JPS62192557A - Metal-base composite material excellent in characteristic of wear by friction - Google Patents

Metal-base composite material excellent in characteristic of wear by friction

Info

Publication number
JPS62192557A
JPS62192557A JP3342686A JP3342686A JPS62192557A JP S62192557 A JPS62192557 A JP S62192557A JP 3342686 A JP3342686 A JP 3342686A JP 3342686 A JP3342686 A JP 3342686A JP S62192557 A JPS62192557 A JP S62192557A
Authority
JP
Japan
Prior art keywords
composite material
wear
particles
solid lubricant
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3342686A
Other languages
Japanese (ja)
Other versions
JPH0665734B2 (en
Inventor
Masahiro Kubo
雅洋 久保
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61033426A priority Critical patent/JPH0665734B2/en
Publication of JPS62192557A publication Critical patent/JPS62192557A/en
Publication of JPH0665734B2 publication Critical patent/JPH0665734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve wear resistance of composite material and to reduce the wear loss of opposite materials, by setting up each Moh's hardness, diameter, and volume percentage of a reinforcement and a solid lubricant which are to be compounded with a matrix metal in specific ranges, respectively. CONSTITUTION:The reinforcement (1-40% by volume) selected from short fibers grains,and mixtures thereof having >=6 Moh's hardness and <=30mum diameter and the solid lubricant (3-50% by volume) selected from short fibers, grains, and mixtures thereof having <=4.5 Moh's hardness and <=100mum diameter are compounded with the matrix metal. As the matrix metal, an alloy of Al, Mg, Cu, etc., is used. As the reinforcement, alumina fibers, TiC grains, etc., are used and, as the solid lubricant, a substance selected from oxides, sulfides, nitrides, graphite, etc., for example, BN, WO3, etc., is used. Owing to the above composition, a metal-base composite material reduced in the wear loss of material itself without increasing the wear loss of opposite material can be provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合材料に係り、更に詳細にはマトリックス
金属が強化材及び固体潤滑剤にて複合化された金属基複
合材料に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite material, and more particularly to a metal matrix composite material in which a matrix metal is composited with a reinforcing material and a solid lubricant.

従来の技術 金属材料の比強度や耐摩耗性を向上さぼるべく強化繊維
や分散粒子の如き強化材にて複合強化されたM&紺強化
金am合材料及び粒子分散金ff11合材料に於ては、
一般に強化材が硬質であるため、強化材にて複合強化さ
れていないマトリックス金属のみよりなる材料に比して
、それに当接して相対的に摺動する相手材の摩耗量が大
きくなり易いという問題がある。
Conventional technology In order to improve the specific strength and abrasion resistance of metal materials, M & navy blue reinforced gold am composite material and particle dispersed gold ff11 composite material are compositely reinforced with reinforcing materials such as reinforcing fibers and dispersed particles.
Generally, since the reinforcing material is hard, there is a problem that the amount of wear of the mating material that comes into contact with it and slides relative to it tends to be greater than that of a material made only of matrix metal that is not compositely reinforced with the reinforcing material. There is.

かかる問題を解消すべく、例えば特開昭53−1028
24号、同54−64263号、同58−93844号
、同58−93845号、同58−93847号、同5
8−113335号、同59−59855号、同59−
59856号の各公報に記載されている如く、複合材料
に自己r++滑性に優れた減摩物質を添加することが既
に知られている。かかる複合材料によれは、減摩物質を
含まない複合材料に比して摩擦摩耗特性、即ち自らの耐
摩耗性及び相手攻撃性の両方に優れた金属材料を嵜るこ
とができる。
In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 53-1028
No. 24, No. 54-64263, No. 58-93844, No. 58-93845, No. 58-93847, No. 5
No. 8-113335, No. 59-59855, No. 59-
As described in Japanese Patent No. 59856, it is already known to add anti-friction substances having excellent self-r++ slip properties to composite materials. Such a composite material can include a metal material that has superior friction and wear characteristics, that is, both its own wear resistance and its attack resistance against other materials, compared to a composite material that does not contain an anti-friction substance.

発明が解決しようとする問題点 しかし本願発明者等が行った実験的研究の結果によれば
、添加される減摩物質の種類や川等の如何によっては、
複合材料の摩wAI!J粍特性を十分向上させることが
できないばかりが、却って複合材料のI!!擦摩耗特性
や強度等が低下することがあることが判明した。即ち減
摩物質の中には金属基複合材料に適したものと不適当な
ものとがあり、従って複合材料に適した減摩物質が選定
されなければならず、また減摩物質の量等は上述の如き
複合材料を製造する際に当業者により随意に設定されて
よい設計的事項に係るものではなり、l!!wArlk
耗特性に優れた複合材料を待るためには、減摩物質及び
強化材の硬度、大きさ、体積率がそれら相互の関連に於
て最適に設定されなければならないことが判明した。
Problems to be Solved by the Invention However, according to the results of experimental research conducted by the present inventors, depending on the type of anti-friction substance added and the type of river,
Composite material machining wAI! Not only is it not possible to sufficiently improve the J characteristics, but the I! ! It has been found that the abrasion characteristics, strength, etc. may deteriorate. In other words, some anti-friction substances are suitable for metal-based composite materials and others are not. Therefore, anti-friction substances suitable for composite materials must be selected, and the amount of anti-friction substances must be determined. This does not concern design matters that may be set at will by a person skilled in the art when manufacturing a composite material such as the one described above. ! wArlk
It has been found that in order to obtain a composite material with excellent wear properties, the hardness, size, and volume fraction of the antifriction material and the reinforcing material must be optimally set in relation to each other.

例えば上述の特開昭58 93844M、同58−93
845号、同58−93847号の各公報に於ては、減
摩物質として黒鉛等の粒子や鉛、亜鉛、スズ等の粒子が
使用されてよいことが示されているが、黒鉛等の粒子の
場合にも、その直径が大きい場合は、複合材料自身が脆
くなり、摩耗粉が増大することに起因して複合材料及び
相手材の摩耗量が増大し、また複合材料の強度も低下す
る。また鉛、亜鉛、スズ等の粒子の場合には、複合材料
製造時にこれらの粒子が溶融して複合材料中に偏析し易
く、そのため十分なrIJ8!!効果が得られず、複合
材料の摩擦摩耗特性を十分に向上させることが困難であ
り、また偏析に起因して複合材料の強度も低下し易い。
For example, the above-mentioned Japanese Patent Application Publication No. 58-93844M, No. 58-93
In the publications No. 845 and No. 58-93847, it is indicated that particles such as graphite, particles of lead, zinc, tin, etc. may be used as the anti-friction material; Even in the case of , if the diameter is large, the composite material itself becomes brittle and wear particles increase, resulting in an increase in the amount of wear on the composite material and the mating material, and the strength of the composite material also decreases. Furthermore, in the case of particles such as lead, zinc, tin, etc., these particles tend to melt and segregate in the composite material during the production of the composite material, so that sufficient rIJ8! ! No effect is obtained, and it is difficult to sufficiently improve the friction and wear characteristics of the composite material, and the strength of the composite material is also likely to decrease due to segregation.

更にかかる問題は複合材料の製造に従来より一般に採用
されている溶融含浸法や焼結法に於て顕著であるため、
これらの減摩物質を含む複合材料をこれらの方法にて良
好に製造することは困難である。
Furthermore, such problems are noticeable in the melt impregnation method and sintering method that have been commonly used in the production of composite materials.
Composite materials containing these antifriction materials are difficult to successfully produce by these methods.

また上述の特開昭53−103824号、同54−64
263号、同58−113335号、同59−5985
5号、同59−59856号の各公報に記載された固体
潤滑剤の如く、複合材料に適した減摩物質が使用される
場合に6、固体潤滑剤の硬さが成る特定の値以下の場合
には複合材料自身の摩耗量が大きくなり(減摩物質を含
まない場合よりも摩耗量が大きい)、摩耗粉の発生に起
因して相手材の摩耗量も大きくなる。逆に強化材の硬さ
が成る特定の値以上の場合にも、その直径が成る特定の
値以上である場合には、複合材料の相手攻撃性が大きく
、摩耗粉の発生に起因して複合材料自身の摩耗量も増大
する。更に強化材の量が少なすぎる場合には、固体潤滑
剤の硬さが低いため、固体潤滑剤を含まない通常の複合
材料の場合よりも複合材料の摩耗量が大きくなる。逆に
強化材の量が多すぎる場合には、固体潤滑剤の量を多く
しても複合材料の相手攻撃性は減小しない。
Also, the above-mentioned Japanese Patent Application Laid-open Nos. 53-103824 and 54-64
No. 263, No. 58-113335, No. 59-5985
When anti-friction substances suitable for composite materials are used, such as the solid lubricants described in Patent Publications No. 5 and No. 59-59856, the hardness of the solid lubricant is below a certain value. In this case, the amount of wear of the composite material itself becomes large (the amount of wear is larger than when no anti-friction substance is included), and the amount of wear of the mating material also increases due to the generation of wear particles. On the other hand, if the hardness of the reinforcing material exceeds a certain value, and the diameter exceeds a certain value, the aggressiveness of the composite material is large, and the composite material is damaged due to the generation of wear particles. The amount of wear on the material itself also increases. Moreover, if the amount of reinforcing material is too small, the hardness of the solid lubricant will be low, and the amount of wear of the composite material will be greater than in the case of a normal composite material without a solid lubricant. Conversely, if the amount of reinforcing material is too large, the aggressiveness of the composite material will not decrease even if the amount of solid lubricant is increased.

更に固体1[剤の硬さが成る特定の値以上の場合には、
当然の如く複合材料の相手攻撃性が増大する。固体潤滑
剤の硬さが適正な値であってもその量が少なすぎる場合
には、複合材料の相手攻撃性を十分に低減することがで
きず、逆に固体潤滑剤が多すぎる場合には複合材料が脆
くなり、複合材料自身の摩耗量が増大し、摩耗粉の発生
に起因して相手材の摩耗量も増大する。
Furthermore, solid 1 [if the hardness of the agent exceeds a certain value,
Naturally, the aggressiveness of the composite material increases. Even if the hardness of the solid lubricant is an appropriate value, if the amount is too small, it will not be possible to sufficiently reduce the aggressiveness of the composite material, and conversely, if the solid lubricant is too large, The composite material becomes brittle, the amount of wear of the composite material itself increases, and the amount of wear of the mating material also increases due to the generation of abrasion powder.

本発明は、本願発明者等が行った実験的研究の結果得ら
れた知見に基づき、固体潤滑剤を含む従来より公知の複
合材料よりも更に一層摩擦摩耗特性に優れた金属基複合
材料を提供することを目的としている。
The present invention provides a metal matrix composite material that has even better friction and wear characteristics than conventionally known composite materials containing solid lubricants, based on the findings obtained as a result of experimental research conducted by the inventors. It is intended to.

問題点を解決するための手段 上述の如き目的は、本発明によれば、モース硬度が6以
上であり直径が30μl以下である短繊維、粒子、及び
それらの混合物よりなる群より選択された体積率1〜4
0%の強化材と、モース硬度が4.5以下であり直径が
100μm以下である短雑雑、粒子、及びそれらの混合
物よりなる群より選択された体積率3〜50%の固体a
ff1m剤とによりマトリックス金属が複合化された金
属基複合材料によって達成される。
Means for Solving the Problems According to the invention, the object as mentioned above is achieved by the present invention, in which a volume selected from the group consisting of short fibers, particles, and mixtures thereof having a Mohs hardness of 6 or more and a diameter of 30 μl or less Rate 1-4
Solid a with a volume fraction of 3 to 50% selected from the group consisting of 0% reinforcement and short particles, particles, and mixtures thereof having a Mohs hardness of 4.5 or less and a diameter of 100 μm or less
This is achieved by a metal matrix composite material in which a matrix metal is composited with an ff1m agent.

発明の作用及び効果 本発明によれば、強化材及び固体WJ潤滑剤モース硬度
、直径、及び体積率が相互の関連に於て上述の好適な範
囲に設定されるので、後に詳細に説明する本願発明者等
が行った実験的研究の結果より明らかぐある如く、従来
の複合材料に比して摩擦摩耗特性に優れた金属基複合材
料を1りることかできる。
Functions and Effects of the Invention According to the present invention, the Mohs hardness, diameter, and volume fraction of the reinforcing material and the solid WJ lubricant are set within the above-mentioned preferred ranges in relation to each other, so that the present invention, which will be described in detail later, As is clear from the results of experimental research conducted by the inventors, it is possible to create a metal matrix composite material that has superior friction and wear characteristics compared to conventional composite materials.

本発明の一つの詳細な特徴によれば、マトリックス金属
としてアルミニウム、マグネシウム、銅、亜鉛、鉛、ス
ズ及びそれらの何れかを主成分とする合金よりなる群よ
り選択された金属が使用される。
According to one detailed feature of the invention, a metal selected from the group consisting of aluminum, magnesium, copper, zinc, lead, tin and alloys based on any of these is used as the matrix metal.

本発明の他の一つの詳細な特徴によれば、固体rIJ滑
剤は酸化物、硫化物、窒化物、黒鉛、及びそれらの混合
物の何れかである。本発明に於て好適な酸化物の固体潤
滑剤としては、酸化タングステン(WOs)、酸化亜鉛
(Zn O) 、−酸化鉛(PbO)、酸化スズ(Sn
 O)、亜酸化銅(Cu20)等があり、硫化物の固体
rd潤滑剤しては二硫化モリブデン(MO8g)、二硫
化タングステン(WSz>があり、窒化物の固体潤滑剤
としては窒化ホウ素(BN)がある。
According to another detailed feature of the invention, the solid rIJ lubricant is any of oxides, sulfides, nitrides, graphites, and mixtures thereof. In the present invention, suitable oxide solid lubricants include tungsten oxide (WOs), zinc oxide (ZnO), -lead oxide (PbO), and tin oxide (SnO).
Sulfide solid lubricants include molybdenum disulfide (MO8g) and tungsten disulfide (WSz>), and nitride solid lubricants include boron nitride ( There is a BN).

本発明の更に他の一つの詳細な特徴によれば、強化材の
直径は20μm以下に設定され、固体潤滑剤のモース硬
度及び直径はそれぞれ4以下、50μm以下に設定され
る。
According to yet another detailed feature of the invention, the diameter of the reinforcing material is set to 20 μm or less, and the Mohs hardness and diameter of the solid lubricant are set to 4 or less and 50 μm or less, respectively.

本発明の更に他の一つの詳細な特徴によれば、強化材の
モース硬度及び直径はそれぞれ7以上、20μl以下に
設定され、固体潤滑剤のモース硬度、直径、体積率はそ
れぞれ3以下、50μm以下、5〜40%に設定される
According to yet another detailed feature of the present invention, the Mohs hardness and diameter of the reinforcing material are set to 7 or more and 20 μl or less, respectively, and the Mohs hardness, diameter, and volume fraction of the solid lubricant are set to 3 or less and 50 μl, respectively. Hereinafter, it is set to 5 to 40%.

本発明の更に他の一つの詳細な特徴によれば、固体潤滑
剤の体積率は10〜40%に設定される。
According to yet another detailed feature of the invention, the volume fraction of the solid lubricant is set at 10-40%.

尚本発明の複合材料に於ける強化材及び固体潤滑剤の短
繊維のII、II長は10μm〜5C−程度であること
が好ましい。また本願発明者等が行った実験的研究の結
果によれば、強化材若しくは固体潤滑剤が短繊維である
場合に於て、それらが本発明の要件を満す場合には、短
繊維の配向に拘らず複合材料及び相手材の摩耗量を低減
することができ、従って短繊維の配向は一方向配向、二
次元ランダム配向、三次元ランダム配向の何れであって
もよい。
In addition, it is preferable that the short fibers of the reinforcing material and the solid lubricant in the composite material of the present invention have lengths II and II of approximately 10 μm to 5 C−. Furthermore, according to the results of experimental research conducted by the present inventors, when the reinforcing material or the solid lubricant is short fibers, if they satisfy the requirements of the present invention, the orientation of the short fibers is Regardless, the amount of wear on the composite material and the mating material can be reduced. Therefore, the orientation of the short fibers may be any one of unidirectional orientation, two-dimensional random orientation, and three-dimensional random orientation.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 強化繊維として如何なる硬さのものが適しているかの検
討を行った。
Example 1 A study was conducted to find out what hardness is suitable for reinforcing fibers.

まず下記の表1に示されている如く、脱粒処理された種
々のモース硬度の繊維Al−A3を用意した。次いで各
繊維とBN粒子とを2=3の体積比にて混合し、該混合
物をコロイダルシリカ中にて攪拌した。次いでかくして
得られた繊維及び粒子が均一に分散されたコロイダルシ
リカに対し圧縮成形を行うことにより、第1図に示され
ている如く、強化繊M2a及びBN粒子2bが互いに均
一に混合され80X80X20m+1の寸法を有する成
形体1を形成した。
First, as shown in Table 1 below, fibers Al-A3 having various Mohs' hardnesses were prepared. Next, each fiber and BN particles were mixed at a volume ratio of 2=3, and the mixture was stirred in colloidal silica. Next, by compression molding the colloidal silica in which the fibers and particles obtained in this manner are uniformly dispersed, the reinforcing fibers M2a and the BN particles 2b are uniformly mixed with each other to form a 80×80×20 m+1 colloidal silica, as shown in FIG. A molded body 1 having dimensions was formed.

次いで成形体を500’Cに予熱した後、第2図に示さ
れている如く鋳型3のモールドキャビディ4内に配置し
、該モールドキャビディ内に720℃のアルミニウム合
金(JIS規格AC8A)の111185を注渇し、該
溶湯を鋳型3に11!合するプランジャ6により150
0kg/II2の圧力に加圧し、その加圧状態を溶湯が
完全に凝固するまで保持した。かくして第3図に示され
ている如く外径11Q+++s1、高さ5Qmniの円
柱状の凝固体7を鋳造し、該凝固体に対し熱処理Trを
施し、各凝固体より実質的に三次元ランダムにて配向さ
れた体積率10%の強化mN及び体積率15%のBN粒
子にて複合化されたアルミニウム合金よりなる複合材料
1゛を切出し、各複合材料より摩耗試験用のブロック試
験片A1〜A5を機械加工により作成した。
Next, after preheating the molded body to 500'C, it is placed in the mold cavity 4 of the mold 3 as shown in FIG. 111185 and pour the molten metal into mold 3.11! 150 by the matching plunger 6
The pressure was increased to 0 kg/II2, and the pressurized state was maintained until the molten metal completely solidified. Thus, as shown in FIG. 3, a cylindrical solidified body 7 with an outer diameter of 11Q+++s1 and a height of 5Qmni is cast, and the solidified body is subjected to heat treatment Tr, and from each solidified body substantially three-dimensionally randomly A composite material 1'' made of an aluminum alloy composited with oriented reinforced mN with a volume fraction of 10% and BN particles with a volume fraction of 15% was cut out, and block specimens A1 to A5 for wear tests were obtained from each composite material. Created by machining.

次いで各ブロック試験片を順次m擦摩耗試験機にセット
し、相手部材である球状黒鉛鋳鉄(JrS規格FCD7
0.Hv−250)及びクロム鋼(J ISMIF48
Cr 20、HV−720)製(7)円筒試験片の外周
面と接触させ、それらの試験片の接触部に常温(20℃
)の潤滑油くキャッスルモータオイル5W−30>を供
給しつつ、接触面圧20kg/ll112)滑り速度0
.3a+m/ secにて円筒試験片を1時間回転ざぜ
る摩耗試験を行った。
Next, each block test piece was sequentially set in the m abrasion tester, and the mating member spheroidal graphite cast iron (JrS standard FCD7
0. Hv-250) and chrome steel (J ISMIF48
Cr 20, HV-720) (7) was brought into contact with the outer peripheral surface of a cylindrical test piece, and the contact area of the test piece was heated to room temperature (20°C).
) while supplying castle motor oil 5W-30>, contact surface pressure 20kg/ll112) sliding speed 0
.. A wear test was conducted in which the cylindrical specimen was rotated for 1 hour at 3a+m/sec.

これらの摩耗試験の結果をそれぞれ第4図に示す。尚第
4図(及び模述の他の摩耗試験の結果を示す図)に於て
、上半分はブロック試験片の摩耗量(摩耗痕深さμ翔)
を表わしており、下半分は相手材である円筒試験片の摩
耗ff1(1’fl!耗減ff1lll(J)を表わし
ている。また白抜きの棒グラフ及びハツチングが施され
た棒グラフはそれぞれ球状黒鉛鋳鉄、クロム鋼を相手材
とする摩耗試験の結果を示している。
The results of these wear tests are shown in FIG. 4, respectively. In Figure 4 (and the diagram showing the results of other simulated wear tests), the upper half shows the wear amount (wear scar depth μ) of the block test piece.
The lower half represents the wear ff1 (1'fl! wear reduction ff1llll (J)) of the cylindrical test piece, which is the mating material.The white bar graph and the hatched bar graph represent spheroidal graphite, respectively. Shows the results of wear tests using cast iron and chromium steel as mating materials.

第4図より、相手材が球状黒鉛鋳鉄及びクロム鋼の何れ
の場合にも、強化繊維のモース硬度が6以上の場合に、
複合材料及び相手材両方の摩耗損が小さい値になること
が解る。
From Figure 4, it can be seen that when the Mohs hardness of the reinforcing fiber is 6 or more, regardless of whether the mating material is spheroidal graphite cast iron or chrome steel,
It can be seen that the wear loss of both the composite material and the mating material becomes a small value.

実施例2 強化材としての粒子(以下強化粒子という)として如何
なる硬さのものが適しているかの検討を行った。
Example 2 A study was conducted to find out what hardness is suitable for particles as reinforcing materials (hereinafter referred to as reinforcing particles).

まず下記の表2に示されている如ぎ強化粒子B!〜B4
を用意した。次いでこれらの粒子と黒鉛粒子とを3:4
の体積比にて混合し、それらの混合物を使用して実施例
1の場合と同一の要領及び条件にて強化粒子及び黒鉛粒
子の体積率がそれぞれ15%、20%である複合材料を
製造し、それらの複合材料よりブロック試験片8+=8
4を作成し、それらのブロック試験片について実施例1
の場合と同一の要領及び条件にて摩耗試験を行った。こ
れらの摩耗試験の結果を第5図に示す。
First, reinforcement particles B as shown in Table 2 below! ~B4
prepared. Next, these particles and graphite particles were mixed in a ratio of 3:4.
The mixture was used to produce a composite material in which the volume percentages of reinforcing particles and graphite particles were 15% and 20%, respectively, in the same manner and conditions as in Example 1. , block specimen 8+=8 from those composite materials
Example 1
A wear test was conducted using the same procedure and conditions as in the case of . The results of these wear tests are shown in FIG.

第5図より、強化材が粒子である場合にも、そのモース
硬度が6以上の場合に複合材料及び相手材の摩耗■が小
さい値になることが解る。
From FIG. 5, it can be seen that even when the reinforcing material is a particle, when the Mohs hardness is 6 or more, the wear value of the composite material and the mating material becomes small.

実施例3 固体潤滑剤として如何なる硬さのものが適しているかの
検討を行った。
Example 3 A study was conducted to determine what hardness would be suitable as a solid lubricant.

まず下記の表3及び表4に示されている如き固体rjJ
ifl剤C+ 〜Ca  (D+ −De )tr用意
した。
First, solid rjJ as shown in Tables 3 and 4 below
Ifl agents C+ to Ca(D+-De)tr were prepared.

次いで各固体rA涜削C1〜C6とアルミナ繊維とが1
:1の体積比にて混合され、マトリックス金属がJIS
規格AC1Aのアルミニウム合金<tS温720℃〉に
置換えられ、熱処理がT6に変更された点を除き、実施
例1の場合と同一のg1領及び条件にて固体潤滑剤及び
アルミナ繊維の体積率が共に15%である複合材料を製
造し、各複合材料よりブロック試験片C+−Caを作成
し、各ブロック試験片について実施例1と同一の要領及
び条件にて摩耗試験を行った。これらの摩耗試験の結果
を第6図に示す。
Next, each solid rA abrasion C1 to C6 and alumina fiber are 1
:1 volume ratio, the matrix metal meets JIS
The volume fraction of the solid lubricant and alumina fiber was maintained under the same g1 area and conditions as in Example 1, except that the aluminum alloy of standard AC1A <tS temperature 720°C> was replaced and the heat treatment was changed to T6. Composite materials having a concentration of 15% in both cases were manufactured, block test pieces C+-Ca were created from each composite material, and abrasion tests were conducted on each block test piece in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in FIG.

また上述の場合に於て、下記の表4に示されている如く
、強化材が炭化チタン粒子に置換えられた点を除き同一
の要領及び条件にて作成されたブロック試験片D+−D
θについて実施例1の場合と同一の要領及び条件にて摩
耗試験を行った。これらの摩耗試験の結果を第7図に示
す。
In addition, in the above case, as shown in Table 4 below, block specimen D+-D was prepared in the same manner and under the same conditions except that the reinforcing material was replaced with titanium carbide particles.
A wear test was conducted regarding θ in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in FIG.

第6図及び第7図より、固体潤滑剤のモース硬度が4.
5以下、好ましくは3以下である場合に複合材料及び相
手材の摩耗量が小さくなることが解る。
From FIG. 6 and FIG. 7, the Mohs hardness of the solid lubricant is 4.
It can be seen that when it is 5 or less, preferably 3 or less, the amount of wear of the composite material and the mating material becomes small.

実施例4 強化材として如何なる直径のものが適しているかの検討
を行った。
Example 4 A study was conducted to find out what diameter is suitable for the reinforcing material.

まず下記の表5に示されている如き強化材E1〜E9を
用意した。次いで強化材と黒鉛粒子とが2:3の体積比
にて混合された点を除ぎ、実施例1の場合と同一の要領
及び条件にて強化材及び黒鉛粒子の体積率がそれぞれ1
0%、15%である複合材料を製造し、各複合材料より
ブロック試験片E1〜Esを作成し、各ブロック試験片
について実施例1の場合と同一の要領及び条件にて摩耗
試験を行った。これらの摩耗試験の結果を第8図に示す
First, reinforcing materials E1 to E9 as shown in Table 5 below were prepared. Next, the volume ratio of the reinforcing material and the graphite particles were each 1 in the same manner and under the same conditions as in Example 1, except that the reinforcing material and the graphite particles were mixed at a volume ratio of 2:3.
0% and 15% composite materials were manufactured, block test pieces E1 to Es were created from each composite material, and a wear test was conducted on each block test piece in the same manner and conditions as in Example 1. . The results of these wear tests are shown in FIG.

第8図より、強化材が繊維であるか粒子であるかを問わ
ず、強化材の直径が30μm以下、好ましくは20un
+以下の場合に複合材料及び相手材の摩耗量が小さくな
ることが解る。
From Figure 8, regardless of whether the reinforcing material is fibers or particles, the diameter of the reinforcing material is 30 μm or less, preferably 20 μm.
It can be seen that the amount of wear of the composite material and the mating material becomes smaller when the value is + or less.

実施例5 固体#1滑剤として如何なる直径のものが適しているか
の検討を行った。
Example 5 A study was conducted to determine what diameter is suitable for the solid #1 lubricant.

まず下記の表6に示されている如き固体潤滑剤F1〜F
9を用意した。次いで固体潤滑剤とアルミナ繊維とが4
:3の体積比にて混合され、マトリックス金属としてJ
AS規格AC7Bのアルミニウム合金(11690℃)
が使用され、熱処理が丁4に置換えられた点を除き、実
施例1の場合と同一の要領及び条件にて固体潤滑剤及び
アルミナ繊維の体積率がそれぞれ20%、15%である
複合材料を製造し、各複合材料よりブロック試験片F+
〜F9を作成し、各ブロック試験片について実施例1の
場合と同一の要領及び条件にて摩耗試験を行った。これ
らの摩耗試験の結果を第9図に示す。
First, solid lubricants F1 to F as shown in Table 6 below.
I prepared 9. Next, solid lubricant and alumina fiber
:3 volume ratio, and J as the matrix metal.
AS standard AC7B aluminum alloy (11690℃)
A composite material with a solid lubricant and alumina fiber volume percentage of 20% and 15%, respectively, was prepared in the same manner and under the same conditions as in Example 1, except that the heat treatment was replaced with 4. Manufactured and block test pieces F+ from each composite material
-F9 were prepared, and a wear test was conducted on each block test piece in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in FIG.

第9図より、固体潤滑剤が粒子であるか繊維であるかを
問わず、固体潤滑剤の直径が100μm以下、好ましく
は50μ羨以下の場合に複合材料及び相手材の摩耗量が
小さくなることが解る。
From Figure 9, regardless of whether the solid lubricant is particles or fibers, when the diameter of the solid lubricant is 100μm or less, preferably 50μm or less, the amount of wear on the composite material and the mating material is reduced. I understand.

実施例6 強化材の体積率が如何なる値が適切であるかの検討を行
った。
Example 6 A study was conducted to find out what value is appropriate for the volume fraction of the reinforcing material.

まず強化材として下記の表7に示された炭化ケイ素ホイ
スカGI=Gq及び表8に示された炭化タングステン粒
子H!〜H9用意した。次いでこれらのIam及び粒子
をそれぞれ表7及び表8に示された黒鉛粒子及び8N粒
子と種々の体積比にて混合し、かくして得られた混合物
を用いて実施例1の場合と同一の要領及び条件にてブロ
ック試験片01〜G9及びH+−Hsを作成した。また
強化材及び固体rjJ滑剤を含まないマトリックス金属
のみよりなるブロック試験片Go(及びHo )を作成
した。次いでこれらのブロック試験片について実施例1
の場合と同−要領及び条件にて摩耗試験を行った。これ
らの摩耗試験の結果をそれぞれ第10図及び第11図に
示す。尚第10図及び第11図はそれぞれ球状黒鉛鋳鉄
及びクロム鋼を相手材とする摩耗試験の結果を示してい
る。
First, silicon carbide whiskers GI=Gq shown in Table 7 below and tungsten carbide particles H! shown in Table 8 are used as reinforcing materials. ~H9 has been prepared. These Iam and particles were then mixed with graphite particles and 8N particles shown in Tables 7 and 8, respectively, at various volume ratios, and the mixture thus obtained was used in the same manner as in Example 1. Block test pieces 01 to G9 and H+-Hs were created under the following conditions. In addition, block test specimens Go (and Ho) were prepared consisting only of matrix metal without reinforcing material and solid RJJ lubricant. Next, Example 1 was performed on these block test pieces.
A wear test was conducted using the same procedure and conditions as in the case of . The results of these wear tests are shown in FIGS. 10 and 11, respectively. Note that FIGS. 10 and 11 show the results of wear tests using spheroidal graphite cast iron and chromium steel as mating materials, respectively.

第10図及び第11図より、強化材が繊維であるか粒子
であるかを問わず、強化材の体積率が1〜40%である
場合に複合材料及び相手材の摩耗mが小さい値になるこ
とが解る。
From Figures 10 and 11, regardless of whether the reinforcing material is fibers or particles, when the volume fraction of the reinforcing material is 1 to 40%, the wear m of the composite material and the mating material becomes a small value. I understand what will happen.

実施例7 固体潤滑剤の体積率が如何なる値であることが適切であ
るかの検討を行った。
Example 7 An appropriate value for the volume fraction of the solid lubricant was investigated.

まず下記の表9に示されている如き黒鉛粒子■!〜■9
を用意した。次いでこれらの黒鉛粒子とアルミナ繊維と
を種々の体積比にて混合し、それらの混合物を用いて実
施例1の場合と同一の要領及び条件にてブロック試験片
!1〜■9を作成した。また強化材及び固体潤滑剤を含
まないマトリックス金属のみよりなるブロック試験片1
oを作成した。次いでこれらのブロック試験片について
実施例1の場合と同一の要領及び条件にて摩耗試験を行
った。これらの摩耗試験の結果を第12図及び第13図
に示す。尚第12図及び第13図はそれぞれ球状黒鉛鋳
鉄及びクロム鋼を相手材とする摩耗試験の結果を示して
いる。
First, graphite particles ■ as shown in Table 9 below! ~■9
prepared. Next, these graphite particles and alumina fibers were mixed at various volume ratios, and block test pieces were prepared using the mixture in the same manner and under the same conditions as in Example 1. 1 to ■9 were created. In addition, block test piece 1 made only of matrix metal without reinforcing material and solid lubricant
o was created. Next, abrasion tests were conducted on these block test pieces in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in FIGS. 12 and 13. Note that FIGS. 12 and 13 show the results of wear tests using spheroidal graphite cast iron and chromium steel as mating materials, respectively.

第12図及び第13図より、固体潤滑剤の体積率が3〜
50%である場合に18材料及び相手材の摩耗量が小さ
い値になることが解る。
From Figures 12 and 13, the volume fraction of the solid lubricant is 3~
It can be seen that when the ratio is 50%, the wear amount of the No. 18 material and the mating material becomes a small value.

実施例8 2種類の強化材又は固体潤滑剤を含む複合材料の摩擦摩
耗特性についての検討を行った。
Example 8 A study was conducted on the friction and wear characteristics of a composite material containing two types of reinforcing materials or solid lubricants.

上述の実施例1の場合と同一の要領及び条4′lにて、
体積率10%のアルミナ−シリカ繊維(表1のA4)と
、体積率5%の炭化ケイ素粒子(表5のEp )と、体
積率15%の黒鉛粒子(表2)とにより複合化されたア
ルミニウム合金(Jrs規ll8AC8A)よりなるブ
ロック試験片Jを作成した。また同様に体積率5%のア
ルミナ繊M(表1のA3)と、体積率10%のチタン酸
カリウムボイス力〈表3の04 )と、体積率15%の
BN粒子(表1)とにより複合化されたアルミニウム合
金(J■S規格AC8A)よりなるブロック試験片Kを
作成した。
In the same manner and article 4'l as in Example 1 above,
A composite of alumina-silica fibers (A4 in Table 1) with a volume fraction of 10%, silicon carbide particles (Ep in Table 5) with a volume fraction of 5%, and graphite particles (Table 2) with a volume fraction of 15%. A block test piece J made of aluminum alloy (Jrs standard 118AC8A) was prepared. Similarly, alumina fiber M with a volume percentage of 5% (A3 in Table 1), potassium titanate voice force with a volume percentage of 10% (04 in Table 3), and BN particles with a volume percentage of 15% (Table 1) A block test piece K made of a composite aluminum alloy (J■S standard AC8A) was prepared.

また比較の目的で、固体潤滑剤としての黒鉛粒子が含ま
れていない点を除きブロック試験片Jと同一のブロック
試験片J′を作成し、固体潤滑剤としてのチタン酸カリ
ウムホイスカ及びBN粒子が含まれていない点を除きブ
ロック試験片にと同一のブロック試験片に′を作成した
In addition, for the purpose of comparison, a block test piece J', which is the same as block test piece J except that it does not contain graphite particles as a solid lubricant, was prepared, and a block test piece J' was prepared which was the same as block test piece J except that it did not contain graphite particles as a solid lubricant. ′ was made on a block test piece that was the same as the block test piece except that it was not included.

次いでこれらのブロック試験片について実施例1の場合
と同一の要領及び条件にて摩耗試験を行った。これらの
摩耗試験の結果を第14図に示す。
Next, abrasion tests were conducted on these block test pieces in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in FIG.

第14図より、2種類の強化材を含む場合及び2種類の
固体潤滑剤を含む場合の何れの場合にも、固体r!l滑
剤を含まない複合材料に比してそれ自身及び相手材の摩
耗端が小さい値になることが解る。
From FIG. 14, it can be seen that solid r! It can be seen that the wear edges of itself and the mating material become smaller values compared to a composite material that does not contain a lubricant.

実施例9 マトリックス金属がマグネシウム合金、亜鉛合金、鉛合
金、スズ合金、銅合金である複合材料の(1!擦摩耗特
性の検討を行った。
Example 9 The (1!) friction and wear characteristics of composite materials whose matrix metals are magnesium alloys, zinc alloys, lead alloys, tin alloys, and copper alloys were investigated.

まずマトリックス金属の溶湯の、湯温及び加圧力がそれ
ぞれ690℃、1000k(+/c1に設定された点を
除き、実施例1の場合と同一の要領及び条flにて体積
率30%のアルミナ繊維(表1のA3)と、体積率10
%の黒鉛粒子〈表2)とにより複合化されたマグネシウ
ム合金(JIS規格MDC1−A)よりなるブロック試
験片L+を作成した。
First, alumina with a volume ratio of 30% was prepared in the same manner as in Example 1, except that the temperature and pressure of the molten matrix metal were set to 690°C and 1000k (+/c1), respectively. Fiber (A3 in Table 1) and volume ratio 10
A block test piece L+ was prepared from a magnesium alloy (JIS standard MDC1-A) composited with % graphite particles (Table 2).

また温湯及び加圧力がそれぞれ500℃、1000 k
Q/ co+2に設定された点を除き、実施例1の場合
と同一の要領及び条件にて体積率40%の炭化タングス
テン粒子(表5のEs )と、体積率20%のBN粒子
(表1)とにより複合化された亜鉛合金(J 18MI
ZDC1)よりなるブロック試験片Mlを作成した。
In addition, hot water and pressure are 500℃ and 1000k, respectively.
Tungsten carbide particles with a volume fraction of 40% (Es in Table 5) and BN particles with a volume fraction of 20% (Table 1 ) Composite zinc alloy (J 18MI
A block test piece Ml consisting of ZDC1) was prepared.

また湯温及び加圧力がそれぞれ410℃、1000kg
/C1112に設定された点を除き、上述の実施例1の
場合と同一の要領及び条件にて体積率20%のアルミナ
−シリカ繊維(表1のA4 )と、体積率50%のBN
粒子(表1)とにより複合化された鉛合金(JIS規格
WJ8)よりなるブロック試験片N1を作成した。
Also, the hot water temperature and pressure are 410℃ and 1000kg, respectively.
/C1112, alumina-silica fiber (A4 in Table 1) with a volume ratio of 20% and BN with a volume ratio of 50% were prepared in the same manner and under the same conditions as in Example 1 above.
A block test piece N1 was prepared from a lead alloy (JIS standard WJ8) composited with particles (Table 1).

またWAm及び加圧力がそれぞれ330’C11゜Oo
kg/C1に設定された点を除き、実施例1の場合と同
一の要領及び条件にて体積率5%の炭化ケイ素粒子(表
5のEg )と、体積率5%のチタン酸カリウムボイス
力(表3の04 )とにより複合化されたスズ合金(J
IsM格WJ2)とよりなるブロック試験片01を作成
した。
Also, WAm and pressurizing force are each 330'C11°Oo
kg/C1, silicon carbide particles with a volume percentage of 5% (Eg in Table 5) and potassium titanate voice force with a volume percentage of 5% were prepared in the same manner and under the same conditions as in Example 1. (04 in Table 3) Composite tin alloy (J
A block test piece 01 consisting of IsM grade WJ2) was prepared.

更に窒化ケイ素ボイス力(タテホ化学工業株式%式% 99%以上Si * N4 、粒径150μn+iX上
の粒子ato、1wt%以下)と、BN粒子(表1)と
、銅合金(Cu−10wt%Sn)粉末トラ、窒化ケイ
素小イス力及びBN粒子の体積率がそれぞれ1%、3%
となるよう秤毒して混合し、該混合物に少量のエタノー
ルを添加してスターラーにて約30分間混合した。かく
して得られた混合物を80℃にて5時間乾燥した後、金
型内に所定聞の混合物を充填し、その混合物をパンチに
て4000 kg/C−2の圧力にて圧縮することによ
り板状に成形した。次いで分解アンモニアガス(fi点
−30”C)雰囲気に設定されたバッチ型焼結炉にて板
状体を770℃にて30分間加熱することにより焼結し
、焼結炉内の冷却ゾーンにて徐冷することにより複合材
料を製造し、該複合材料よりブロック試験片P+を作成
した。 。
Furthermore, silicon nitride voice force (Tateho Chemical Industry Co., Ltd. % Formula % 99% or more Si*N4, particle size 150 μn + particle ato on iX, 1 wt% or less), BN particles (Table 1), and copper alloy (Cu-10 wt% Sn ) The volume fraction of powder, silicon nitride, and BN particles is 1% and 3%, respectively.
A small amount of ethanol was added to the mixture, and the mixture was mixed using a stirrer for about 30 minutes. After drying the mixture thus obtained at 80°C for 5 hours, a predetermined amount of the mixture was filled into a mold, and the mixture was compressed with a punch at a pressure of 4000 kg/C-2 to form a plate. It was molded into. Next, the plate was sintered by heating it at 770°C for 30 minutes in a batch type sintering furnace set to a decomposed ammonia gas (fi point -30"C) atmosphere, and then placed in a cooling zone in the sintering furnace. A composite material was manufactured by slowly cooling the composite material, and a block test piece P+ was created from the composite material.

また比較の目的で上述のブロック試験片L+〜P1の複
合材料のマトリックス金属のみよりなる材料よりそれぞ
れブロック試験片Lo〜Paを作成した。
In addition, for the purpose of comparison, block test pieces Lo to Pa were prepared from materials made only of the matrix metal of the composite materials of the above-mentioned block test pieces L+ to P1, respectively.

次いでこれらのブロック試験片について球状黒鉛鋳鉄製
及びクロム鋼製の円筒試験片を相手部材とする摩耗試験
を実施例1の場合と同一の要領及び条件にて行った。こ
れらの摩耗試験の結果をそれぞれ下記の表10及び表1
1に示す。尚これらの表に於て、ブロック試験片の摩耗
量比率とはそれぞれ試験片Lo=Poの摩耗量に対する
ブロック試験片し1〜P1の摩耗量(摩耗痕深さμ■)
の百分率を意味し、円筒試験片の摩耗量の上段及び下段
の数値はそれぞれブロック試験片L+・〜P掌及びり。
These block test pieces were then subjected to wear tests using cylindrical test pieces made of spheroidal graphite cast iron and chromium steel as mating members in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in Tables 10 and 1 below, respectively.
Shown in 1. In these tables, the wear amount ratio of the block test piece is the wear amount of block test pieces 1 to P1 (wear scar depth μ■) to the wear amount of test piece Lo=Po.
The upper and lower numbers of the wear amount of the cylindrical test piece are for the block test piece L+--P, respectively.

〜Paと摩擦された円筒試験片の摩耗ff1(+!i粍
減聞−〇)である。
The wear of the cylindrical test piece rubbed with ~Pa is ff1 (+! i 玲 decrease -〇).

表10及び表11より、マトリックス金属がマグネシウ
ム合金、亜鉛合金、鉛合金、スズ合金、及び銅合金であ
る場合にも、強化材及び固体潤滑剤のモース硬度や体積
率等が本発明の範囲内にある」8合には、マトリックス
金属のみよりなる材料に比して相手材の摩耗量を実質的
に増大させることなく複合材料の摩耗量を大幅に低減し
得ることができることが解る。
From Tables 10 and 11, even when the matrix metal is a magnesium alloy, zinc alloy, lead alloy, tin alloy, or copper alloy, the Mohs hardness, volume fraction, etc. of the reinforcing material and solid lubricant are within the scope of the present invention. 8, it can be seen that the amount of wear of the composite material can be significantly reduced without substantially increasing the amount of wear of the mating material compared to a material made of only a matrix metal.

以」二に於ては本発明を本願発明者等が行った実験的研
究との関連に於て詳細に説明したが、本発明はこれらの
実施例に限定されるものではなく、本発明の範囲内にて
他の種々の実施例が可能であることは当栗考にとって明
らかであろう。
In the following, the present invention has been explained in detail in relation to the experimental research conducted by the inventors of the present invention, but the present invention is not limited to these examples. It will be apparent to those skilled in the art that a variety of other embodiments are possible within the scope.

表10 表11Table 10 Table 11

【図面の簡単な説明】[Brief explanation of drawings]

第1図は互いに均一に混合された強化繊維とBN粒子と
よりなる成形体を示す斜視図、第2図は第1図に示され
た成形体を用いて行われる高圧鋳造による複合材料の製
造の鋳造工程を示す解図、第3図は第2図の高圧&I造
により形成された凝固体を示す斜視図、第4図は種々の
強化繊維とBN粒子とにより複合化されたアルミニウム
合金よりなる複合材料について行われた摩耗試験の結果
を示すグラフ、第5図は種々の強化粒子と黒鉛粒子とに
より複合化されたアルミニウム合金よりなる複合材料に
ついて行われた摩耗試験の結果を示すグラフ、第6図は
種々の固体潤滑剤とアルミナ繊維とにより複合化された
アルミニウム合金よりなる複合材料について行われた摩
耗試験の結果を示すグラフ、第7図は種々の固体潤滑剤
と炭化チタンとにより複合化されたアルミニウム合金よ
りなる複合材料について行われた摩耗試験の結果を示す
グラフ、第8図は種々の直径の強化繊維及び強化粒子と
黒鉛粒子とにより複合化されたアルミニウム合金よりな
る複合材料について行われた摩耗試験の結果を示すグラ
フ、第9図は種々の直径の固体、11消剤とアルミナ繊
維とにより複合化されたアルミニウム合金よりなる複合
材料について行われた摩耗試験の結果を示すグラフ、第
10図及び第11図は種々の体積率の炭化ケイ素ボイス
力と黒鉛粒子とにより複合化されたアルミニウム合金及
び種々の体積率の炭化タングステン粒子とBN粒子とに
より複合化されたアルミニウム合金よりなる複合材料に
ついて、それぞれ球状黒鉛鋳鉄及びクロム鋼を相手材と
して行われた摩耗試験の結果を示すグラフ、第12図及
び第13図は種々の体積率の黒鉛粒子とアルミナ繊維と
により複合化されたアルミニウム合金よりなる複合材料
についてそれぞれ球状黒鉛鋳鉄及びクロム鋼を相手材と
して行われた摩耗試験の結果を示すグラフ、第14図は
アルミナ−シリカ繊維と炭化ケイ素粒子と黒鉛粒子とに
より複合化されたアルミニウム合金よりなる複合材料、
及びアルミナ繊維とヂタン酸カリウムボイスカとBN粒
子とにより凌合化されたアルミニウム合金よりなる複合
材料について行われた摩耗試験の結果を固体潤滑剤を含
まない比較例としての複合材料について行われた摩耗試
験の結果と対比して示すグラフである。 1・・・成形体、1′・・・複合材料、 2a・・・強
化mN。 2b・・・BN粒子、3・・・鋳型、4・・・モールド
キャピテイ、5・・・溶湯、6・・・プランジャ、7・
・・凝固体筒 許 出 願 人  トヨタ自動車株式会
社代   理   人  弁理士  明石 昌毅第1図
   第3図 第2図 第5図
Figure 1 is a perspective view showing a molded body made of reinforcing fibers and BN particles uniformly mixed with each other, and Figure 2 is a composite material manufactured by high-pressure casting using the molded body shown in Figure 1. Fig. 3 is a perspective view showing the solidified body formed by the high-pressure & I-forming process shown in Fig. 2, and Fig. 4 is an illustration showing the casting process of aluminum alloy composited with various reinforcing fibers and BN particles. Figure 5 is a graph showing the results of an abrasion test conducted on a composite material made of an aluminum alloy composited with various reinforcing particles and graphite particles. Figure 6 is a graph showing the results of wear tests conducted on composite materials made of aluminum alloys made of various solid lubricants and alumina fibers, and Figure 7 is a graph showing the results of wear tests conducted on composite materials made of aluminum alloys made of various solid lubricants and titanium carbide. A graph showing the results of wear tests conducted on composite materials made of composite aluminum alloys. Figure 8 shows composite materials made of aluminum alloys composited with reinforcing fibers and reinforcing particles of various diameters and graphite particles. Figure 9 shows the results of wear tests carried out on a composite material made of an aluminum alloy composited with solids of various diameters, 11 quenching agents, and alumina fibers. The graphs, Figures 10 and 11 show aluminum alloys composited with various volume fractions of silicon carbide voice force and graphite particles, and aluminum alloys composited with various volume fractions of tungsten carbide particles and BN particles. Figures 12 and 13 are graphs showing the results of wear tests conducted using spheroidal graphite cast iron and chrome steel, respectively, for composite materials made of composite materials made of graphite particles and alumina fibers with various volume percentages. Figure 14 is a graph showing the results of wear tests conducted on composite materials made of aluminum alloys using spheroidal graphite cast iron and chromium steel as counterpart materials, respectively. Composite material made of aluminum alloy,
The results of wear tests conducted on a composite material made of an aluminum alloy blended with alumina fibers, potassium ditanate voica, and BN particles were also carried out on a composite material as a comparative example that did not contain a solid lubricant. It is a graph shown in comparison with the results of a wear test. 1... Molded body, 1'... Composite material, 2a... Reinforced mN. 2b... BN particles, 3... Mold, 4... Mold cavity, 5... Molten metal, 6... Plunger, 7...
...Coagulant tube Applicant: Toyota Motor Corporation Representative: Patent Attorney Masatake Akashi Figure 1 Figure 3 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】 (1)モース硬度が6以上であり直径が30μm以下で
ある短繊維、粒子、及びそれらの混合物よりなる群より
選択された体積率1〜40%の強化材と、モース硬度が
4.5以下であり直径が100μm以下である短繊維、
粒子、及びそれらの混合物よりなる群より選択された体
積率3〜50%の固体潤滑剤とによりマトリックス金属
が複合化された金属基複合材料。 (2)特許請求の範囲第1項の金属基複合材料に於て、
前記マトリックス金属はアルミニウム、マグネシウム、
銅、亜鉛、鉛、スズ及びそれらの何れかを主成分とする
合金よりなる群より選択された金属であることを特徴と
する金属基複合材料。(3)特許請求の範囲第1項又は
第2項の金属基複合材料に於て、前記固体潤滑剤は酸化
物、硫化物、窒化物、黒鉛、及びそれらの混合物の何れ
かであることを特徴とする金属基複合材料。 (4)特許請求の範囲第1項乃至第3項の何れかの金属
基複合材料に於て、前記強化材の直径は20μm以下で
あり、前記固体潤滑剤のモース硬度及び直径はそれぞれ
4以下、50μm以下であることを特徴とする金属基複
合材料。 (5)特許請求の範囲第1項乃至第3項の何れかの金属
基複合材料に於て、前記強化材のモース硬度及び直径は
それぞれ7以上、20μm以下であり、前記固体潤滑剤
のモース硬度、直径、体積率はそれぞれ3以下、50μ
m以下、5〜40%であることを特徴とする金属基複合
材料。 (6)特許請求の範囲第5項の金属基複合材料に於て、
前記固体潤滑剤の体積率は10〜40%であることを特
徴とする金属基複合材料。
[Scope of Claims] (1) A reinforcing material with a volume percentage of 1 to 40% selected from the group consisting of short fibers, particles, and mixtures thereof having a Mohs hardness of 6 or more and a diameter of 30 μm or less, and a Mohs Short fibers with a hardness of 4.5 or less and a diameter of 100 μm or less,
A metal matrix composite material in which a matrix metal is composited with a solid lubricant with a volume ratio of 3 to 50% selected from the group consisting of particles and mixtures thereof. (2) In the metal matrix composite material of claim 1,
The matrix metal is aluminum, magnesium,
A metal matrix composite material characterized in that it is a metal selected from the group consisting of copper, zinc, lead, tin, and alloys containing any of these as main components. (3) In the metal matrix composite material according to claim 1 or 2, the solid lubricant is any one of oxides, sulfides, nitrides, graphite, and mixtures thereof. Characteristic metal matrix composite material. (4) In the metal matrix composite material according to any one of claims 1 to 3, the reinforcing material has a diameter of 20 μm or less, and the solid lubricant has a Mohs hardness and a diameter of 4 or less, respectively. , 50 μm or less. (5) In the metal matrix composite material according to any one of claims 1 to 3, the Mohs hardness and diameter of the reinforcing material are 7 or more and 20 μm or less, respectively, and the solid lubricant has a Mohs hardness of 7 or more and a diameter of 20 μm or less, and Hardness, diameter, and volume ratio are each 3 or less and 50μ
A metal matrix composite material characterized in that it is 5 to 40% less than m. (6) In the metal matrix composite material of claim 5,
A metal matrix composite material, wherein the solid lubricant has a volume percentage of 10 to 40%.
JP61033426A 1986-02-18 1986-02-18 Metal-based composite material with excellent friction and wear characteristics Expired - Fee Related JPH0665734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033426A JPH0665734B2 (en) 1986-02-18 1986-02-18 Metal-based composite material with excellent friction and wear characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033426A JPH0665734B2 (en) 1986-02-18 1986-02-18 Metal-based composite material with excellent friction and wear characteristics

Publications (2)

Publication Number Publication Date
JPS62192557A true JPS62192557A (en) 1987-08-24
JPH0665734B2 JPH0665734B2 (en) 1994-08-24

Family

ID=12386226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033426A Expired - Fee Related JPH0665734B2 (en) 1986-02-18 1986-02-18 Metal-based composite material with excellent friction and wear characteristics

Country Status (1)

Country Link
JP (1) JPH0665734B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620082A1 (en) * 1993-03-29 1994-10-19 Norton Company Abrasive tool
JP2011517505A (en) * 2008-03-20 2011-06-09 ホガナス アクチボラグ (パブル) Ferromagnetic powder composition and production method thereof
JP2013505563A (en) * 2009-09-18 2013-02-14 ホガナス アクチボラゲット Ferromagnetic powder composition and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102824A (en) * 1977-02-21 1978-09-07 Toray Ind Inc Metallic slide material reinforced by carbon fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102824A (en) * 1977-02-21 1978-09-07 Toray Ind Inc Metallic slide material reinforced by carbon fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620082A1 (en) * 1993-03-29 1994-10-19 Norton Company Abrasive tool
JP2011517505A (en) * 2008-03-20 2011-06-09 ホガナス アクチボラグ (パブル) Ferromagnetic powder composition and production method thereof
JP2013505563A (en) * 2009-09-18 2013-02-14 ホガナス アクチボラゲット Ferromagnetic powder composition and method for producing the same

Also Published As

Publication number Publication date
JPH0665734B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US4615733A (en) Composite material including reinforcing mineral fibers embedded in matrix metal
EP1440751A1 (en) Sintered body and production method thereof
US3983615A (en) Sliding seal member for an internal combustion engine
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JPS62192557A (en) Metal-base composite material excellent in characteristic of wear by friction
JPH06316702A (en) Aluminum alloy power and aluminum alloy for sliding member
KR950004776B1 (en) High temperature bearing alloy and method of producing the same
JPH07166278A (en) Coppery sliding material and production thereof
JP2005042136A (en) Aluminum-matrix composite material and its manufacturing method
JPS63190127A (en) Metal-base composite material excellent in strength as well as in frictional wear characteristic
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JPS5893845A (en) Fiber reinforced metal type composite material and its manufacture
JPS63190128A (en) Metal-base composite material excellent in strength as well as in frictional wear characteristic
JPS63103033A (en) Sliding member
JPS63103038A (en) Sliding member
JPS63192831A (en) Sliding member
JPS63192832A (en) Sliding member
JPS63103035A (en) Sliding member
JP4232080B2 (en) Sliding member and manufacturing method thereof
JPS63103036A (en) Sliding member
JP3577748B2 (en) Metal-based composite and method for producing the same
JPS62124248A (en) Combination of member
JPS63103034A (en) Sliding member
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPS6353228A (en) Sliding material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees