JPS635329B2 - - Google Patents

Info

Publication number
JPS635329B2
JPS635329B2 JP10709380A JP10709380A JPS635329B2 JP S635329 B2 JPS635329 B2 JP S635329B2 JP 10709380 A JP10709380 A JP 10709380A JP 10709380 A JP10709380 A JP 10709380A JP S635329 B2 JPS635329 B2 JP S635329B2
Authority
JP
Japan
Prior art keywords
ammonium chloride
aqueous solution
ammonia
carbon dioxide
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10709380A
Other languages
Japanese (ja)
Other versions
JPS5734020A (en
Inventor
Kazunari Igawa
Hiroyuki Saito
Yoichi Hiraga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP10709380A priority Critical patent/JPS5734020A/en
Publication of JPS5734020A publication Critical patent/JPS5734020A/en
Publication of JPS635329B2 publication Critical patent/JPS635329B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は第一級アミンを用いて重炭酸イオンを
含む塩化アンモニウム水溶液からアンモニアを回
収する方法に関する。詳しくは、重炭酸イオンを
含む塩化アンモニウム水溶液に固体の食塩と該水
溶液と二液相を形成し得る第一級アミンを加え、
さらにこれに不活性ガス又は/および炭酸ガスを
供給して反応させ、しかるのちに二液相を分離す
ることにより該水溶液中の塩化アンモニウムを高
い分解率でアンモニアに分解し回収する方法を提
供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering ammonia from an aqueous ammonium chloride solution containing bicarbonate ions using a primary amine. Specifically, solid common salt and a primary amine capable of forming a two-liquid phase with the aqueous solution are added to an ammonium chloride aqueous solution containing bicarbonate ions,
Furthermore, an inert gas or/and carbon dioxide gas is supplied to the aqueous solution to cause a reaction, and then the two liquid phases are separated, thereby providing a method for decomposing and recovering ammonium chloride in the aqueous solution into ammonia at a high decomposition rate. It is something.

現在、重炭酸ナトリウムの製造法としてはソル
ベー法が広く用いられている。この方法は食塩水
溶液にアンモニアを吸収させた、いわゆる安かん
水に炭酸ガスを吹込んで重炭酸ナトリウムを固体
として析出させるものであるが、その分離母液に
は反応により生成した塩化アンモニウム、未反応
の食塩、アンモニア、それに未回収の重炭酸ナト
リウムが溶存している。そこでソルベー法ではこ
の分離母液をあらかじめ脱炭酸塔で処理して炭酸
ガスを回収し、ついで消石灰等のアルカリを加え
塩化アンモニウムを分解して蒸溜しアンモニアを
ガスとして回収している。したがつてこの場合、
蒸溜廃液として未反応の食塩が回収されずにその
まま廃棄されるばかりでなく、アンモニアの回収
を完全ならしめるには理論量を遥かに超える消石
灰を必要とする。又、脱炭酸工程での脱炭酸は不
完全な為に、蒸溜工程において炭酸カルシウムの
生成折出が起り、蒸溜設備にスケールとして附着
すると共に蒸溜設備の定期的な清浄や沈でん処理
が必要である。さらには当然のことながら多量の
熱をも必要とする。又、工業的には行なわれてい
ないが、重炭酸ナトリウムの製造にアミンを使う
方法はいくつかある。例えば、特公昭47−32520
号公報には、食塩と炭酸ガスとアンモニア又は有
機アミンとを反応させて重炭酸ナトリウムを製造
するに際し、晶出塔で炭酸ガスを吹込む代りに炭
酸ガスをあらかじめ溶解し、かつ冷却した有機溶
媒を用いて反応を行ない重炭酸ナトリウムを析出
せしめる方法が開示されている。これは晶出塔で
のスケール防止をねらつたものである。又、英国
特許第1082436号明細書にはアルカリ金属塩(例
えば重炭酸ナトリウム)又はアンモニウム塩を製
造するにあたり、水及び水と混和しない分岐鎖を
有する第一級アミン(有機溶媒に溶解)の存在下
に、塩化アルカリ金属又は塩化アンモニウムを
酸、例えば炭酸又はリン酸と反応させ、水素イオ
ンとクロルイオンを前記アミンを溶解した有機溶
媒に抽出し、その有機液相を水溶液相から分離す
ることによつて製造することが開示されている。
又、特公昭47−41237号公報には、第2級又は第
3級の水不溶性アミンを塩水溶液と混和しない有
機溶媒中に溶かしてなる有機液相の存在下に、塩
化アルカリ金属―アルカリ金属重炭酸塩の飽和水
溶液を炭酸ガスと反応させ、しかるのちその有機
液相を水溶液相から取り出し、ついで残つた水溶
液相に塩化アルカリ金属を再補充して実質的に飽
和した塩化物―重炭酸塩水溶液をつくる工程と共
に、上記分離した有機液相は酸化マグネシウム、
水酸化マグナシウム及びオキシ塩化マグネシウム
からなる群から選ばれる1員の水性スラリーで処
理して、溶解しているアミン塩酸塩を分解させ再
生使用することにより、アルカリ金属重炭酸塩を
製造することが開示されている。
Currently, the Solvay process is widely used as a method for producing sodium bicarbonate. In this method, sodium bicarbonate is precipitated as a solid by blowing carbon dioxide gas into so-called aqueous brine, which is made by absorbing ammonia in a salt aqueous solution.The separated mother liquor contains ammonium chloride produced by the reaction and unreacted salt. , ammonia, and unrecovered sodium bicarbonate. Therefore, in the Solvay process, this separated mother liquor is previously treated in a decarbonation tower to recover carbon dioxide gas, and then an alkali such as slaked lime is added to decompose ammonium chloride and distilled to recover ammonia as a gas. Therefore, in this case,
Not only is unreacted common salt unreacted as distillation waste liquid, but it is simply discarded, and complete recovery of ammonia requires a far greater amount of slaked lime than the theoretical amount. Furthermore, since decarboxylation in the decarboxylation process is incomplete, calcium carbonate is formed and deposited during the distillation process, which is deposited as scale on the distillation equipment and requires periodic cleaning and sedimentation treatment of the distillation equipment. . Furthermore, it naturally requires a large amount of heat. There are also several methods for using amines in the production of sodium bicarbonate, although these are not commercially practiced. For example, Special Publick No. 47-32520
In the publication, when producing sodium bicarbonate by reacting common salt, carbon dioxide gas, and ammonia or organic amine, instead of blowing carbon dioxide gas into the crystallization tower, carbon dioxide gas is dissolved in advance and cooled in an organic solvent. A method for precipitating sodium bicarbonate using a reaction is disclosed. This is aimed at preventing scale in the crystallization tower. British Patent No. 1082436 also describes the presence of water and water-immiscible branched primary amines (dissolved in organic solvents) in the preparation of alkali metal salts (e.g. sodium bicarbonate) or ammonium salts. Below, alkali metal chloride or ammonium chloride is reacted with an acid, such as carbonic acid or phosphoric acid, hydrogen ions and chloride ions are extracted into an organic solvent in which the amine is dissolved, and the organic liquid phase is separated from the aqueous phase. It is disclosed that the method of manufacturing the same is disclosed.
Furthermore, in Japanese Patent Publication No. 47-41237, in the presence of an organic liquid phase prepared by dissolving a secondary or tertiary water-insoluble amine in an organic solvent that is immiscible with an aqueous salt solution, an alkali metal chloride-alkali metal A saturated aqueous solution of bicarbonate is reacted with carbon dioxide gas, the organic liquid phase is then removed from the aqueous phase, and the remaining aqueous phase is then refilled with alkali metal chloride to form a substantially saturated chloride-bicarbonate. Along with the process of creating an aqueous solution, the separated organic liquid phase is made of magnesium oxide,
Discloses the production of alkali metal bicarbonate by treating with an aqueous slurry of one member selected from the group consisting of magnesium hydroxide and magnesium oxychloride to decompose and reuse dissolved amine hydrochloride. has been done.

これら公知方法はいずれも、塩水溶液からクロ
ルイオンを有機液相に抽出する点では本発明と共
通であるが、抽出時に重炭酸イオンを生成せし
め、かつ重炭酸塩を結晶として析出させており異
なつている。本発明は塩化アンモニウム塩を分解
し、アンモニアを遊離状態として水溶液で回収し
ようとする点で前記公知方法と大きく技術思想を
異としている。
All of these known methods are similar to the present invention in that chloride ions are extracted from an aqueous salt solution into an organic liquid phase, but they are different in that they generate bicarbonate ions during extraction and precipitate bicarbonate as crystals. It's on. The present invention differs greatly in technical concept from the above-mentioned known methods in that ammonium chloride salt is decomposed and ammonia is recovered in a free state as an aqueous solution.

本発明者らは、これら諸問題解決の為に種々検
討し、重炭酸イオンを含む塩化アンモニウム水溶
液に固体の食塩よび該水溶液と二液相を形成し得
る第一級アミンを加え反応せしめ、しかるのち二
液相を分離することにより該水溶液中の塩化アン
モニウムをアンモニアに転化せしめて回収する方
法を見出し、先に特許出願した(特願昭54−
13334号)。しかしながらこの方法での塩化アンモ
ニウムの分解率は最大45%程度が限界であり、こ
れ以上の分解率は事実上不可能であつた。
The present inventors conducted various studies to solve these problems, and added solid common salt and a primary amine capable of forming a two-liquid phase with the aqueous solution to an aqueous ammonium chloride solution containing bicarbonate ions, and caused the reaction. Later, he discovered a method for converting and recovering ammonium chloride in the aqueous solution into ammonia by separating two liquid phases, and filed a patent application (Japanese Patent Application No. 1983-
No. 13334). However, the decomposition rate of ammonium chloride in this method is limited to a maximum of about 45%, and it is virtually impossible to achieve a decomposition rate higher than this.

そこで本発明者らはさらに塩化アンモニウムの
分解率を上げ、アンモニア回収率を高くすべく鋭
意研究した結果、第一級アミンによる塩化アンモ
ニウムの分解反応は次式で示す様な平衡反応であ
り、 RNH2+NH4ClRNH2HCl+NH3 特に、分解反応を抑制する最も大きな因子は塩化
アンモニウムが分解することで必然的に生成する
アンモニアの濃度上昇(水溶液相の)にあるとい
うこと、さらに生成するアンモニアを効果的に反
応系から除去するか、又は分解反応に影響を与え
ない形態に変えてやれば従来法よりもさらに一段
と分解率が上昇出来ることを見出した。
Therefore, the present inventors conducted extensive research to further increase the decomposition rate of ammonium chloride and increase the ammonia recovery rate. As a result, the decomposition reaction of ammonium chloride by primary amines is an equilibrium reaction as shown in the following equation, and RNH 2 +NH 4 ClRNH 2 HCl + NH 3 In particular, the biggest factor that suppresses the decomposition reaction is the increase in the concentration of ammonia (in the aqueous solution phase) that is inevitably produced when ammonium chloride decomposes, and that the effect of the ammonia produced is It has been found that the decomposition rate can be further increased compared to conventional methods by either removing it from the reaction system or changing it to a form that does not affect the decomposition reaction.

すなわち、重炭酸イオンを含む塩化アンモニウ
ム水溶液に固体の食塩および該水溶液と二液相を
形成し得る第一級アミンを加え反応せしめて塩化
アンモニウムをアンモニアに分解するに際し、不
活性ガス又は/及び炭酸ガスを供給することで生
成するアンモニアを随時除去するか、又は中和す
ることにより塩化アンモニウムの分解率を大巾に
上昇させることが出来ることを見出し本発明に到
達した。
That is, when solid common salt and a primary amine capable of forming a two-liquid phase with the aqueous solution are added to an aqueous ammonium chloride solution containing bicarbonate ions and reacted to decompose ammonium chloride into ammonia, an inert gas or/and carbonic acid is added. The present invention was achieved by discovering that the decomposition rate of ammonium chloride can be greatly increased by removing or neutralizing the ammonia produced by supplying gas as needed.

本発明を更に詳しく説明する。塩化アンモニウ
ム水溶液は重炭酸イオンを含むものであれば良
く、特に限定されないがソルベー法で得られる重
炭酸ナトリウム母液(以後、粗重母液と呼ぶ)が
有効である。粗重母液の組成例を第一表に示す。
The present invention will be explained in more detail. The ammonium chloride aqueous solution may be one containing bicarbonate ions, and is not particularly limited, but a sodium bicarbonate mother liquor (hereinafter referred to as crude heavy mother liquor) obtained by the Solvay method is effective. An example of the composition of the crude heavy mother liquor is shown in Table 1.

第 一 表 塩化アンモニウム 3.8N 塩化ナトリウム 1.4N 遊離アンモニア 0.7N 重炭酸イオン 1.1N アミンは有機溶媒で希釈して用いても良いが、
前記水溶液と二液相を形成する第一級アミンでな
ければならない。例えば、オクタデシルアミン、
1―(3―エチルペンチル)―4―エチルオクチ
ルアミン、トリアルキルメチルアミン(米国ロー
ムアンドハース社、商品名Primene JMT)があ
る。
Table 1 Ammonium chloride 3.8N Sodium chloride 1.4N Free ammonia 0.7N Bicarbonate ion 1.1N The amine may be diluted with an organic solvent before use.
The primary amine must form a two-liquid phase with the aqueous solution. For example, octadecylamine,
There are 1-(3-ethylpentyl)-4-ethyloctylamine and trialkylmethylamine (Rohm and Haas Company, USA, trade name Primene JMT).

アミンの使用量は粗重母液中の塩化アンモニウ
ムに対して0.5倍当量ないし5倍当量のアミンを
用いるのが良い。
The amount of amine to be used is preferably 0.5 to 5 times the equivalent of ammonium chloride in the crude heavy mother liquor.

アミンの希釈剤としては、水と二液相を形成し
得る有機溶媒であれば良い。例えば、ケロシン、
キシレン、ヘプタン、ヘキサン、イソブチルメチ
ルケトン、ブチルアルコール、アミルアルコール
などが良い。
Any organic solvent that can form a two-liquid phase with water may be used as the diluent for the amine. For example, kerosene,
Good examples include xylene, heptane, hexane, isobutyl methyl ketone, butyl alcohol, and amyl alcohol.

固型食塩の添加量は塩化アンモニウム分解後の
水溶液相に固体として若干残つている程度が望ま
しいが、水溶液相の食塩濃度が10w%以上であれ
ば好ましい。
The amount of solid common salt to be added is preferably such that some amount of solid salt remains in the aqueous solution phase after decomposition of ammonium chloride, but it is preferable that the salt concentration in the aqueous solution phase is 10 w% or more.

塩化アンモニウム水溶液に固型食塩と第一級ア
ミンを加え反応せしめ塩化アンモニウムを分解す
るに際し、供給する不活性ガス又は/及び炭酸ガ
スの供給方法は分解率を上げるうえで極めて重要
な意味を持つ。すなわち塩化アンモニウムの分解
を効果的に行なうには、(1)反応を不活性ガス、又
は炭酸ガスを供給しながら行なう。(2)反応時、水
溶液相の一部を分離して抜き出し、その水溶液相
に不活性ガス又は炭酸ガスを供給して後、再び反
応槽に循環する方法。(3)反応時、有機液相の一部
を分離して抜き出し、その有機液相に炭酸ガスを
供給して後、再び反応槽に循環する方法。(4)あら
かじめ炭酸ガスを溶解させた有機液相を反応槽に
供給する方法。などの各方法があり、さらに分解
率を上げるには上記方法を並流多段処理にて行な
うか、あるいは向流多段処理にて行なうことが有
効である。
When solid common salt and a primary amine are added to an ammonium chloride aqueous solution and reacted to decompose ammonium chloride, the method of supplying the inert gas and/or carbon dioxide gas has an extremely important meaning in increasing the decomposition rate. That is, in order to effectively decompose ammonium chloride, (1) the reaction is carried out while supplying an inert gas or carbon dioxide gas. (2) A method in which a part of the aqueous solution phase is separated and extracted during the reaction, an inert gas or carbon dioxide gas is supplied to the aqueous solution phase, and then the mixture is circulated back to the reaction tank. (3) A method in which a part of the organic liquid phase is separated and extracted during the reaction, carbon dioxide gas is supplied to the organic liquid phase, and then the organic liquid phase is circulated back to the reaction tank. (4) A method of supplying an organic liquid phase in which carbon dioxide gas has been dissolved in advance to a reaction tank. There are various methods such as the following, and in order to further increase the decomposition rate, it is effective to carry out the above methods in parallel current multistage processing or in countercurrent multistage processing.

不活性ガスが塩化アンモニウム分解率を向上さ
せる理由は、分解によつて生成したアンモニアを
系外に除去する為に水溶液相のアンモニア濃度が
低下し、更に分解が進むものと考えられる。又、
炭酸ガスが塩化アンモニウム分解率を向上させる
理由は分解によつて生成したアンモニアを重炭酸
アンモニウムとして中和することによつて水溶液
相のアンモニア濃度が低下し、更に分解が進むも
のと考えられる。炭酸ガスは単独で使用しても
別々に使用しても良いし、両者の混合ガスを用い
ても良い。
The reason why the inert gas improves the decomposition rate of ammonium chloride is thought to be that ammonia produced by decomposition is removed from the system, thereby reducing the ammonia concentration in the aqueous solution phase and further promoting decomposition. or,
The reason why carbon dioxide gas improves the decomposition rate of ammonium chloride is thought to be that ammonia produced by decomposition is neutralized as ammonium bicarbonate, thereby lowering the ammonia concentration in the aqueous solution phase and further promoting decomposition. Carbon dioxide gas may be used alone or separately, or a mixture of both gases may be used.

なお、炭酸ガスのみを供給する場合その供給量
は、反応時に重炭酸塩の結晶析出が起こらない程
度に供給する必要がある。粗重母液を例にとれ
ば、炭酸ガスのみを供給し塩化アンモニウムの分
解率を60〜70%にすることが出来る。それ以上の
分解率を得ようとすると重炭酸塩が析出してく
る。
In addition, when only carbon dioxide gas is supplied, the amount of supply must be such that bicarbonate crystals do not precipitate during the reaction. Taking crude heavy mother liquor as an example, it is possible to achieve a decomposition rate of ammonium chloride of 60 to 70% by supplying only carbon dioxide gas. If a higher decomposition rate is attempted, bicarbonate will precipitate.

この様に本発明の方法によつて得た水溶液相は
食塩は勿論、重炭酸塩の濃度も高いので重炭酸ナ
トリウムを析出させる為にソルベー法のいわゆる
炭化塔へ安かん水としてそのまゝ利用出来る。し
たがつてあらかじめ溶存していた食塩は従来の様
に蒸溜廃液として棄てられることなく完全に有効
利用出来る。
As described above, since the aqueous solution phase obtained by the method of the present invention has a high concentration of not only common salt but also bicarbonate, it can be used as is as cheap brine in the so-called carbonization tower of the Solvay process in order to precipitate sodium bicarbonate. . Therefore, the pre-dissolved salt can be used completely effectively without being discarded as distillation waste as in the past.

一方、有機液相は再生工程にて再生されるが再
生剤としては消石灰、酸化カルシウム、水酸化マ
グネシウム、酸化マグネシウムなどの水性スラリ
ーが良い。再生剤量としては理論量もしくは理論
量の1.05倍当量添加すれば再生率はほゞ100%を
達成出来る。再生剤濃度としては1N程度が再生
速度、界面分離性が良く望ましい。さらには一度
使用した再生液に更に上記再生剤を補充して再び
使用することも可能であり、その際の塩化カルシ
ウムまたは塩化マグネシウムの濃度としては5〜
20w%共存することが分相速度を増す意味で望ま
しい。
On the other hand, the organic liquid phase is regenerated in the regeneration step, and the regenerant is preferably an aqueous slurry of slaked lime, calcium oxide, magnesium hydroxide, magnesium oxide, or the like. As for the amount of regenerating agent, if the theoretical amount or an equivalent of 1.05 times the theoretical amount is added, a regeneration rate of approximately 100% can be achieved. A regenerating agent concentration of about 1N is desirable for good regeneration speed and interfacial separation. Furthermore, it is also possible to replenish the used regenerating solution with the regenerating agent and use it again, and in this case, the concentration of calcium chloride or magnesium chloride is 5 to 5.
Coexistence of 20w% is desirable in terms of increasing the phase separation speed.

以下、実施例で説明する。 Examples will be described below.

比較例 1 第一表に示す組成の粗重母液100mlにPr―
imene JMTの50v%ケロシン溶液を300ml加え15
分間よく混ぜた後に二液相を分離した。塩化アン
モニウムの分解率は21%であつた。
Comparative Example 1 Pr-
Add 300ml of imene JMT's 50v% kerosene solution 15
After mixing well for a minute, the two liquid phases were separated. The decomposition rate of ammonium chloride was 21%.

比較例 2 第一表に示す組成の粗重母液100mlにPri―
mene JMTの50v%ケロシン溶液を300ml、食塩
12gを加え15分間よく混ぜた後に二液相を分離し
た。塩化アンモニウムの分解率は28%であつた。
Comparative Example 2 Pri-
mene 300ml of JMT's 50v% kerosene solution, salt
After adding 12 g and mixing thoroughly for 15 minutes, the two liquid phases were separated. The decomposition rate of ammonium chloride was 28%.

実施例 1 第一表に示す組成の粗重母液100mlに、あらか
じめ炭酸ガスを0.17M/Lに溶解したPrimene
JMTの50v%ケロシン溶液を300ml、食塩12gを
加え15分間よく混ぜた後に二液相を分離した。塩
化アンモニウムの分解率は42%で、食塩濃度
3.3N、塩化アンモニウム濃度2.2N、遊離アンモ
ニア1.8N、重炭酸イオン1.6Nの水溶液相を得た。
Example 1 Primene was prepared by dissolving carbon dioxide gas to 0.17M/L in 100ml of crude heavy mother liquor having the composition shown in Table 1.
After adding 300 ml of JMT's 50v% kerosene solution and 12 g of common salt and mixing well for 15 minutes, the two liquid phases were separated. The decomposition rate of ammonium chloride is 42%, and the salt concentration
3.3N, ammonium chloride concentration 2.2N, free ammonia 1.8N, and bicarbonate ion 1.6N aqueous phase.

実施例 2 第一表に示す組成の粗重母液100mlにPrimene
JMTの50v%キシレン溶液を400ml、食塩17gを
加えると共に、その反応系に空気を2/minで
吹込みながら60分間よくかき混ぜた後に二液相を
分離した。塩化アンモニウムの分解率は58%で、
食塩濃度4.2N、塩化アンモニウム濃度1.6N、遊
離アンモニア0.3N、重炭酸イオン0.7Nの水溶液
相を得た。一方、有機液相に塩化カルシウム濃度
15w%、消石灰濃度1Nのスラリーを230ml加え5
分間よく混ぜた後に二液相に分離した。およそ3
分で界面分離し、再生率は100%であつた。
Example 2 Primene was added to 100 ml of crude heavy mother liquor having the composition shown in Table 1.
400 ml of a 50v% xylene solution of JMT and 17 g of common salt were added, and the reaction system was thoroughly stirred for 60 minutes while blowing air at 2/min, and then the two liquid phases were separated. The decomposition rate of ammonium chloride is 58%,
An aqueous solution phase was obtained with a salt concentration of 4.2N, an ammonium chloride concentration of 1.6N, free ammonia 0.3N, and bicarbonate ion 0.7N. On the other hand, calcium chloride concentration in the organic liquid phase
Add 230ml of slurry with 15w% slaked lime concentration 1N 5
After thorough mixing for a minute, the mixture was separated into two liquid phases. Approximately 3
Interfacial separation occurred in minutes, and the regeneration rate was 100%.

実施例 3 第一表に示す組成の粗重母液100mlにPrimene
JMTの50v%ケロシン溶液を200ml、食塩9gを
加えると共に、その反応系に空気を2/minで
吹込みながら30分間よくかき混ぜた後に二液相を
分離した。塩化アンモニウムの分解率は41%であ
つた。次に分離して得た水溶液相に、あらかじめ
炭酸ガスを0.25M/Lに溶解したPrimene JMT
の50v%ケロシン溶液140ml、および食塩3gを
加え15分間よく混ぜた後に、二液相を分離した。
塩化アンモニウムの分解率は52%で、食塩濃度
3.8N、塩化アンモニウム濃度1.8N、遊離アンモ
ニア0.9N、重炭酸イオン1.0Nの水溶液相を得た。
Example 3 Primene was added to 100 ml of crude heavy mother liquor having the composition shown in Table 1.
200 ml of JMT's 50v% kerosene solution and 9 g of common salt were added, and the reaction system was thoroughly stirred for 30 minutes while blowing air at 2/min, and then the two liquid phases were separated. The decomposition rate of ammonium chloride was 41%. Next, Primene JMT with carbon dioxide gas dissolved in advance at 0.25M/L in the aqueous solution phase obtained by separation.
After adding 140 ml of a 50v% kerosene solution and 3 g of common salt and mixing well for 15 minutes, the two liquid phases were separated.
The decomposition rate of ammonium chloride is 52%, and the salt concentration
3.8N, ammonium chloride concentration 1.8N, free ammonia 0.9N, and bicarbonate ion 1.0N aqueous phase.

Claims (1)

【特許請求の範囲】[Claims] 1 重炭酸イオンを含む塩化アンモニウム水溶液
に固体の食塩及び該水容液と二液相を形成し得る
第一級アミンを加え、さらにこれに不活性ガス又
は/および炭酸ガスを供給して反応せしめ、しか
るのち二液相を分離する事により該水溶液中の塩
化アンモニウムをアンモニアに転化せしめて回収
する方法。
1. Solid common salt and a primary amine that can form a two-liquid phase with the aqueous solution are added to an ammonium chloride aqueous solution containing bicarbonate ions, and an inert gas or/and carbon dioxide gas is further supplied to this to cause a reaction. , and then the ammonium chloride in the aqueous solution is converted into ammonia and recovered by separating the two liquid phases.
JP10709380A 1980-08-06 1980-08-06 Recovery of ammonia Granted JPS5734020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10709380A JPS5734020A (en) 1980-08-06 1980-08-06 Recovery of ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10709380A JPS5734020A (en) 1980-08-06 1980-08-06 Recovery of ammonia

Publications (2)

Publication Number Publication Date
JPS5734020A JPS5734020A (en) 1982-02-24
JPS635329B2 true JPS635329B2 (en) 1988-02-03

Family

ID=14450275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10709380A Granted JPS5734020A (en) 1980-08-06 1980-08-06 Recovery of ammonia

Country Status (1)

Country Link
JP (1) JPS5734020A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567878B1 (en) * 1984-07-17 1986-12-05 Solvay PROCESS FOR OBTAINING AN ORGANIC NITROGEN BASE INSOLUBLE IN WATER, FROM AN AQUEOUS SOLUTION OF ALKALI METAL BICARBONATE AND CHLORHYDRATE OF SAID BASE, AND PROCESS FOR THE MANUFACTURE OF SODIUM BICARBONATE
WO2015097674A1 (en) * 2013-12-23 2015-07-02 Universidade Federal De Minas Gerais - Ufmg Method for carbonating industrial and urban waste and regenerating reagents

Also Published As

Publication number Publication date
JPS5734020A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
US9926265B1 (en) Cyclic process for producing taurine
US4981664A (en) Method of production of high purity silica and ammonium fluoride
JPS62256723A (en) Purification of barium salt
CA2515712A1 (en) Method for recovering purified sodium bicarbonate and ammonium sulfate
JPH0533169A (en) Method for treating and recovering waste etchant containing fluorine and ammonia compound
US3997413A (en) Purification of magnesium chloride cell bath material useful for the production of magnesium metal by electrolysis
KR101245313B1 (en) Manufacturing method for lithium carbonate
JPS60212288A (en) Treatment of waste water containing ammonium ion and fluorine ion
JPS63239128A (en) Production of uranium oxide
KR20010088871A (en) Method of ammonium sulfate purification
JPS635329B2 (en)
AU6170594A (en) Process for recovering solid sodium bicarbonate from diaphragm cell
CN116332208A (en) Method for preparing battery-grade lithium hydroxide monohydrate by spodumene pickle liquor
US1382165A (en) Process of making fluorids
US2021988A (en) Production of lithium compounds
CN115010149A (en) Method for recycling sodium sulfate and ammonium sulfate from mixed salt
US4153600A (en) Process for the recovery of ε-caprolactam from a distillation residue containing ε-caprolactam
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
JPH0739884A (en) Treatment of caustic soda waste solution containing aluminum
JP3915176B2 (en) Method for treating water containing fluorine and boron
JPH0512282B2 (en)
CN1019290B (en) Process for preparation of aqueous solution of sodium chloride
JPH10147823A (en) Method for recovering nickel from copper electrolytic solution and method for purifying the same copper electrolytic solution
JPS63134513A (en) Extraction of organic liquid containing nitrogen organic base from aqueous slurry of inorganic particle and manufacture of alkali metal hydrogencarbonate