JPS6353230A - Sliding member - Google Patents

Sliding member

Info

Publication number
JPS6353230A
JPS6353230A JP19841986A JP19841986A JPS6353230A JP S6353230 A JPS6353230 A JP S6353230A JP 19841986 A JP19841986 A JP 19841986A JP 19841986 A JP19841986 A JP 19841986A JP S6353230 A JPS6353230 A JP S6353230A
Authority
JP
Japan
Prior art keywords
composite material
silicon nitride
reinforcement
wear
sea urchin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19841986A
Other languages
Japanese (ja)
Inventor
Masahiro Kubo
雅洋 久保
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Hidetoshi Hirai
秀敏 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19841986A priority Critical patent/JPS6353230A/en
Publication of JPS6353230A publication Critical patent/JPS6353230A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/083Nitrides
    • F05C2203/0843Nitrides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve wear resistance by constituting either of relatively sliding members of a silicon-nitride whisker- and grain-reinforced metallic composite material and also by constituting the other of a nitrided steel having the prescribed hardness. CONSTITUTION:In the mutually abutting and relatively sliding sliding members, mutual sliding surface parts are formed of the prescribed composite material and the nitrided steel having a hardness Hv(50g) of >=550, respectively. In the above composite material, >=1vol% mixture of silicon-nitride whiskers and silicon-nitride grains is used as reinforcement, and a metal selected from Al, Mg, Sn, Cu, Pb, Zr, and alloys composed principally of the above elements is also used as matrix. Further, a part of the above reinforcement has an echinoid shape and has a diameter as a whole of <=220mu.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、互いに当接して相対的に摺動する二つの部材
よりなる摺動用部材に係り、更に詳細には一方の部材が
窒化ケイ素のホイスカと粒子とウニ状強化材との混合物
を強化材とする複合材料にて構成され他方の部材が窒化
処理された鋼にて構成された二つの部材よりなる摺動用
部材に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sliding member consisting of two members that are in contact with each other and slide relative to each other, and more specifically, one member is made of silicon nitride whiskers. The present invention relates to a sliding member made of two members, one made of a composite material whose reinforcement is a mixture of particles and a sea urchin-like reinforcing material, and the other made of nitrided steel.

従来の技術 各種機械の構成要素や部材に於ては、部分的に特別な機
械的特性を要求されることが多い。例えば、自動車用エ
ンジンに於ては、エンジンの性能に対する要求が高くな
るにつれて、ピストンの如き部材はその比強度や剛性が
優れていることに加えて、その摺動面が耐摩耗性に優れ
ていることが強く要請されるようになってきた。かかる
部材の比強度や耐摩耗性等を向上させる一つの手段とし
て、それらの部材を各種の無機質繊維等を強化材としア
ルミニウム合金の如き軽金属をマトリックスとする複合
材料にて構成することが試られている。
BACKGROUND OF THE INVENTION Special mechanical properties are often required in parts of the components and members of various machines. For example, in automobile engines, as demands for engine performance become higher, members such as pistons not only have excellent specific strength and rigidity, but also require that their sliding surfaces have excellent wear resistance. There is now a strong demand to be present. As a means of improving the specific strength, wear resistance, etc. of such members, attempts have been made to construct them from composite materials that have various inorganic fibers as reinforcements and light metals such as aluminum alloys as a matrix. ing.

かかる金属基複合材料の一つとして、本願発明者等は、
本願出願人と同一の出願人の出願にかかる特願昭61−
      号に於て、窒化ケイ素ホイスカと窒化ケイ
素粒子との混合物を強化材とし金属をマトリックスとす
る複合材料であって、前記強化材の少なくとも一部はウ
ニ状強化材、即ち窒化ケイ素粒子の集合体と該集合体よ
り放射状に突出する多数の窒化ケイ素ホイスカとよりな
る強化材である複合材料を提案した。かかる複合材料に
よれば、それらにて構成された部材の比強度や耐摩耗性
等を向上きせることかできる。
As one such metal matrix composite material, the inventors of the present application have
Patent application filed by the same applicant as the applicant in 1988-
In this issue, a composite material is disclosed in which a mixture of silicon nitride whiskers and silicon nitride particles is used as a reinforcing material and a metal is used as a matrix, wherein at least a part of the reinforcing material is a sea urchin-like reinforcement material, that is, an aggregate of silicon nitride particles. We proposed a composite material that is a reinforcing material and consists of a large number of silicon nitride whiskers that protrude radially from the aggregate. Such composite materials can improve the specific strength, wear resistance, etc. of members made of them.

発明が解決しようとする問題点 しかし、互いに当接して相対的に摺動する二つの摺動用
部材に於て、その一方の部材を上述の如き複合材料にて
構成した場合には、その他方の部 ′材の材質によって
はその他方の部材の摩耗が著しく増大し、従ってそれら
を互いに当接して相対的に摺動する摺動用部材として使
用することはできない。
Problems to be Solved by the Invention However, in two sliding members that are in contact with each other and slide relative to each other, when one of the members is made of the above-mentioned composite material, the other member is Depending on the material of one member, the wear of the other member increases significantly, and therefore, they cannot be used as sliding members that abut each other and slide relative to each other.

本願発明者等は、互いに当接して相対的に摺動する二つ
の部材よりなる摺動用部材であって、その一方の部材が
上述の如き複合材料にて構成され、その他方の部材が窒
化処理された鋼にて構成された摺動用部材に於て、それ
ら両方の部材の摩耗量を最小限に抑えるためには、それ
らの材質及び性質の組合せとしては如何なるものが適切
であるかについて種々の実験的研究を行なった結果、そ
れぞれ成る特定の特徴を有するものでなければならない
ことを見出した。
The present inventors have proposed a sliding member consisting of two members that come into contact with each other and slide relative to each other, one of which is made of a composite material as described above, and the other member is nitrided. In order to minimize the amount of wear on both parts of sliding members made of steel, various studies have been carried out regarding the appropriate combination of materials and properties. As a result of experimental research, it was found that each type must have specific characteristics.

本発明は、本願発明者等が行なった上述の如き実験的研
究の結果得られた知見に基き、一方の部材が強度及び剛
性に優れた窒化ケイ素のホイスカ(遊離ホイスカ)と粒
子(遊離粒子)とウニ状強化材との混合物を強化材とし
アルミニウム合金の如き金属をマトリックスとする複合
材料にて構成され、その他方の部材が窒化処理された鋼
にて構成された互いに当接して相対的に摺動する二つの
部材よりなる摺動用部材であって、それら両方の部材の
互いに他に対する摺動面に於ける耐摩耗性が改善された
摺動用部材を提供することを目的としている。
The present invention is based on the knowledge obtained as a result of the above-mentioned experimental research conducted by the inventors of the present invention, and one member is composed of silicon nitride whiskers (free whiskers) and particles (free particles) having excellent strength and rigidity. The composite material is made of a composite material in which the reinforcing material is a mixture of and a sea urchin-like reinforcing material, and a metal such as an aluminum alloy is used as a matrix, and the other member is made of nitrided steel. It is an object of the present invention to provide a sliding member consisting of two sliding members, which has improved wear resistance on the sliding surfaces of both members relative to each other.

問題点を解決するための手段 上述の如き目的は、本発明によれば、互いに当接して(
口封的に摺動する第一の部材と第二の部材とよりなる摺
動用部材にして、前記第一の部材の少なくとも前記第二
の部材に対する摺動面部は窒化ケイ素ホイスカと窒化ケ
イ素粒子との混合物を強化材とし、アルミニウム、マグ
ネシウム、スズ、銅、鉛、亜鉛、及びそれらを主成分と
する合金よりなる群より選択された金属をマトリックス
とする複合材料であって、前記強化材の少なくとも一部
はウニ状強化材である複合材料にて構成されており、前
記第二の部材の少なくとも前記第一の部材に対する摺動
面部は硬さHv(50g) 550以上の窒化処理され
た鋼にて構成されていることを特徴とする摺動用部材に
よって達成される。
Means for Solving the Problems According to the invention, the above-mentioned objects abut each other (
The sliding member includes a first member and a second member that slide in a sealing manner, and at least the sliding surface portion of the first member relative to the second member is made of silicon nitride whiskers and silicon nitride particles. A composite material whose matrix is a metal selected from the group consisting of aluminum, magnesium, tin, copper, lead, zinc, and alloys containing these as main components, wherein at least one of the reinforcing materials A portion of the second member is made of a composite material that is a sea urchin-shaped reinforcement material, and at least the sliding surface of the second member relative to the first member is made of nitrided steel with a hardness of Hv (50 g) 550 or more. This is achieved by a sliding member characterized in that it is configured as follows.

発明の作用及び効果 本発明によれば、第一の部材を構成する複合材料の強化
材の少くとも一部はウニ状強化材であり、該ウニ状強化
材は中心部の窒化ケイ素粒子集合体と該集合体より放射
状に突出する多数の窒化ケイ素ホイスカとよりなり、ホ
イスカは粒子集合体により実質的に三次元ランダムに配
向された状態にて強固に保持されているので、後に説明
する本願発明者等が行った実験的研究の結果からも明ら
かである如く、窒化ケイ素ホイスカと窒化ケイ素粒子と
の単なる混合物を強化材とする複合材料に比して耐摩耗
性に優れており、また第二の部材はHv(50g) 5
50以上の窒化処理された鋼にて構成される。従って本
発明によれば、互いに当接して相対的に摺動する二つの
部材よりなる摺動用部材であって、それら両方の部材の
互いに他に対する摺動面が耐摩耗性に優れており、従っ
てそれら両方の部材のそれぞれの摺動面に於ける摩耗量
を最小限に抑えることができ、しかもその一方の部材は
比強度や剛性などにも優れている如き摺動用部材を得る
ことができる。
Effects and Effects of the Invention According to the present invention, at least a part of the reinforcing material of the composite material constituting the first member is a sea urchin-like reinforcement material, and the sea urchin-like reinforcement material is a silicon nitride particle aggregate in the center. and a large number of silicon nitride whiskers protruding radially from the particle aggregate, and the whiskers are firmly held in a substantially three-dimensionally randomly oriented state by the particle aggregate. As is clear from the results of experimental studies conducted by researchers, it has superior wear resistance compared to composite materials whose reinforcement is a simple mixture of silicon nitride whiskers and silicon nitride particles, and The component is Hv (50g) 5
Constructed of 50 or more nitrided steel. Therefore, according to the present invention, there is provided a sliding member consisting of two members that come into contact with each other and slide relative to each other, and the sliding surfaces of both members relative to each other have excellent wear resistance. A sliding member can be obtained in which the amount of wear on the respective sliding surfaces of both members can be minimized, and one of the members has excellent specific strength and rigidity.

本願発明者等が行った実験的研究の結果によれば、窒化
ケイ素のホイスカと粒子とウニ状強化材との混合物より
なる強化材の体積率が1%以上、特に2%以上、更には
3%以上の場合に複合材料及び相手材の摩耗量を低い値
に抑えることができる。従って本発明の一つの詳細な特
徴によれば、強化材の体積率は、2%以上、好ましくは
3%以上、更に好ましくは4%以上とされる。
According to the results of experimental studies conducted by the inventors of the present application, the volume fraction of the reinforcement made of a mixture of silicon nitride whiskers, particles, and sea urchin-like reinforcement is 1% or more, particularly 2% or more, and even 3% or more. % or more, the amount of wear of the composite material and the mating material can be suppressed to a low value. According to one detailed feature of the invention, therefore, the volume fraction of the reinforcing material is at least 2%, preferably at least 3%, more preferably at least 4%.

また本願発明者等が行った実験的研究の結果によれば、
ウニ状強化材の全体としての直径が220μを越えると
複合材料及び相手材の摩耗量が比較的高い値になる。従
って本発明の他の一つの詳細な特徴によれば、ウニ状強
化材の全体としての直径は220μ以下に設定される。
Also, according to the results of experimental research conducted by the inventors of the present application,
When the overall diameter of the sea urchin-shaped reinforcement exceeds 220μ, the amount of wear of the composite material and the mating material becomes relatively high. According to another detailed feature of the invention, therefore, the overall diameter of the sea urchin-shaped reinforcement is set to be less than or equal to 220 microns.

また本願発明者等が行った実験的研究の結果によれば、
ウニ状強化材の中心部の粒子集合体の直径とこれより放
射状に突出するホイスカの長さとの比の値が1/10未
満の場合及び2を越える場合に複合材料及び相手材の摩
耗量が比較的高い値になる。従って本発明の更に他の一
つの詳細な特徴によれば、ウニ状強化材の中心部の粒子
集合体の直径とこれより放射状に突出するホイスカの長
さとの比の値は1/10〜2に設定される。
Also, according to the results of experimental research conducted by the inventors of the present application,
When the ratio between the diameter of the particle aggregate at the center of the sea urchin-shaped reinforcement and the length of the whiskers radially protruding from this is less than 1/10 or exceeds 2, the amount of wear of the composite material and the mating material is reduced. The value will be relatively high. Therefore, according to yet another detailed feature of the invention, the value of the ratio between the diameter of the particle aggregate at the center of the sea urchin-shaped reinforcement and the length of the whiskers radially projecting from this is 1/10 to 2. is set to

また本願発明者等が行った実験的研究の結果によれば、
強化材に含まれるウニ状強化材の量が20νt%未満の
場合には、複合材料及び相手材の摩耗量が比較的高い値
になる。従って本発明の更に他の一つの詳細な特徴によ
れば、全強化材に対するウニ状強化材の量は20wt%
以上に設定される。
Also, according to the results of experimental research conducted by the inventors of the present application,
If the amount of sea urchin-like reinforcement contained in the reinforcement is less than 20vt%, the amount of wear of the composite material and the mating material will be relatively high. According to yet another detailed feature of the invention, therefore, the amount of sea urchin-like reinforcement relative to the total reinforcement is 20 wt%.
It is set as above.

更に本願発明者等が行った実験的研究の結果によれば、
強化材に含まれる全粒子量及び遊離粒子量がそれぞれ9
0wt%、70wt%を越えると複合材料及び相手材の
摩耗量が比較的高い値になる。
Furthermore, according to the results of experimental research conducted by the inventors of the present application,
The total amount of particles and the amount of free particles contained in the reinforcing material are each 9
If it exceeds 0wt% or 70wt%, the amount of wear of the composite material and the mating material will be relatively high.

従って本発明の更に他の一つの詳細な特徴によれば、強
化材に含まれる全粒子量及び遊離粒子量はそれぞれ90
vt%以下、70vt%以下に設定される。
According to yet another detailed feature of the invention, the amount of total particles and the amount of free particles contained in the reinforcing material are therefore 90% each.
vt% or less, set to 70vt% or less.

尚本願出願人と同一の出願人の出願にかかる特願昭60
−46293号明細書、特願昭60−94880号明細
書及び特願昭60−263344号明細書には、それぞ
れムライト結晶含有アルミナ−シリカ繊維及び鉱物繊維
にて強化された金属よりなる複合材料と窒化処理された
鋼との組合せよりなる摺動用部材、アルミナ繊維及びア
ルミナ−シリカ繊維にて強化された金属よりなる複合材
料と窒化処理された鋼との組合せよりなる摺動用部材及
び窒化ケイ素ホイスカ強化金属複合材料と窒化処理され
た鋼との組合せよりなる摺動用部材が記載されている。
Furthermore, the patent application filed in 1986 by the same applicant as the applicant of the present application
-46293, Japanese Patent Application No. 60-94880, and Japanese Patent Application No. 60-263344 each disclose a composite material made of metal reinforced with mullite crystal-containing alumina-silica fibers and mineral fibers. Sliding members made of a combination of nitrided steel, sliding members made of a combination of nitrided steel and composite materials made of metal reinforced with alumina fibers and alumina-silica fibers, and silicon nitride whisker reinforcement A sliding member made of a combination of a metal composite material and nitrided steel is described.

また雑誌「機能材料」の昭和60年4月号の「窒化ケイ
素粉末の新しい製造プロセス」と題する記事に窒化ケイ
素のウニ状強化材及びその製造方法が記載されている。
Furthermore, in the April 1985 issue of the magazine "Functional Materials", an article entitled "New Manufacturing Process for Silicon Nitride Powder" describes a silicon nitride sea urchin-like reinforcement material and its manufacturing method.

本発明による摺動用部材は、例えば自動車用エンジンの
シリンダとピストン、ピストンリングとピストンの如く
、種々の機械装置等の摺動用部材に対し適用されてよい
The sliding member according to the present invention may be applied to sliding members of various mechanical devices, such as a cylinder and a piston of an automobile engine, a piston ring and a piston, and the like.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 窒化ケイ素ホイスカ、窒化ケイ素粒子、及び窒化ケイ素
のウニ状強化材の混合物を強化材とする金属基複合材料
の耐摩耗性の評価を行うべく、窒化ケイ素ホイスカ、窒
化ケイ素粒子、及び窒化ケイ素のウニ状強化材の混合物
を強化材としアルミニウム合金をマトリックス金属とす
る複合材料を高圧鋳造法により製造し、該複合材料につ
いて摩耗試験を行った。
Example 1 In order to evaluate the wear resistance of a metal matrix composite material reinforced with a mixture of silicon nitride whiskers, silicon nitride particles, and silicon nitride sea urchin-like reinforcement, silicon nitride whiskers, silicon nitride particles, and nitride A composite material containing a mixture of silicon sea urchin-like reinforcements as a reinforcement material and an aluminum alloy as a matrix metal was manufactured by a high-pressure casting method, and a wear test was performed on the composite material.

先ず窒化ケイ素のホイスカと粒子とウニ状強化材との混
合物(宇部興産株式会社製、ホイスカの平均繊維径0.
1μ、ホイスカの平均繊維長10μ、中心部の粒子集合
体の平均直径3μ、各粒子の平均粒径0,1μ、ホイス
カと粒子との重量比2:3、ウニ状強化材のIm 60
 wt96、遊離粒子量24 w t 96、遊離ホイ
スカ16wt%、全粒子量60wt%)に対し圧縮成形
を行うことにより、第10図に示されている如く、窒化
ケイ素ホイスカ1 a %窒化ケイ素粒子1b、及び窒
化ケイ素のウニ状強化材1cが均一に混合されホイスカ
が実質的に三次元ランダムにて配向され全強化材の体積
率が10%であり80X80X20mmの寸法を有する
強化材の成形体2を形成した。
First, a mixture of silicon nitride whiskers, particles, and sea urchin-like reinforcing material (manufactured by Ube Industries, Ltd., the average fiber diameter of the whiskers is 0.
1 μ, average fiber length of whiskers 10 μ, average diameter of particle aggregate in the center 3 μ, average particle size of each particle 0.1 μ, weight ratio of whiskers to particles 2:3, Im of sea urchin-shaped reinforcement material 60
By performing compression molding on silicon nitride whiskers (wt 96, free particle amount 24 wt 96, free whiskers 16 wt%, total particle amount 60 wt%), as shown in FIG. 10, silicon nitride whiskers 1 a % silicon nitride particles 1 b , and a sea urchin-shaped reinforcing material 1c of silicon nitride are uniformly mixed, the whiskers are oriented in a substantially three-dimensional random manner, the volume fraction of the total reinforcing material is 10%, and the molded body 2 of the reinforcing material has dimensions of 80 x 80 x 20 mm. Formed.

次いで成形体を600℃に加熱した後、第11図に示さ
れている如く250℃の鋳型3のモールドキャビティ4
内に配置し、該鋳型内に730℃のアルミニウム合金(
JIS規格AC8A)の溶湯5を素早く注湯し、該溶湯
を約200℃のプランジャ6により1500kg/am
2の圧力にて加圧し、その加圧状態をアルミニウム合金
の溶湯が完全に凝固するまで保持した。
Next, after heating the molded body to 600°C, the mold cavity 4 of the mold 3 at 250°C is heated as shown in FIG.
aluminum alloy (730°C) is placed in the mold.
Quickly pour the molten metal 5 of JIS standard AC8A), and use the plunger 6 at about 200°C to pump the molten metal at 1500 kg/am.
Pressure was applied at a pressure of 2, and the pressurized state was maintained until the molten aluminum alloy completely solidified.

次いで第12図に示されている如く、かくして得られた
複合材料1′を含む外径110mIIl、高さ50II
lfflの円柱状の凝固体に対し熱処理T7を施し、該
凝固体より複合材料を取出し、該複合材料より16X6
X10mmの寸法を有し16X、10mmの面を試験面
とする組合せA、−A5のブロック試験片を5個切出し
た。
Next, as shown in FIG. 12, the outer diameter 110 ml and the height 50 ml including the thus obtained composite material 1'
A cylindrical solidified body of lffl is subjected to heat treatment T7, a composite material is taken out from the solidified body, and a 16×6
Five block test pieces of combinations A and -A5 were cut out, each having dimensions of 10 mm x 16 x and 10 mm as the test surface.

また比較の目的で、窒化ケイ素ホイスカ(タテホ化学工
業株式会社製、平均繊維径1μ、平均繊維長10μ)を
用いて上述のブロック試験片A。
For the purpose of comparison, the above-mentioned block test piece A was prepared using silicon nitride whiskers (manufactured by Tateho Chemical Industry Co., Ltd., average fiber diameter 1μ, average fiber length 10μ).

〜A5を製造する場合と同一の条件にてホイスカが体積
率10%にて二次元ランダム配向及び三次元ランダム配
向された複合材料を製造して熱処理T7を施し、ホイス
カが三次元ランダム配向された複合材料より組合せA6
のブロック試験片を切出し、またホイスカが二次元ラン
ダム配向された複合材料より試験面が二次元ランダム配
向平面に垂直な組合せA7のブロック試験片及び二次元
ランダム配向平面に平行な組合せA8のブロック試験片
を切出した。
~ A composite material in which whiskers were randomly oriented in two dimensions and randomly oriented in three dimensions at a volume ratio of 10% was produced under the same conditions as in the case of producing A5, and heat treatment T7 was performed, so that the whiskers were randomly oriented in three dimensions. Combination A6 from composite materials
A block test piece was cut out from the composite material in which the whiskers were two-dimensionally randomly oriented, and a block test piece of combination A7 with the test surface perpendicular to the two-dimensional random orientation plane and a block test of combination A8 parallel to the two-dimensional random orientation plane were conducted. A piece was cut out.

次いで各ブロック試験片を順次摩擦摩耗試験機にセット
し、相手部材である種々の硬さの窒化処理された鋼より
なる円筒試験片の外周面と接触きせ、それらの試験片の
接触部に常温(20℃)の用滑油(キャッスルモータオ
イル5W−30)を供給しつつ、接触面圧20 kg/
 +11112)滑り速度0゜3 m / seeにて
1時間円筒試験片を回転させる摩耗試験を行った。尚こ
れらの摩耗試験に於けるブロック試験片と円筒試験片と
の組合せは下記の表1に示す通りであり、表1に於てS
l 3 N4強化AI合金と表示された複合材料は窒化
ケイ素のホイスカと粒子とウニ状強化材との混合物を強
化材とする複合材料である。
Next, each block test piece was sequentially set in a friction and wear tester and brought into contact with the outer circumferential surface of a mating member, a cylindrical test piece made of nitrided steel with various hardnesses, and the contact area of the test pieces was heated to room temperature. (20℃) while supplying lubricating oil (castle motor oil 5W-30), contact surface pressure 20 kg/
+11112) A wear test was conducted in which the cylindrical specimen was rotated for 1 hour at a sliding speed of 0°3 m/see. The combinations of block test pieces and cylindrical test pieces in these wear tests are shown in Table 1 below.
The composite designated as l 3 N4 reinforced AI alloy is a composite material reinforced with a mixture of silicon nitride whiskers and particles and sea urchin-like reinforcement.

注: 1) J I S規r6sUJ 22)JIS規
格SUS420J2 これらの摩耗試験の結果を第1図に示す。尚第1図に於
て、上半分はブロック試験片の摩耗量(摩耗痕深さμ)
を表しており、下半分は相手材である円筒試験片の摩耗
量(摩耗域Q mg )を表している(後述の第2図〜
第4図についても同じ)。
Note: 1) JIS standard r6sUJ 22) JIS standard SUS420J2 The results of these wear tests are shown in Figure 1. In Figure 1, the upper half shows the wear amount (wear scar depth μ) of the block test piece.
, and the lower half represents the amount of wear (wear area Q mg) of the cylindrical test piece that is the mating material (see Figures 2 to 3 below).
The same applies to Figure 4).

第1図より、組合せA1−A4のブロック試験片及び円
筒試験片の摩耗量は組合せA5 、A6、八8の場合よ
りも小さく、組合せAIの摩耗量と実質的に同等又はそ
れ以下であり、従って複合材料及び相手材の両方の摩耗
量を低減するためには、相手材の窒化処理された鋼の硬
さはHv(50g) 550以上であることが好ましい
ことが解る。またブロック試験片AIとA8の場合のブ
ロック試験片及び相手材の摩耗量の比較より、ホイスカ
が二次元ランダムにて配向される場合には複合材料の耐
摩耗性に顕著な異方性があることが解る。
From FIG. 1, the wear amount of the block test piece and cylindrical test piece of combinations A1-A4 is smaller than that of combinations A5, A6, and 88, and is substantially equal to or less than the wear amount of combination AI. Therefore, in order to reduce the amount of wear of both the composite material and the mating material, it is understood that the hardness of the nitrided steel of the mating material is preferably Hv (50 g) 550 or more. In addition, a comparison of the wear amount of the block test piece and the opposing material in the case of block test pieces AI and A8 reveals that there is a remarkable anisotropy in the wear resistance of the composite material when the whiskers are oriented in a two-dimensional random manner. I understand.

実施例2 窒化ケイ素ホイスカ、窒化ケイ素粒子、及び窒化ケイ素
のウニ状強化材の混合物を強化材とする金属基複合材料
に於てその摩擦摩耗特性を向上させるためには全強化材
の体積率が如何なる値であることが適切であるかの検討
を行うべく、上述の実施例1に於て使用されたウニ状強
化材を含む強化材と同一の強化材の体積率を0%、1%
、2%、3%、4%、5%、15%、25%に設定して
実施例1の場合と同一の要領及び条件にて窒化ステンレ
スm(JIS規格5US420J2)Hv800)製の
円筒試験片を相手材とする摩耗試験を行った。これらの
摩耗試験の結果を第2図に示す。
Example 2 In order to improve the friction and wear properties of a metal matrix composite material reinforced with a mixture of silicon nitride whiskers, silicon nitride particles, and silicon nitride sea urchin-like reinforcement, the volume fraction of the total reinforcement must be increased. In order to examine what value is appropriate, we set the volume percentage of the same reinforcing material as the reinforcing material containing the sea urchin-shaped reinforcing material used in Example 1 above to 0% and 1%.
, 2%, 3%, 4%, 5%, 15%, and 25%, and cylindrical test pieces made of nitrided stainless steel m (JIS standard 5US420J2) Hv800) were prepared in the same manner and conditions as in Example 1. A wear test was conducted using the material as a mating material. The results of these wear tests are shown in FIG.

第2図より、複合材料及び相手材の摩耗量を低減するた
めには、全強化材の体積率は2%以上、特に3%以上、
更には4%以上であることが好ましいことが解る。
From Figure 2, in order to reduce the amount of wear on the composite material and the mating material, the volume fraction of the total reinforcement should be 2% or more, especially 3% or more.
Furthermore, it is understood that the content is preferably 4% or more.

実施例3 窒化ケイ素のウニ状強化材が強化材として使用される場
合に於て複合材料の摩擦摩耗特性を向上させるためには
ウニ状強化材の全体としての直径が如何なる値であるこ
とが適切であるかについての検討を行うべく、下記の摩
耗試験を行った。
Example 3 When a silicon nitride sea urchin-like reinforcement is used as a reinforcing material, what is the appropriate value for the overall diameter of the sea urchin-like reinforcement in order to improve the friction and wear characteristics of the composite material? In order to examine whether this is the case, the following abrasion test was conducted.

まず上述の実施例1に於て使用されたウニ状強化材と同
一のウニ状強化材を200メツシユ、100メツシユ、
60メツシユ、50メツシユの篩に掛けることにより、
全体としての直径が75μ以下、75〜140μ、14
0〜200μ、220〜270μ、270μ以上の5種
類に分類し、各ウニ状強化材を用いて体積率が10%と
なるよう圧縮成形によりウニ状強化材の成形体を形成し
た。次いで各成形体を用いて上述の実施例1の場合と同
一の要領の高圧鋳造(溶湯の温度710℃、溶湯に対す
る加圧力1500 kg/ a?)にてアルミニウム合
金(JIS規格ACIA)をマトリックス金属とする複
合材料を製造して熱処理T7を施し、各複合材料よりブ
ロック試験片を切出し、各ブロック試験片について窒化
ステンレスm (J IS規格5US420J2)Hv
800)製の円筒試験片を相手材として実施例1の場合
と同一の要領及び条件にて摩耗試験を行った。これらの
摩耗試験の結果を第3図に示す。尚第3図に於て、各棒
グラフの下方に示された数値はウニ状強化材の全体とし
ての直径(単位μ)を示している。
First, 200 meshes, 100 meshes of the same sea urchin-like reinforcement material as that used in Example 1 above,
By passing through a 60 mesh and 50 mesh sieve,
The overall diameter is 75 μ or less, 75 to 140 μ, 14
The reinforcing materials were classified into five types: 0 to 200μ, 220 to 270μ, and 270μ or more, and molded bodies of the sea urchin reinforcement were formed by compression molding using each sea urchin reinforcement so that the volume fraction was 10%. Next, using each compact, an aluminum alloy (JIS standard ACIA) was formed into a matrix metal by high-pressure casting in the same manner as in Example 1 (molten metal temperature 710°C, pressure applied to the molten metal 1500 kg/a?). Composite materials were manufactured and heat treated T7, block test pieces were cut out from each composite material, and each block test piece was treated with stainless steel nitride (JIS standard 5US420J2)
A wear test was conducted under the same procedure and conditions as in Example 1 using a cylindrical test piece manufactured by 800) as a counterpart material. The results of these wear tests are shown in FIG. In FIG. 3, the numerical value shown below each bar graph indicates the overall diameter (unit: μ) of the sea urchin-shaped reinforcement.

第3図より、ウニ状強化材の全体としての直径が75μ
以下、75〜140μ、140〜220μである場合に
はブロック試験片及び円筒試験片の何れの摩耗量も低い
値であることが解る。
From Figure 3, the overall diameter of the sea urchin-shaped reinforcement is 75μ.
Hereinafter, it can be seen that when the diameter is 75 to 140μ and 140 to 220μ, the wear amount of both the block test piece and the cylindrical test piece is low.

従って複合材料及び相手材の摩耗量を低減するためには
、ウニ状強化材の全体としての直径は220μ以下であ
ることが好ましいことが解る。
Therefore, in order to reduce the amount of wear on the composite material and the mating material, it is understood that the overall diameter of the sea urchin-shaped reinforcing material is preferably 220 μm or less.

実施例4 実施例3に於て複合材料及び相手材の摩耗量を低減する
ためには窒化ケイ素のウニ状強化材の全体としての直径
が220μ以下であることが好ましいことが解ったので
、ウニ状強化材の中心部の粒子集合体の直径とこれより
突出するボイス力の長さの比が如何なる値であることが
適切であるかの検討を行うべく、下記の摩耗試験を行っ
た。
Example 4 In Example 3, it was found that in order to reduce the amount of wear on the composite material and the mating material, it is preferable that the overall diameter of the silicon nitride sea urchin-shaped reinforcement is 220μ or less, so the sea urchin In order to examine the appropriate value for the ratio of the diameter of the particle aggregate at the center of the shaped reinforcement material to the length of the voice force protruding from this, the following wear test was conducted.

まず上述の実施例1に於て使用された窒化ケイ素のウニ
状強化材を60メツシユの篩に掛けて全体としての直径
が220μ以上のウニ状強化材を除去し、全体としての
直径が220μ以下のウニ状強化材を水中に分散させ、
該分散液よりフィル夕により全体としての直径が0.5
μ以下、0゜5〜1μ、1〜5μ、5〜10μ、10〜
100μ、100〜220μである6種類のウニ状強化
材に分類した。次いでかくして分類されたウニ状強化材
を乾燥させた後、走査電子顕微鏡により各群について任
意に10個のウニ状強化材を選定し、中心部の粒子集合
体の平均直径りとこれより突出するホイスカの平均長さ
しの比を求め、その比の値D/Lを求めた。その結果を
下記の表2に示す。
First, the silicon nitride sea urchin-like reinforcement material used in Example 1 above was passed through a 60-mesh sieve to remove sea urchin-like reinforcement materials with a total diameter of 220μ or more. The sea urchin-like reinforcing material is dispersed in water,
The overall diameter of the dispersion was 0.5 due to the filter.
Less than μ, 0°5~1μ, 1~5μ, 5~10μ, 10~
It was classified into 6 types of sea urchin-shaped reinforcement materials: 100μ and 100 to 220μ. Then, after drying the thus classified sea urchin-like reinforcements, 10 sea urchin-like reinforcements were arbitrarily selected for each group using a scanning electron microscope, and the average diameter of the particle aggregate in the center and protruding from this were randomly selected. The ratio of the average length of the whiskers was determined, and the value of the ratio D/L was determined. The results are shown in Table 2 below.

表  2 全体の直径(μ)   DSL    比の値D/L0
.5以下    4:1    4 0.5〜1    2:1     21〜5    
 1:1     1 5〜10    1:4    1/410〜100 
  1:10   1/10100〜220   1:
15   1/15次いで上述の実施例1の場合と同一
の要領及び条件にて体積率が10%である窒化ケイ素の
ウニ状強化材を強化材としアルミニウム合金(JIS規
IA C7A)をマトリックス金属とする複合材料を製
造して熱処理T7を行い、各複合材料について実施例1
の場合と同一の要領及び条件にて窒化ステンレスfv4
(JIS規洛5US420J2)HV800)製の円筒
試験片を相手材とする摩耗試験を行った。これらの摩耗
試験の結果を第4図に示す。尚第4図の横軸は比の値D
/Lを対数目盛にて示している。
Table 2 Overall diameter (μ) DSL ratio value D/L0
.. 5 or less 4:1 4 0.5~1 2:1 21~5
1:1 1 5~10 1:4 1/410~100
1:10 1/10100~220 1:
15 1/15 Next, in the same manner and under the same conditions as in Example 1 above, a sea urchin-shaped reinforcement material of silicon nitride with a volume fraction of 10% was used as a reinforcement material, and an aluminum alloy (JIS standard IA C7A) was used as a matrix metal. Example 1 was prepared for each composite material and subjected to heat treatment T7.
Nitrided stainless steel fv4 in the same manner and conditions as in the case of
A wear test was conducted using a cylindrical test piece manufactured by (JIS Standard 5US420J2) HV800) as a mating material. The results of these wear tests are shown in FIG. The horizontal axis in Figure 4 is the ratio value D.
/L is shown on a logarithmic scale.

第4図より、中心部の粒子集合体の直径とこれより突出
するホイスカの長さの比の値D/Lが2〜1/10の場
合にブロック試験片及び円筒試験片の両方の摩耗量が小
さい値であることが解る。
From Figure 4, when the ratio D/L of the diameter of the particle aggregate in the center and the length of the whisker protruding from this is 2 to 1/10, the wear amount of both the block test piece and the cylindrical test piece is It can be seen that is a small value.

従って複合材料及び相手材の摩耗量を低減するためには
、ウニ状強化材の中心部の粒子集合体の直径とこれより
突出するホイスカの長さの比の値D/Lはl/10〜2
であることが好ましいことが解る。
Therefore, in order to reduce the amount of wear on the composite material and the mating material, the value D/L of the ratio between the diameter of the particle aggregate at the center of the sea urchin-shaped reinforcement and the length of the whisker protruding from this must be l/10~ 2
It can be seen that it is preferable that

実施例5 上述の実施例1に於けるマトリックス金属がマグネシウ
ム合金(JIS規格MD C1−A)に置換えられ、マ
グネシウム合金の溶湯の温度が690°Cに設定され、
溶湯に対する加圧力が1000kz/mm2に設定され
た点を除き実施例1の場合と同一の要領の高圧鋳造によ
り、窒化ケイ素のホイスカと粒子とウニ状強化材との混
合物を強化材とし、マグネシウム合金をマトリックス金
属とし、強化材の体積率が10%である複合材料を製造
し、該複合材料より実施例1のブロック試験片と同一寸
法のブロック試験片B1及びB2をそれらの試験面が互
いに直交する方向に切出した。また比較の目的で実施例
1に於けるブロック試験片A8〜A 10に対応して三
次元ランダム及び二次元ランダムに配向された窒化ケイ
素ホイスカにて強化されたマグネシウム合金よりなりホ
イスカの体積率が1026であるブロック試験片B3〜
B5及びマグネシウム合金のみよりなるブロック試験片
を作成した。
Example 5 The matrix metal in Example 1 above was replaced with a magnesium alloy (JIS standard MD C1-A), the temperature of the molten magnesium alloy was set at 690 ° C,
By high-pressure casting in the same manner as in Example 1 except that the pressure applied to the molten metal was set at 1000 kHz/mm2, a mixture of silicon nitride whiskers, particles, and sea urchin-shaped reinforcement was used as a reinforcement material, and a magnesium alloy was formed. A composite material was manufactured in which the matrix metal was used as the matrix metal and the volume fraction of the reinforcing material was 10%. From the composite material, block test pieces B1 and B2 having the same dimensions as the block test piece of Example 1 were prepared with their test surfaces perpendicular to each other. It was cut out in the direction of For comparison purposes, block specimens A8 to A10 in Example 1 were made of magnesium alloy reinforced with silicon nitride whiskers oriented in a three-dimensional random manner and two-dimensionally randomly oriented, and the volume ratio of the whiskers was Block test piece B3 which is 1026~
A block test piece consisting only of B5 and magnesium alloy was prepared.

次いでこれらのブロック試験片について上述の実施例1
の場合と同一の要領及び条件にて窒化ステンレス鋼(J
IS規格5US420J2)Hv800)製の円筒試験
を相手材とする摩耗試験を行った。これらの摩耗試験の
結果を第5図に示す。
These block specimens were then tested in Example 1 above.
Nitrided stainless steel (J
A wear test was conducted using a cylinder test made of IS standard 5US420J2)Hv800) as a mating material. The results of these wear tests are shown in FIG.

尚第5図に於て、ブロック試験片の摩耗量比率とはマグ
ネシウム合金のみよりなるブロック試験片の摩耗量(摩
耗痕深さ)に対する各ブロック試験片の摩耗量(摩耗痕
深さ)の百分率を意味している。
In Fig. 5, the wear ratio of the block test piece is the percentage of the wear amount (wear scar depth) of each block test piece to the wear amount (wear scar depth) of the block test piece made only of magnesium alloy. It means.

第5図より、本発明の摺動用部材はその複合材料がマグ
ネシウム合金をマトリックス金属とする複合材料である
場合にも良好な摩擦摩耗特性を有していることが解る。
From FIG. 5, it can be seen that the sliding member of the present invention has good friction and wear characteristics even when the composite material is a composite material having a magnesium alloy as a matrix metal.

実施例6 上述の実施例1に於て使用された窒化ケイ素ホイスカと
窒化ケイ素粒子と窒化ケイ素のウニ状強化材との混合物
を強化材(全強化材の体積率1096)とし、亜鉛合金
(JIS規洛ZDCI) 、鉛合金(JIS規洛WJ8
)、スズ合金(JIS規格WJ 2)をマトリックス金
属とする複合材料を実施例1の場合と同一の要領の高圧
鋳造(それぞれ溶湯の温度500℃、410℃、330
℃、溶湯に対する加圧力1000kg/J)にて製造し
、各複合材料よりそれぞれ実施例5に於けるブロック試
験片B1及びB!!にそれぞれ対応するブロック試験片
C1及びC2)Dl及びり、、E、及びE!!を作成し
た。また比較の目的で上述の実施例1に於けるブロック
試験片A8〜A 1Gに対応して三次元ランダム及び二
次元ランダムに配向された窒化ケイ素ホイスカにて強化
された各合金よりなりホイスカの体積率が10%である
ブロック試験片C3〜C5、D3〜D5、E3〜E5及
び各合金のみよりなるブロック試験片を形成した。
Example 6 A mixture of silicon nitride whiskers, silicon nitride particles, and silicon nitride sea urchin-shaped reinforcement used in Example 1 above was used as a reinforcement (volume ratio of total reinforcement 1096), and a zinc alloy (JIS KIRAKU ZDCI), lead alloy (JIS KIRAKU WJ8
), a composite material having a tin alloy (JIS standard WJ 2) as the matrix metal was high-pressure casted in the same manner as in Example 1 (molten metal temperatures of 500°C, 410°C, and 330°C, respectively).
℃ and a pressure of 1000 kg/J) against the molten metal, and the block test pieces B1 and B in Example 5 were prepared from each composite material. ! Block specimens C1 and C2 corresponding respectively to Dl and R, , E, and E! ! It was created. For comparison purposes, corresponding to the block test pieces A8 to A1G in Example 1 described above, the volumes of whiskers made of each alloy reinforced with three-dimensionally randomly and two-dimensionally randomly oriented silicon nitride whiskers were also compared. Block test pieces consisting only of block test pieces C3 to C5, D3 to D5, E3 to E5 and each alloy with a ratio of 10% were formed.

次いでこれらのブロック試験片について上述の実施例1
の場合と同一の要領及び条件(但し面圧5 kg / 
mm” 、試験時間30分)にて窒化ステンレス!74
(JIS規格5US420J2)Hv800)製の円筒
試験片を相手材とする摩耗試験を行った。
These block specimens were then tested in Example 1 above.
The same procedure and conditions as in the case (however, the surface pressure is 5 kg /
mm”, test time 30 minutes) nitrided stainless steel!74
(JIS Standard 5US420J2) Hv800) A wear test was conducted using a cylindrical test piece made as a mating material.

これらの摩耗試験の結果をそれぞれ第6図〜第8図に示
す。尚これらの図に於て、ブロック試験片の+j+!耗
量比重量比率れぞれ対応する合金のみよりなるブロック
試験片の摩耗量(摩耗痕深さ)に対する各ブロック試験
片の摩耗量(摩耗痕深さ)の百分率を意味している。
The results of these wear tests are shown in FIGS. 6 to 8, respectively. In these figures, +j+! of the block specimen. Wear amount ratio by weight ratio means the percentage of the wear amount (wear scar depth) of each block test piece to the wear amount (wear scar depth) of a block test piece made only of the corresponding alloy.

第6図〜第8図より、本発明の摺動用部材はその複合材
料が亜鉛合金、鉛合金、スズ合金をマトリックス金属と
する複合材料である場合にも良好な摩擦摩耗特性を有し
ていることが解る。
From FIGS. 6 to 8, the sliding member of the present invention has good friction and wear characteristics even when the composite material is a composite material whose matrix metal is a zinc alloy, a lead alloy, or a tin alloy. I understand.

実施例7 上述の実施例1に於て使用された窒化ケイ素ホイスカと
窒化ケイ素粒子と窒化ケイ素のウニ状強化材との混合物
及び銅合金(10wt%Sn1残部実質的にCu)の粉
末を秤量し、これに少量のエタノールを添加してスター
クにて約30分間混合した。かくして得られた混合物を
80°Cにて5時間乾燥した後、金型内に所定量の混合
物を充填し、その混合物をパンチにて4000kg/a
n2の圧力にて圧縮することにより板状に成形した。次
いで分解アンモニアガス(露点−30℃)雰囲気に設定
されたバッチ型焼結炉にて各板状体を770°Cにて3
0分間加熱することにより焼結し、焼結炉内の冷却ゾー
ンにて徐冷することにより全強化材の体積率が5%であ
りマトリックス金属が銅合金である複合材料を製造し、
該複合材料より実施例5のブロック試験片B1及びB2
に対応するブロック試験片F1及びF2を作成した。
Example 7 The mixture of silicon nitride whiskers, silicon nitride particles, and silicon nitride sea urchin-like reinforcement used in Example 1 above, and the powder of copper alloy (10 wt% Sn, balance essentially Cu) were weighed. A small amount of ethanol was added to this and mixed for about 30 minutes in a Stark machine. After drying the mixture thus obtained at 80°C for 5 hours, a predetermined amount of the mixture was filled into a mold, and the mixture was punched at 4000 kg/a.
It was molded into a plate shape by compressing it at a pressure of n2. Next, each plate was heated at 770°C for 3 times in a batch-type sintering furnace set in an atmosphere of decomposed ammonia gas (dew point -30°C).
Sintering by heating for 0 minutes and slow cooling in a cooling zone in a sintering furnace to produce a composite material in which the volume fraction of the total reinforcement is 5% and the matrix metal is a copper alloy,
Block test pieces B1 and B2 of Example 5 were obtained from the composite material.
Block test pieces F1 and F2 corresponding to the above were created.

また比較の目的で、強化材が実施例1の比較例に於て使
用された窒化ケイ素ホイスカに置換えられた点を除き上
述の焼結法と同一の要領及び条件にて焼結を行うことに
より、窒化ケイ素ホイスカが実質的に三次元ランダムに
て配向された銅合金よりなりホイスカの体積率が5%で
あるブロック試験片F3及び銅合金のみよりなるブロッ
ク試験片を作成した。
For comparison purposes, sintering was performed in the same manner and under the same conditions as the sintering method described above, except that the reinforcing material was replaced with the silicon nitride whiskers used in the comparative example of Example 1. A block test piece F3 made of a copper alloy in which silicon nitride whiskers were substantially three-dimensionally randomly oriented and had a whisker volume ratio of 5%, and a block test piece made only of a copper alloy were prepared.

次いでこれらのブロック試験片について実施例1の場合
と同一の要領及び条件にて窒化ステンレスm(JIS規
F8SUS420J2)Hv800)製の円筒試験片を
相手材とする摩耗試験を行った。
These block test pieces were then subjected to an abrasion test using a cylindrical test piece made of nitrided stainless steel m (JIS standard F8SUS420J2) Hv800) as a counterpart material in the same manner and under the same conditions as in Example 1.

これらの摩耗試験の結果を第9図に示す。尚第9図に於
て、ブロック試験片の摩耗量比率とは銅合金のみよりな
るブロック試験片の摩耗量(摩耗痕深さ)に対する各ブ
ロック試験片の摩耗量(摩耗痕深さ)の百分率を意味し
ている。
The results of these wear tests are shown in FIG. In Figure 9, the wear ratio of the block test piece is the percentage of the wear amount (wear scar depth) of each block test piece to the wear amount (wear scar depth) of the block test piece made only of copper alloy. It means.

第9図より、本発明の複合材料は銅合金をマトリックス
金属とする場合にも良好な摩擦摩耗特性を有しているこ
とが解る。
From FIG. 9, it can be seen that the composite material of the present invention has good friction and wear characteristics even when a copper alloy is used as the matrix metal.

以上に於ては本発明を本願発明者等が行った実験的研究
の結果との関連に於て詳細に説明したが、本発明はこれ
らの実施例に限定されるものではなく、本発明の範囲内
にて他の種々の実施例が可能であることは当業者にとっ
て明らかであろう。
Although the present invention has been described above in detail in relation to the results of experimental research conducted by the inventors of the present invention, the present invention is not limited to these examples, and the present invention is not limited to these examples. It will be apparent to those skilled in the art that various other embodiments are possible within the scope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は窒化ケイ素ホイスカ、窒化ケイ素粒子、及び窒
化ケイ素のウニ状強化材の混合物を強化材としアルミニ
ウム合金をマトリックス金属とする複合材料と種々の硬
さの窒化処理された鋼との組合せについて行われた摩耗
試験の結果を比較例の結果と対比して示すグラフ、第2
図は窒化ケイ素ホイスカ、窒化ケイ素粒子、及び窒化ケ
イ素のつ二状強化材の混合物を強化材としアルミニウム
合金をマトリックス金属とする複合材料について、強化
材の体積率をパラメータにとって行われた摩耗試験の結
果を示すグラフ、第3図は窒化ケイ素のウニ状強化材を
強化材としアルミニウム合金をマトリックス金属とする
複合材料とステンレス鋼との組合せについて、ウニ状強
化材の全体としての直径をパラメータにとって行われた
摩耗試験の結果を示すグラフ、第4図は窒化ケイ素のウ
ニ状強化材を強化材としアルミニウム合金をマトリック
ス金属とする複合材料とステンレス鋼との組合せについ
て、ウニ状強化材の中心部の粒子集合体の直径りとこれ
より突出するホイスカの平均長さしの比をパラメータに
とって行われた摩耗試験の結果を示すグラフ、第5図は
窒化ケイ素ホイスカ、窒化ケイ素粒子、及び窒化ケイ素
のウニ状強化材の混合物を強化材としマグネシウム合金
をマトリックス金属とする複合材料と窒化ステンレス鋼
との組合せについて行われた摩耗試験の結果を比較例の
結果と対比して示すグラフ、第6図乃至第8図はそれぞ
れ窒化ケイ素ホイスカ、窒化ケイ素粒子、及び窒化ケイ
素のウニ状強化材の混合物を強化材とし亜鉛合金、鉛合
金、スズ合金をマトリックス金属とする複合材料と窒化
ステンレス鋼との組合せについて行われた摩耗試験の結
果を比較例の結果と対比して示すグラフ、第9図は窒化
ケイ素ホイスカ、窒化ケイ素粒子、及び窒化ケイ素のウ
ニ状強化材の混合物を強化材とし銅合金をマトリックス
金属とする複合材料と窒化ステンレス鋼との組合せにつ
いて行われた摩耗試験の結果を比較例の結果と対比して
示すグラフ、第10図は窒化ケイ素ホイスカ、窒化ケイ
素粒子、及び窒化ケイ素のウニ状強化材の混合物よりな
る強化材の成形体を示す斜視図、第11図は第10図に
示された成形体を用いて行われる高圧鋳造の要領を示す
解図、第12図は第11図に示された高圧鋳造により得
られた凝固体を示す斜視図である。 1a・・・窒化ケイ素ホイスカ、lb・・・窒化ケイ素
粒子、lc・・・窒化ケイ素のウニ状強化材、2・・・
成形体、3・・・鋳型、4・・・モールドキャビティ、
5・・・溶湯、6・・・プランジャ 特 許 出 願 人   トヨタ自動車株式会社代  
 理   人   弁理士  明石 昌毅第1図 第3図 第5図 フ゛ 第6図 第7図 第8図 第9図 フ゛ 第 10図       第 12 2第11図 (自 発) 1、事件の表示 昭和61年特許願第198419号2
)発明の名称 摺動用部材 3、補正をする者 事件との関係  特許出願人 住 所  愛知県豊田市トヨタ町1番地名 称  (3
20)トヨタ自動車株式会社4、代理人 居 所  Φ104東京都中央区新川1丁目5番19号
茅場町長岡ビル3階 電話551−41.71(方 式
)(自 発) 手続補正書 昭和61年9月24日 1、事件の表示 昭和61年特許願第198419号2
)発明の名称 摺動用部材 3、補正をする者 事件との関係  特許出願人 住 所  愛知県豊田布トヨタ町1番地名 称  (3
20)トヨタ自動車株式会辻46代理人 居 所  8104東京都中央区新川1丁目5番19号
茅場町長岡ビル3階 電話551−.41716、補正
の対象  図面(第2図) 7、補正の内容  別紙の通り
Figure 1 shows the combination of a composite material with a mixture of silicon nitride whiskers, silicon nitride particles, and silicon nitride sea urchin-like reinforcement as the reinforcement and an aluminum alloy as the matrix metal, and nitrided steel of various hardnesses. Graph showing the results of the wear test conducted in comparison with the results of the comparative example, 2nd
The figure shows the results of wear tests conducted on a composite material using a mixture of silicon nitride whiskers, silicon nitride particles, and silicon nitride bi-shaped reinforcement as the reinforcement, and an aluminum alloy as the matrix metal, using the volume fraction of the reinforcement as a parameter. The graph showing the results, Figure 3, is a combination of stainless steel and a composite material with silicon nitride sea urchin-like reinforcement as the reinforcement and aluminum alloy as the matrix metal, using the overall diameter of the sea urchin-like reinforcement as a parameter. Figure 4 is a graph showing the results of the wear test conducted on a composite material with a silicon nitride sea urchin-like reinforcement as the reinforcement material and an aluminum alloy as the matrix metal, and stainless steel. A graph showing the results of a wear test conducted using the ratio of the diameter of the particle aggregate to the average length of the whiskers protruding from this as a parameter. Graphs showing the results of wear tests conducted on the combination of nitrided stainless steel and a composite material in which a mixture of shaped reinforcements is used as a reinforcement material and a magnesium alloy is used as a matrix metal, in comparison with the results of comparative examples. Figure 8 shows the combination of nitrided stainless steel and a composite material whose reinforcement is a mixture of silicon nitride whiskers, silicon nitride particles, and silicon nitride sea urchin-like reinforcement, and whose matrix metals are zinc alloy, lead alloy, and tin alloy. Figure 9 is a graph showing the results of the wear tests compared with the results of comparative examples. A graph showing the results of a wear test conducted on the combination of a composite material and nitrided stainless steel in comparison with the results of a comparative example. FIG. 11 is an illustration showing the procedure for high-pressure casting using the molded material shown in FIG. 10, and FIG. FIG. 3 is a perspective view showing a solidified body obtained by high-pressure casting. 1a...Silicon nitride whiskers, lb...Silicon nitride particles, lc...Silicon nitride sea urchin-shaped reinforcement, 2...
Molded body, 3... Mold, 4... Mold cavity,
5... Molten metal, 6... Plunger patent applicant: Toyota Motor Corporation representative
Attorney Masaki Akashi, Patent Attorney Figure 1, Figure 3, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 12, Figure 11 (self-initiated) 1. Indication of the case 1986 Patent Application No. 198419 2
) Name of the invention Sliding member 3, Relationship with the case of the person making the amendment Patent applicant address 1 Toyota-cho, Toyota City, Aichi Prefecture Name (3)
20) Toyota Motor Corporation 4, Agent Address: Φ104 3rd floor, Kayaba-cho Nagaoka Building, 1-5-19 Shinkawa, Chuo-ku, Tokyo Telephone: 551-41.71 (Method) (Voluntary) Procedural Amendment 1986 September 24th 1, Incident Display 1986 Patent Application No. 198419 2
) Name of the invention Sliding member 3, Relationship to the case of the person making the amendment Patent applicant address 1, Toyota-cho, Toyotafu, Aichi Prefecture Name (3)
20) Toyota Motor Corporation Tsuji 46 Agent Address: 3rd floor, Kayabacho Nagaoka Building, 1-5-19 Shinkawa, Chuo-ku, Tokyo 8104 Telephone: 551-. 41716, Subject of amendment Drawing (Figure 2) 7. Contents of amendment As attached.

Claims (1)

【特許請求の範囲】 互いに当接して相対的に摺動する第一の部材と第二の部
材とよりなる摺動用部材にして、前記第一の部材の少な
くとも前記第二の部材に対する摺動面部は窒化ケイ素ホ
イスカと窒化ケイ素粒子との混合物を強化材とし、アル
ミニウム、マグネシウム、スズ、銅、鉛、亜鉛、及びそ
れらを主成分とする合金よりなる群より選択された金属
をマトリックスとする複合材料であって、前記強化材の
少なくとも一部はウニ状強化材である複合材料にて構成
されており、前記第二の部材の少なくとも前記第一の部
材に対する摺動面部は硬さHv(50g)550以上の
窒化処理された鋼にて構成されていることを特徴とする
摺動用部材。 (2) 特許請求の範囲第1項の摺動用部材に於て、前
記混合物の体積率は2%以上であることを特徴とする摺
動用部材。 (3) 特許請求の範囲第1項又は第2項の摺動部材に
於て、前記ウニ状強化材の全体としての径は220μ以
下であることを特徴とする摺動部材。 (4) 特許請求の範囲第1項乃至第3項の何れの摺動
用部材に於て、前記ウニ状強化材の中心の粒子集合体の
直径とこれより放射状に突出すホイスカの長さとの比の
値は1/10〜2であことを特徴とする摺動用部材。
[Scope of Claims] A sliding member comprising a first member and a second member that are in contact with each other and slide relative to each other, the sliding surface portion of the first member relative to at least the second member. is a composite material whose reinforcement is a mixture of silicon nitride whiskers and silicon nitride particles, and whose matrix is a metal selected from the group consisting of aluminum, magnesium, tin, copper, lead, zinc, and alloys containing these as main components. At least a part of the reinforcing material is made of a composite material that is a sea urchin-like reinforcing material, and at least a sliding surface portion of the second member relative to the first member has a hardness Hv (50 g). A sliding member characterized in that it is made of steel that has been nitrided with a grade of 550 or higher. (2) The sliding member according to claim 1, wherein the volume percentage of the mixture is 2% or more. (3) The sliding member according to claim 1 or 2, wherein the overall diameter of the sea urchin-shaped reinforcing material is 220 μm or less. (4) In any of the sliding members according to claims 1 to 3, the ratio between the diameter of the particle aggregate at the center of the sea urchin-shaped reinforcing material and the length of the whiskers projecting radially from this. A sliding member characterized in that the value of is 1/10 to 2.
JP19841986A 1986-08-25 1986-08-25 Sliding member Pending JPS6353230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19841986A JPS6353230A (en) 1986-08-25 1986-08-25 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19841986A JPS6353230A (en) 1986-08-25 1986-08-25 Sliding member

Publications (1)

Publication Number Publication Date
JPS6353230A true JPS6353230A (en) 1988-03-07

Family

ID=16390795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19841986A Pending JPS6353230A (en) 1986-08-25 1986-08-25 Sliding member

Country Status (1)

Country Link
JP (1) JPS6353230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010088A1 (en) * 1989-02-23 1990-09-07 Yoon Technology Creep-resistant composite alloys reinforced by metal shot or aggregates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990010088A1 (en) * 1989-02-23 1990-09-07 Yoon Technology Creep-resistant composite alloys reinforced by metal shot or aggregates

Similar Documents

Publication Publication Date Title
JPH0146569B2 (en)
JPS6341966B2 (en)
JPS6353230A (en) Sliding member
JPH0413822A (en) Production of partially composite member
Anandakrishnan et al. Synthesis and forming behavior of in situ AA 7075-TiC composites
JPS6353228A (en) Sliding material
EP1132490A1 (en) Metal matrix composite and piston using the same
JPH01294833A (en) Production of aluminum alloy powder sintered compact body
JPS6353229A (en) Sliding member
Kumar et al. Tensile and fracture toughness behavior of centrifugally cast Al/Al2O3 functionally graded materials
JPS6353227A (en) Silicon-nitride whisker-and grain-reinforced metallic composite material
JPS62192557A (en) Metal-base composite material excellent in characteristic of wear by friction
JPH01230738A (en) Aluminum alloy composite material
EP0424109A2 (en) Aluminium alloy matrix composite for internal combustion engines
Haleem et al. Preparing and studying some mechanical properties of aluminum matrix composite materials reinforced by Al2O3 particles
JPS63190127A (en) Metal-base composite material excellent in strength as well as in frictional wear characteristic
JPS62124248A (en) Combination of member
Zuheir et al. Preparing and studying some mechanical properties of aluminum matrix composite materials reinforced by Al2O3 particles
JPS63103036A (en) Sliding member
JPS63103033A (en) Sliding member
JPS63192831A (en) Sliding member
JPS63103038A (en) Sliding member
Pokorska Experimental identification of yield stress for sintered materials
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
Rusin et al. Effect of the Parameters of Forging with Various Pressing Axis on the Structure and Mechanical Properties of the Sintered Al–7Fe–38Sn Alloy