multilayer liquid crystal display panel
JPS54135551A (en) * 1978-04-12 1979-10-20 Sharp Corp Multilayer liquid crystal display device
JPS55110216A (en) * 1979-02-16 1980-08-25 Sharp Corp Multilayer liquid crystal display device

Also Published As

Publication number Publication date
JPS57125919A (en) 1982-08-05

Similar Documents

Publication Publication Date Title
US4443065A (en) Interference color compensation double layered twisted nematic display
JPH03223715A (en) Liquid crystal display element
JPH10161110A (en) Reflection type liquid crystal display element
JP3292809B2 (en) Color liquid crystal display device
JPH09101515A (en) Liquid crystal display device
JPH0196625A (en) Liquid crystal display device
JPH01147432A (en) Liquid crystal display device
JPS6353529B2 (en)
JPS6353528B2 (en)
JPH02124529A (en) Two-layer type liquid crystal display device
US5179458A (en) Liquid crystal electro-optic device with particular relationship between retardation film drawing direction and substrate edge
JP3143271B2 (en) Liquid crystal display
JP2921585B2 (en) Liquid crystal display device
TWI279628B (en) Liquid crystal display device
JPH08313899A (en) Reflection type liquid crystal display device
JP2605064B2 (en) Liquid crystal display device
JP3586779B2 (en) Ferroelectric liquid crystal display
JPH0139084B2 (en)
JP3000374B2 (en) Liquid crystal display device
JP3643439B2 (en) Liquid crystal display element
JPH01147430A (en) Liquid crystal display element
JPH09203895A (en) Liquid crystal display element and optical anisotropic element
JPH10170909A (en) Liquid crystal display device
JPH03276123A (en) Liquid crystal display element
JP3405337B2 (en) Liquid crystal display device