JP4232080B2 - Sliding member and manufacturing method thereof - Google Patents
Sliding member and manufacturing method thereof Download PDFInfo
- Publication number
- JP4232080B2 JP4232080B2 JP2002241063A JP2002241063A JP4232080B2 JP 4232080 B2 JP4232080 B2 JP 4232080B2 JP 2002241063 A JP2002241063 A JP 2002241063A JP 2002241063 A JP2002241063 A JP 2002241063A JP 4232080 B2 JP4232080 B2 JP 4232080B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sliding member
- based porous
- cast
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Powder Metallurgy (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐焼付性、耐摩耗性または強度等に優れた摺動部材およびその製造方法に関するものである。
【0002】
【従来の技術】
軽量化、高性能化、リサイクル化等の観点から、各種部材は、Fe系材料製からAl合金やMg合金等の軽金属製へと移行されつつある。ただ、全体をそれらの合金材料とするのではなく、強度、剛性、摺動性、耐久性等の様々な理由から、複合材料とされたり、部分的に異種材料が鋳込まれたりすることが多い。
例えば、摺動部材であるエンジンのシリンダブロックの場合、外装部分はAl合金のダイキャスト成形品であっても、摺動部となるシリンダライナには、これまで鋳鉄製スリーブが鋳込まれてきた。もっとも、このような鋳鉄製スリーブは、Al合金に対して重く、熱伝導性等も劣る。また、Al合金との間で界面剥離等も生じ、必ずしも好ましいものではなかった。
【0003】
そこで、その摺動部であるシリンダライナ部分に、セラミック繊維のプリフォームを鋳込んで金属基複合材料(MMC)とすることが、特開2000−204454号公報等に開示されている。
また、Fe系粉末を焼結させた多孔質焼結体をそのライナ部分に鋳込むことも考えられている。例えば、特開昭63−312947号公報、特開平3−189063号公報、特開平3−189066号公報、特許第3191665号公報等にそれに関連した開示がある。さらに、シリンダライナ部分ではないが、摺動部となるピストンのピストンリング付近に、Fe基焼結体をインサートして摺動部材としたものが特開平8−332562号公報に開示されている。また、一般的なブッシュ等の摺動部材としてFe基焼結体が特開昭60−8293号公報に開示されている。
【0004】
【発明が解決しようとする課題】
このように種々の摺動部材が従来から提案されているが、いずれも、耐焼付性、耐摩耗性または強度等の点で必ずしも十分とはいえなかった。
本発明は、このような事情に鑑みて為されたものである。つまり、耐焼付性、耐摩耗性または強度等にも優れた、新たな摺動部材を提供することを目的とする。また、その製造方法を併せて提供することを目的とする。
【0005】
【課題を解決するための手段および発明の効果】
そこで、本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねていく内に、Fe粉末とWS2粉末とを焼結させたFe基焼結体が耐焼付性や耐摩耗性に優れることを新たに見い出した。本発明は、この知見を基に、それをさらに発展させることにより完成されたものである。
(摺動部材)
すなわち、本発明の摺動部材は、タングステン(W)と硫黄(S)と炭素(C)と残部が鉄(Fe)および不可避不純物とからなり、FeおよびWからなるFe−W相とFeおよびSからなるFe−S相が、FeまたはFe合金からなる基材中に分散してなる摺動部を少なくとも一部に備えることを特徴とする(請求項1)。
この摺動部材は、優れた耐焼付性、耐摩耗性、強度等を発揮する。その理由は必ずしも明らかではないが、現状、次のように考えられる。
少なくとも摺動部では、基材中に摺動性に優れるFe−S相が分散しているため、その耐焼付性等が向上したと考えられる。また、、硬質なFe−S相やFe−W相もその基材中に分散しているため、摺動部の耐摩耗性や強度等が向上したと思われる。
【0006】
ここでいう「Fe−W相」は、FeとWとの(金属間)化合物であれば足り、その組成をFeWに限定するものではない。同様に「Fe−S相」も、FeとSとの化合物であれば足り、その組成をFeSに限定するものではない。
本明細書中でいう「摺動部材」に、ブッシュ等の軸受、シリンダスリーブ、ピストンのリング溝部材等、摺動性や耐摩耗性等が要求される単品は勿論含まれるが、それに限らない。つまり、それらの摺動部材(単品)を組込んだ部材や装置等もやはり本発明でいう摺動部材に該当する。例えば、シリンダスリーブ(これも本発明の摺動部材である。)を鋳込んだシリンダブロック等、リング溝部材を鋳込んだピストン等もやはり本発明でいう摺動部材に含まれる。要するに、完成品の少なくとも一部に摺動面となり得る部分(摺動部)を有するものは全て本発明でいう摺動部材である。
【0007】
(摺動部材の製造方法)
本発明の摺動部材では、上記各相の基材中における分散が微細で均一である程好ましいが、その具体的な分散形態や分散方法までは問わない。例えば、予め、基材となるFe系粉末中にFe−W相となる粉末やFe−S相となる粉末を混合しておき、それらの混合粉末を焼結等させて、基材中に各相が分散した状態としても良い(予混合法)。また、各相の構成元素であるFe、WおよびSを、形成される各相とは異なる形態で与えておき、加熱中のFeとWとの反応およびFeとSとの反応により、Fe−W相やFe−S相が基材中に析出されるようにしても良い(インサイチュ法)。
【0008】
勿論、焼結法に限らず、溶製法で、各相が分散、析出されるようにしても良い。もっとも、焼結法等の粉末冶金法を用いることにより、各相が微細分散した摺動部の形成が容易となる。また、摺動部材の(ニア)ネットシェイプ化も図れる。
そこで本発明は、Fe粉末とWS 2 粉末とグラファイト粉末とバインダとを混合した混合粉末を成形型に充填する充填工程と、該成形型内の混合粉末を加圧して粉末成形体とする成形工程と、該粉末成形体を加熱して焼結体とする焼結工程とからなり、該Fe粉末中のFeおよび該WS 2 粉末中のWが反応してできたFe−W相と該Fe粉末中のFeおよび該WS 2 粉末中のSが反応してできたFe−S相とがFeまたはFe合金からなる基材中に分散してなる摺動部を少なくとも一部に備える前記焼結体(Fe基焼結体)が得られる摺動部材の製造方法としても良い(請求項7)。
【0009】
ここでいうFe基焼結体は多孔質体に限られないが、成形工程中の加圧力を調整することにより、Fe基多孔質焼結体を容易に得ることができる。
また、Fe基多孔質体を鋳込んだ鋳造部材(摺動部材)は、次のような製造方法により得ることができる。
すなわち、FeおよびWからなるFe−W相とFeおよびSからなるFe−S相がFeまたはFe合金からなる基材中に分散してなる摺動部を少なくとも一部に備えるFe基多孔質体を鋳込んで摺動部材とする鋳造工程からなる摺動部材の製造方法である(請求項10)。
【0010】
ここでいうFe基多孔質体の代表例は、前述のFe基多孔質焼結体であるが、焼結体でなくても良い。また、鋳造工程は重力鋳造でも良いが、ダイキャストや溶湯鍛造のような高圧鋳造を行うと、溶湯のFe基多孔質体への含浸が容易となり好ましい。
なお、前述した本発明の摺動部材は、上記焼結法により得られたものに限られず、溶解法等により得られたものでも良い。
【0011】
【発明の実施の形態】
次に、実施形態を挙げ、本発明をより詳しく説明する。なお、以下に述べる内容は、本発明に係る摺動部材とその製造方法とのいずれにも適宜該当するものである。
(1)摺動部の組織
本発明でいう摺動部は、前述したように、Fe系基材中に、Fe−W相とFe−S相とが分散してなる。
Fe−W相は、FeW、FeW2、Fe2W、Fe3W2等の組成からなる化合物である。このFe−W相は、基材中に0.1〜10体積%、さらには1〜5体積%分散していると、耐摩耗性や強度等の向上を図る上で好ましい。少なすぎると効果が薄く、多すぎると相手攻撃性が強くなり好ましくない。
Fe−S相は、例えば、FeS、FeS2、Fe2S、Fe3S等の組成からなる化合物である。このFe−S相は、基材中に0.1〜20体積%、さらには2〜10体積%分散していると、耐焼付性等の向上を図る上で好ましい。少なすぎると効果が薄く、多すぎると靱性が低下し好ましくない。
【0012】
いずれの相も、微細にかつ均一に基材中に分散している程、耐焼付性、耐焼付性、強度等の向上が図れると共に、基材からの脱落を防止できるので好ましい。具体的には、各相の平均粒径が、50μm以下、さらには10μm以下であると好ましい。
基材は、純Feでも良いが、摺動性や強度の向上を図る上で、種々の元素を適量含有していると好ましい。このような元素として、C、Mo、Cr、V、Mn、Cu、S、Ni、Co、W等がある。なお、Cは基材を固溶強化させるが、グラファイト(黒鉛)として析出しているような場合、摺動性がさらに向上し得る。
【0013】
(2)摺動部の形態
摺動部は、Fe基多孔質体からなると好適である。多孔質体の場合、その空隙率を調整することにより、重量、強度等を調整できるのみならず、用途も拡大する。例えば、摺動面が多孔質体からなると、表面上の微細な空孔が油溜りとなって、摺動性の向上に寄与し得る。また、Fe基多孔質体を鋳込む(インサートする)場合、溶湯が多孔質内へ含浸するため、アンカー効果によってその多孔質体は鋳物中に強固に固定される。さらに、例えば、高圧鋳造等により、多孔質体へ溶湯が密に含浸されると、両者間の熱伝達性が向上する。
なお、本明細書でいう「多孔質体」は、その全体が完全に多孔質体である必要はなく、少なくとも一部に多孔質部分があれば足る。例えば、含浸溶湯の漏出防止のために、特定面を多孔質としない方が好ましい場合もある。
【0014】
このようなFe基多孔質体を鋳込んだ鋳造部材として代表的なものは、シリンダブロックである。すなわち、円筒状のFe基多孔質体を鋳込むことにより、このFe基多孔質体の内周面を摺動面であるシリンダライナとするエンジンのシリンダブロック(鋳造部材)が得られる。このとき、シリンダブロックがAl合金やMg合金等の軽金属であると、シリンダブロック全体としての軽量化とシリンダライナにおける摺動性等との両立が図られる。
【0015】
(3)製造方法
このようなFe基多孔質体は、前述したように焼結法を用いると、所望の空隙率のものを容易に製造できる。
その際使用する原料粉末は、例えば、基材粉末と強化粉末とからなる。基材粉末は、前述のようにFe粉末やFe合金粉末である。強化粉末は、W粉末、W合金粉末、W化合物粉末、S粉末、硫化物粉末、さらには、WとSの化合物粉末等の1種または2種以上である。強化粉末にWS2粉末を用いると、WおよびSを一度に供給できるので効率的である。このWS2粉末は、例えば、前記混合粉末の全体を100質量%としたときに、2〜15質量%、さらには3〜9質量%含まれていると好ましい。少なすぎると耐摩耗性や耐焼付性等の効果が薄く、多すぎると靱性が低下するからである。
【0016】
各粉末は、アトマイズ粉、還元粉等いずれでも良く、粒形状等は問わない。しかし、Fe基多孔質焼結体を製造することを考慮すると、あまりにも小さい粒径の微粉は取扱い難い。一方、粒径が大きすぎると、各相の微細で均一な分散が難しくなる。そこで、例えば、粒径が1〜200μm程度の粉末を使用すると好ましい。特に、WS2粉末は1〜10μmの粉末を用いると好ましい。
混合粉末には、適宜、バインダやグラファイト粉末等を含有させると好ましい。なお、バインダは、樹脂、ワックス等の他、ステアリン酸やステアリン酸塩(例えば、ステアリン酸亜鉛やステアリン酸リチウム)等の成形用潤滑剤等を用いても良い。
【0017】
成形工程に成形圧力は、所望する空隙率、バインダやグラファイト等の添加粒子の種類、金型表面粗さ等に応じて変化するため一概に特定することはできない。例えば、粉末成形体中の金属粉末占有体積率を60〜70体積%とする場合であれば、成形圧力を100〜200MPa程度とすれば良い。
焼結工程は、基材粉末が少なくとも焼結する温度でなければならない。また、この焼結工程で、基材粉末中の粒子と強化粉末中の粒子とが焼結したり、反応によってFe−W相やFe−S相が形成されたりする。そこで例えば、焼結温度が1000〜1300℃であると好ましい。
【0018】
【実施例】
次に、実施例を挙げて、本発明を具体的に説明する。
(実施例1)
Fe基多孔質焼結体からなるシリンダスリーブを鋳込んだAl合金製エンジンブロックを次のようにして製造した。
(1)シリンダスリーブの製造
先ず、原料として、Fe粉(純鉄:川崎製鉄製KIP240M)と、WS2粉末(日本潤滑剤株式会社製タンミック、平均粒径1μm)と、グラファイト(C)と、バインダであるステアリン酸亜鉛と用意した。これらをボールミルで1時間混合して混合粉末とした。このときの配合量は、グラファイト:1%、ステアリン酸亜鉛:3%、WS2粉末:6%または9%、残部:Fe粉末である(単位:質量%、以下同様)。
【0019】
次に、これを円筒形状のキャビティを有する成形型(金型)に自然充填した(充填工程)。
成形型に充填した混合粉末を、油圧プレスで上下方向から加圧して円筒形状の粉末成形体を得た。このとき加圧力は100MPaとした。得られた粉末成形体は、外径100.4mm×高さ58mm×板厚3mmであった。
この粉末成形体を電気炉の中に入れて、窒素雰囲気で1100℃×0.5時間加熱して焼結させた(焼結工程)。こうして、気孔率(空隙率)は約40体積%のFe基多孔質焼結体が得られた。
【0020】
(2)エンジンブロックの製造
上記Fe基多孔質焼結体をAl合金(JIS ADC12)に鋳込んでエンジンブロックを製作した。この鋳込み鋳造は、ダイカスト鋳造により行った(鋳造工程)。ダイカストの条件は、溶湯温度680℃、型温250℃、成形体予熱500℃、溶湯圧力65MPaとした。なお、Al合金溶湯は、Fe基多孔質焼結体の外周面から内周面まで到達していた。
そして、シリンダ内周面は表面研磨により仕上げた。
【0021】
(実施例2)
(1)Fe基多孔質焼結体の製造
実施例1の原料を用いて、グラファイト:0.7%、ステアリン酸亜鉛:1%、WS2粉末:3%および残部:Fe粉末の割合で配合した混合粉末を用意した。混合方法は実施例1と同様である。
実施例1と同様に、この混合粉末を成形型に充填し、200MPaで成形した。得られた粉末成形体を1250℃×0.5時間加熱して焼結させた。こうして、得られたFe基多孔質焼結体の気孔率は約30体積%であった。
【0022】
(2)エンジンブロックの製造
上記Fe基多孔質焼結体をAl合金(JIS ADC12)に鋳込んでエンジンブロックを製作した。この鋳込み鋳造は溶湯鍛造により行った。溶湯鍛造の条件は、溶湯温度680℃、型温250℃、成形体予熱500℃、溶湯圧力100MPaとした。このときも、Al合金溶湯は、Fe基多孔質焼結体の外周面から内周面まで到達していた。
そして、シリンダ内周面はホーニングにより仕上げた。
【0023】
(評価)
(1)Fe基多孔質焼結体の組織
実施例1のFe基多孔質焼結体を切断した断面組織を金属顕微鏡およびX線マイクロアナライザー(EPMA)により観察した。金属顕微鏡写真を図1および図3に、EPMAによる組織の分析結果を図2にそれぞれ示す。図1および図2はWS2粉末:6%のものであり、図3はWS2粉末:9%のものである。なお、図1(a)は各組織の分散状態を示す組織写真であり、図1(b)は凝集した斑状組織を主に示す組織写真である。
【0024】
これらの写真から、WS2粒子の多くは分解されて基材粉末中のFeと反応し、FeとWとの化合物層(Fe−W相)およびFeとSとの化合物層(Fe−S相)を形成していることが解った。すなわち、パーライト状の縞模様を形成しているFeとWとの化合物組織(白色の細い針状)、FeとSとの化合物組織(薄茶色の塊状)およびそれらの組織が混在した斑状組織の3種が観察された。なお、その斑状組織の存在率はやや少なく、その多くは平均粒径が10μm以下の塊状または針状(または筋状)であり、僅かに凝集組織が観られた。
【0025】
次に、前記断面組織部分(シリンダ内周面(ライナ)部分)の硬さを調べたところ、次のような結果が得られた。
WS2粉末を6%配合したとき
粗大パーライト部分:200〜290MHv(25g)
微細パーライト部分:190〜280MHv(25g)
WS2粉末を9%配合したとき
粗大パーライト部分:270〜310MHv(25g)
微細パーライト部分:190〜280MHv(25g)
WS2粉末を配合しなかったとき
粗大パーライト部分:150〜210MHv(25g)、
微細パーライト部分:180〜230MHv(25g)
このように、WS2粉末を配合することにより、Fe部分の硬さが増し、耐摩耗性や強度の向上を図り得ることが解った。なお、硬さが上昇したのは、Fe部分にWの反応物が細い糸状に生成したためと思われる。
【0026】
(2)シリンダブロックの耐焼付性
製造したシリンダブロックの摺動部(シリンダライナ部)における焼付性を調べるために、次のような低温スカッフ試験を行った。
▲1▼実施例1について
試験条件は次の通りである。
実験温度:70℃、荷重:3kgf(29.4N)、時間:焼付まで
回転数:500rpm、ヘルツ圧:20kgf/mm2(196MPa)
潤滑方法:ガソリンエンジンオイルを定量塗布(0.13mg/cm2)
シリンダボア径:φ96mm(内周面:表面研磨)
ピストンリング径:φ96mm、リングバレル径:11.3mm
【0027】
上記実施例1で述べたWS2粉末:6%配合のもの、WS2粉末:9%配合のものおよびWS2粉末を配合しなかったものについて、上記試験をそれぞれ3回づつ行った。そして、各試験片について焼付きが発生するまでの時間を測定し、その平均を求めて図4に示した。このグラフから明らかなように、WS2粉末を配合することにより焼付き時間が延びており、特に、WS2:9質量%のときの延びが大きい。
なお、図4には、各シリンダライナ(摺動面)のビッカース硬さも併せて示した。これから明らかなように、WS2粉末の配合によりその硬さが向上し、耐焼付性のみならず耐摩耗性等の向上も期待できる。
【0028】
▲2▼実施例2について
試験条件は次の通りである。
実験温度:70℃、荷重:3kgf(29.4N)、時間:焼付まで
回転数:500rpm、ヘルツ圧:20kgf/mm2(196MPa)
潤滑方法:ディーゼルエンジンオイルを定量塗布(0.13mg/cm2)
シリンダボア径:φ96mm(内周面:ホーニング)
ピストンリング径:φ96mm、リングバレル径:11.3mm
【0029】
上記実施例2で述べたWS2粉末:3%配合のもの、WS2粉末に替えて種々の他の粉末を配合したものおよび鋳鉄スリーブを使用したものについて、上記試験をそれぞれ2回づつ行った。この場合も同様に、各試験片について焼付きが発生するまでの時間を測定し、その平均を求めて図5に示した。このグラフから明らかなように、WS2粉末を配合すると、他の粉末を配合した場合に比べて、焼付き時間が大幅に延びた。しかも、その程度は、従来の鋳鉄スリーブをも大きく凌ぐものであった。
【図面の簡単な説明】
【図1】本発明の実施例1に係るFe基多孔質焼結体(WS2粉末:6%配合)の金属顕微鏡による組織写真であって、同図(a)は各組織の分散状態を示し、同図(b)は凝集した斑状組織を示す。
【図2】そのFe基多孔質焼結体(WS2粉末:6%配合)のEPMAによる組織の分析結果を示す写真である。
【図3】本発明の実施例1に係るFe基多孔質焼結体(WS2粉末:9%配合)の金属顕微鏡による組織写真である。
【図4】本発明の実施例1に係るシリンダブロックの耐焼付性および硬さを示すグラフである。
【図5】本発明の実施例2に係るシリンダブロックの耐焼付性を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding member excellent in seizure resistance, wear resistance, strength, and the like, and a method for manufacturing the same.
[0002]
[Prior art]
From the viewpoint of weight reduction, high performance, recycling, and the like, various members are being shifted from those made of Fe-based materials to those made of light metals such as Al alloys and Mg alloys. However, instead of using the alloy materials as a whole, for various reasons such as strength, rigidity, slidability, and durability, it may be a composite material or a partially dissimilar material may be cast. Many.
For example, in the case of a cylinder block of an engine that is a sliding member, a cast iron sleeve has been cast in the cylinder liner that has become a sliding part, even though the exterior part is a die-cast molded product of an Al alloy. . However, such a cast iron sleeve is heavier than an Al alloy and has poor thermal conductivity. Moreover, interface peeling and the like occurred with the Al alloy, and this was not always preferable.
[0003]
Therefore, Japanese Patent Application Laid-Open No. 2000-204454 discloses that a ceramic fiber preform is cast into a cylinder liner portion that is a sliding portion to form a metal matrix composite material (MMC).
It is also considered that a porous sintered body obtained by sintering Fe-based powder is cast into the liner portion. For example, Japanese Patent Laid-Open No. 63-31947, Japanese Patent Laid-Open No. 3-189063, Japanese Patent Laid-Open No. 3-189066, Japanese Patent No. 3191665 have related disclosures. Further, although not a cylinder liner portion, a sliding member in which an Fe-based sintered body is inserted in the vicinity of a piston ring of a piston serving as a sliding portion is disclosed in JP-A-8-332562. Further, an Fe-based sintered body is disclosed in Japanese Patent Application Laid-Open No. 60-8293 as a general sliding member such as a bush.
[0004]
[Problems to be solved by the invention]
As described above, various sliding members have been conventionally proposed, but none of them is necessarily sufficient in terms of seizure resistance, wear resistance or strength.
The present invention has been made in view of such circumstances. That is, an object is to provide a new sliding member having excellent seizure resistance, wear resistance, strength, and the like. Moreover, it aims at providing the manufacturing method collectively.
[0005]
[Means for Solving the Problems and Effects of the Invention]
Therefore, the present inventor has eagerly studied to solve this problem, and while repeating trial and error, the Fe-based sintered body obtained by sintering Fe powder and WS 2 powder has seizure resistance and wear resistance. It was found that it is superior to. The present invention has been completed by further developing it based on this finding.
(Sliding member)
That is, the sliding member of the present invention comprises tungsten (W), sulfur (S), carbon (C), the balance being iron (Fe) and unavoidable impurities, Fe—W phase consisting of Fe and W , Fe and W The Fe—S phase made of S is provided with at least a part of a sliding part dispersed in a base material made of Fe or an Fe alloy (Claim 1).
This sliding member exhibits excellent seizure resistance, wear resistance, strength, and the like. The reason is not necessarily clear, but it can be considered as follows.
At least in the sliding part, since the Fe—S phase having excellent slidability is dispersed in the base material, it is considered that the seizure resistance is improved. Moreover, since the hard Fe-S phase and Fe-W phase are also dispersed in the base material, it is considered that the wear resistance and strength of the sliding portion have been improved.
[0006]
The “Fe—W phase” here is sufficient if it is a (intermetallic) compound of Fe and W, and its composition is not limited to FeW. Similarly, the “Fe—S phase” may be a compound of Fe and S, and the composition is not limited to FeS.
“Sliding member” as used in this specification includes bearings such as bushes, cylinder sleeves, ring groove members of pistons, etc., of course, including single items that require slidability and wear resistance, but are not limited thereto. . That is, a member or device incorporating these sliding members (single product) also corresponds to the sliding member referred to in the present invention. For example, a cylinder block in which a cylinder sleeve (which is also a sliding member of the present invention) is cast, a piston in which a ring groove member is cast, and the like are also included in the sliding member in the present invention. In short, any member having a portion (sliding portion) that can be a sliding surface in at least a part of the finished product is a sliding member in the present invention.
[0007]
(Sliding member manufacturing method)
In the sliding member of the present invention, it is preferable that the dispersion of each phase in the base material is fine and uniform. However, the specific dispersion form and dispersion method are not limited. For example, in advance, a Fe-W phase powder or a Fe-S phase powder is mixed in a Fe-based powder serving as a base material, and the mixed powder is sintered or the like. It is good also as a state which the phase disperse | distributed (premixing method). Further, Fe, W, and S, which are constituent elements of each phase, are given in a form different from that of each phase to be formed, and by reaction between Fe and W during heating and reaction between Fe and S, Fe— W phase or Fe-S phase may be precipitated in the substrate (in situ method).
[0008]
Of course, each phase may be dispersed and precipitated not only by the sintering method but also by a melting method. However, by using a powder metallurgy method such as a sintering method, it is easy to form a sliding portion in which each phase is finely dispersed. Also, the (near) net shape of the sliding member can be achieved.
Accordingly, the present invention provides a filling step in which a mixed powder obtained by mixing Fe powder, WS 2 powder, graphite powder, and a binder is filled in a molding die, and a molding step in which the mixed powder in the molding die is pressed to form a powder compact. And a Fe-W phase formed by reacting Fe in the Fe powder and W in the WS 2 powder and the Fe powder. The sintered body comprising at least a part of a sliding portion in which Fe in the iron and Fe-S phase formed by reaction of S in the WS 2 powder are dispersed in a base material made of Fe or an Fe alloy. It is good also as a manufacturing method of the sliding member from which (Fe-based sintered body) is obtained.
[0009]
The Fe-based sintered body here is not limited to a porous body, but an Fe-based porous sintered body can be easily obtained by adjusting the applied pressure during the molding process.
Moreover, the cast member (sliding member) which cast Fe-based porous body can be obtained by the following manufacturing method.
That is, an Fe-based porous body having at least a part of a sliding portion in which an Fe—W phase composed of Fe and W and an Fe—S phase composed of Fe and S are dispersed in a base material composed of Fe or an Fe alloy which is a method for producing a sliding member comprising a casting step of the sliding member by casting (claim 10).
[0010]
A typical example of the Fe-based porous body here is the aforementioned Fe-based porous sintered body, but it need not be a sintered body. The casting process may be gravity casting, but high pressure casting such as die casting or molten metal forging is preferable because the molten metal can be easily impregnated into the Fe-based porous body.
The sliding member of the present invention described above is not limited to that obtained by the above sintering method, but may be obtained by a melting method or the like.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to embodiments. The contents described below appropriately correspond to both the sliding member and the manufacturing method thereof according to the present invention.
(1) Structure of sliding portion As described above, the sliding portion referred to in the present invention is formed by dispersing the Fe-W phase and the Fe-S phase in the Fe-based substrate.
FeW phase, FeW, a FeW 2, Fe 2 W, compounds having a composition such as Fe 3 W 2. When this Fe—W phase is dispersed in the base material in an amount of 0.1 to 10% by volume, more preferably 1 to 5% by volume, it is preferable for improving wear resistance and strength. If the amount is too small, the effect is thin.
The Fe—S phase is a compound having a composition such as FeS, FeS 2 , Fe 2 S, and Fe 3 S, for example. When this Fe—S phase is dispersed in the base material in an amount of 0.1 to 20% by volume, more preferably 2 to 10% by volume, it is preferable for improving seizure resistance and the like. If the amount is too small, the effect is thin. If the amount is too large, the toughness is lowered, which is not preferable.
[0012]
Any phase is more preferably dispersed finely and uniformly in the base material because it can improve seizure resistance, seizure resistance, strength, and the like, and can prevent dropping from the base material. Specifically, the average particle size of each phase is preferably 50 μm or less, more preferably 10 μm or less.
The base material may be pure Fe, but it is preferable to contain appropriate amounts of various elements in order to improve slidability and strength. Examples of such elements include C, Mo, Cr, V, Mn, Cu, S, Ni, Co, and W. Note that C strengthens the base material by solid solution, but when it is precipitated as graphite (graphite), the slidability can be further improved.
[0013]
(2) Form of sliding portion The sliding portion is preferably made of an Fe-based porous material. In the case of a porous body, by adjusting the porosity, not only the weight, strength, etc. can be adjusted, but also the use is expanded. For example, when the sliding surface is made of a porous body, fine pores on the surface become an oil reservoir, which can contribute to improvement in slidability. Further, when casting (inserting) an Fe-based porous body, the molten metal is impregnated into the porous body, so that the porous body is firmly fixed in the casting by the anchor effect. Furthermore, when the molten metal is densely impregnated into the porous body, for example, by high-pressure casting or the like, the heat transfer property between the two is improved.
The “porous body” as used in the present specification does not necessarily have to be completely porous, and it is sufficient that at least a part of the porous body has a porous part. For example, it may be preferable not to make the specific surface porous in order to prevent leakage of the impregnated molten metal.
[0014]
A typical cast member in which such an Fe-based porous body is cast is a cylinder block. That is, by casting a cylindrical Fe-based porous body, an engine cylinder block (casting member) is obtained in which the inner peripheral surface of the Fe-based porous body is a cylinder liner that is a sliding surface. At this time, if the cylinder block is made of a light metal such as an Al alloy or Mg alloy, both the weight reduction of the entire cylinder block and the slidability of the cylinder liner can be achieved.
[0015]
(3) Manufacturing method When the Fe-based porous body is sintered as described above, a desired porosity can be easily manufactured.
The raw material powder used at that time is composed of, for example, a base powder and a reinforcing powder. The base powder is Fe powder or Fe alloy powder as described above. The reinforcing powder is one or more of W powder, W alloy powder, W compound powder, S powder, sulfide powder, and W and S compound powder. When WS 2 powder is used as the reinforcing powder, W and S can be supplied at a time, which is efficient. For example, the WS 2 powder is preferably contained in an amount of 2 to 15% by mass, and more preferably 3 to 9% by mass, when the total amount of the mixed powder is 100% by mass. This is because if the amount is too small, effects such as wear resistance and seizure resistance are thin, and if the amount is too large, the toughness decreases.
[0016]
Each powder may be any atomized powder, reduced powder, etc., and the particle shape is not limited. However, considering the production of an Fe-based porous sintered body, it is difficult to handle fine powder having a too small particle size. On the other hand, if the particle size is too large, fine and uniform dispersion of each phase becomes difficult. Therefore, for example, it is preferable to use a powder having a particle size of about 1 to 200 μm. In particular, WS 2 powder is preferably 1 to 10 μm.
The mixed powder preferably contains a binder, graphite powder or the like as appropriate. The binder may be a molding lubricant such as stearic acid or a stearate (for example, zinc stearate or lithium stearate) in addition to a resin, a wax, or the like.
[0017]
In the molding process, the molding pressure cannot be generally specified because it varies depending on the desired porosity, the kind of additive particles such as binder and graphite, the surface roughness of the mold, and the like. For example, if the metal powder occupation volume ratio in the powder compact is 60 to 70% by volume, the compaction pressure may be about 100 to 200 MPa.
The sintering process must be at a temperature at which the substrate powder is at least sintered. Further, in this sintering step, the particles in the base powder and the particles in the reinforcing powder are sintered, or an Fe—W phase or an Fe—S phase is formed by a reaction. Therefore, for example, the sintering temperature is preferably 1000 to 1300 ° C.
[0018]
【Example】
Next, an Example is given and this invention is demonstrated concretely.
Example 1
An Al alloy engine block in which a cylinder sleeve made of an Fe-based porous sintered body was cast was manufactured as follows.
(1) Manufacture of cylinder sleeve First, as a raw material, Fe powder (pure iron: Kawasaki Steel KIP240M), WS 2 powder (Nippon Lubricant Co., Ltd. Tanmic,
[0019]
Next, this was naturally filled into a mold (mold) having a cylindrical cavity (filling step).
The mixed powder filled in the mold was pressed from above and below with a hydraulic press to obtain a cylindrical powder compact. At this time, the applied pressure was 100 MPa. The obtained powder compact had an outer diameter of 100.4 mm, a height of 58 mm, and a plate thickness of 3 mm.
This powder compact was placed in an electric furnace and sintered by heating at 1100 ° C. for 0.5 hours in a nitrogen atmosphere (sintering step). Thus, an Fe-based porous sintered body having a porosity (porosity) of about 40% by volume was obtained.
[0020]
(2) Production of engine block The engine block was produced by casting the Fe-based porous sintered body into an Al alloy (JIS ADC12). This casting was performed by die casting (casting process). The die casting conditions were as follows: molten metal temperature 680 ° C.,
The cylinder inner peripheral surface was finished by surface polishing.
[0021]
(Example 2)
(1) Production of Fe-based porous sintered body Using raw materials of Example 1, blended in proportions of graphite: 0.7%, zinc stearate: 1%, WS 2 powder: 3% and balance: Fe powder. The prepared mixed powder was prepared. The mixing method is the same as in Example 1.
In the same manner as in Example 1, this mixed powder was filled in a mold and molded at 200 MPa. The obtained powder compact was heated and sintered at 1250 ° C. for 0.5 hour. Thus, the porosity of the obtained Fe-based porous sintered body was about 30% by volume.
[0022]
(2) Production of engine block The engine block was produced by casting the Fe-based porous sintered body into an Al alloy (JIS ADC12). This cast casting was performed by molten metal forging. The conditions of the molten metal forging were a molten metal temperature of 680 ° C., a mold temperature of 250 ° C., a compact preheating of 500 ° C., and a molten metal pressure of 100 MPa. Also at this time, the Al alloy molten metal reached the inner peripheral surface from the outer peripheral surface of the Fe-based porous sintered body.
And the cylinder inner peripheral surface was finished by honing.
[0023]
(Evaluation)
(1) Structure of Fe-based porous sintered body The cross-sectional structure obtained by cutting the Fe-based porous sintered body of Example 1 was observed with a metal microscope and an X-ray microanalyzer (EPMA). The metal micrographs are shown in FIGS. 1 and 3, and the results of analysis of the structure by EPMA are shown in FIG. 1 and 2 are for WS 2 powder: 6%, and FIG. 3 is for WS 2 powder: 9%. FIG. 1 (a) is a tissue photograph showing the dispersed state of each tissue, and FIG. 1 (b) is a tissue photograph mainly showing aggregated patchy tissue.
[0024]
From these photographs, most of the WS 2 particles are decomposed and react with Fe in the base powder, and a compound layer of Fe and W (Fe—W phase) and a compound layer of Fe and S (Fe—S phase). ). That is, a compound structure of Fe and W (white thin needles) forming a pearlite stripe pattern, a compound structure of Fe and S (light brown lump), and a patchy structure in which these structures are mixed Three species were observed. In addition, the abundance of the patchy tissue was somewhat low, and most of them were massive or needle-like (or streak) having an average particle size of 10 μm or less, and a slightly aggregated tissue was observed.
[0025]
Next, when the hardness of the cross-sectional structure portion (cylinder inner peripheral surface (liner) portion) was examined, the following results were obtained.
Coarse pearlite portion when blended WS 2 powder 6%: 200~290MHv (25g)
Fine pearlite part: 190-280 MHv (25 g)
Coarse pearlite part when 9% WS 2 powder is blended: 270 to 310 MHv (25 g)
Fine pearlite part: 190-280 MHv (25 g)
Coarse pearlite part when WS 2 powder is not blended: 150-210 MHv (25 g),
Fine pearlite part: 180-230MHv (25g)
Thus, it has been found that by adding WS 2 powder, the hardness of the Fe portion increases, and the wear resistance and strength can be improved. The reason why the hardness was increased is thought to be because the W reactant was formed in a thin thread form in the Fe portion.
[0026]
(2) Seizure resistance of cylinder block In order to examine the seizure property in the sliding part (cylinder liner part) of the manufactured cylinder block, the following low temperature scuff test was conducted.
(1) The test conditions for Example 1 are as follows.
Experimental temperature: 70 ° C., load: 3 kgf (29.4 N), time: rotation speed until seizure: 500 rpm, hertz pressure: 20 kgf / mm 2 (196 MPa)
Lubrication method: Apply gasoline engine oil quantitatively (0.13mg / cm 2 )
Cylinder bore diameter: φ96mm (inner peripheral surface: surface polishing)
Piston ring diameter: φ96mm, ring barrel diameter: 11.3mm
[0027]
The above test was performed three times for each of the WS 2 powder: 6% blended, the WS 2 powder: 9% blended, and the WS 2 powder not blended as described in Example 1 above. Then, the time until seizure occurred for each test piece was measured, and the average was obtained and shown in FIG. As is apparent from this graph, the seizing time is extended by adding WS 2 powder, and in particular, the extension is large when
FIG. 4 also shows the Vickers hardness of each cylinder liner (sliding surface). As is clear from this, the hardness of the WS 2 powder is improved, and not only seizure resistance but also abrasion resistance can be expected.
[0028]
(2) Test conditions for Example 2 are as follows.
Experimental temperature: 70 ° C., load: 3 kgf (29.4 N), time: rotation speed until seizure: 500 rpm, hertz pressure: 20 kgf / mm 2 (196 MPa)
Lubrication method: Diesel engine oil is applied in a fixed amount (0.13 mg / cm 2 )
Cylinder bore diameter: φ96mm (inner peripheral surface: honing)
Piston ring diameter: φ96mm, ring barrel diameter: 11.3mm
[0029]
WS 2 powder described in Example 2 above: 3% blended, one blended with various other powders instead of WS 2 powder, and one using a cast iron sleeve, the above test was performed twice. . Similarly in this case, the time until seizure occurred for each test piece was measured, and the average was obtained and shown in FIG. As is apparent from this graph, when WS 2 powder was blended, the seizure time was significantly increased as compared with the case where other powders were blended. Moreover, the degree is far superior to that of conventional cast iron sleeves.
[Brief description of the drawings]
FIG. 1 is a structure photograph of a Fe-based porous sintered body (WS 2 powder: 6% blended) according to Example 1 of the present invention by a metallographic microscope, and FIG. 1 (a) shows a dispersion state of each structure. The figure (b) shows the aggregated patchy tissue.
FIG. 2 is a photograph showing an analysis result of the structure of the Fe-based porous sintered body (WS 2 powder: 6% blended) by EPMA.
FIG. 3 is a structural photograph taken by a metallographic microscope of an Fe-based porous sintered body (WS 2 powder: 9% blended) according to Example 1 of the present invention.
FIG. 4 is a graph showing seizure resistance and hardness of a cylinder block according to Example 1 of the present invention.
FIG. 5 is a graph showing seizure resistance of a cylinder block according to Example 2 of the present invention.
Claims (10)
FeおよびWからなるFe−W相とFeおよびSからなるFe−S相が、FeまたはFe合金からなる基材中に分散してなる摺動部を少なくとも一部に備えることを特徴とする摺動部材。Tungsten (W), sulfur (S), carbon (C) and the balance consisting of iron (Fe) and inevitable impurities,
A slide comprising at least a part of a sliding portion in which an Fe—W phase composed of Fe and W and an Fe—S phase composed of Fe and S are dispersed in a base material composed of Fe or an Fe alloy. Moving member.
前記鋳造部材は鋳込んだ該Fe基多孔質体の内周面をシリンダライナとするエンジンのシリンダブロックである請求項3に記載の摺動部材。The Fe-based porous body is cylindrical,
The sliding member according to claim 3, wherein the cast member is a cylinder block of an engine having an inner peripheral surface of the cast Fe-based porous body as a cylinder liner.
該成形型内の混合粉末を加圧して粉末成形体とする成形工程と、
該粉末成形体を加熱して焼結体とする焼結工程とからなり、
該Fe粉末中のFeおよび該WS 2 粉末中のWが反応してできたFe−W相と該Fe粉末中のFeおよび該WS 2 粉末中のSが反応してできたFe−S相とがFeまたはFe合金からなる基材中に分散してなる摺動部を少なくとも一部に備える前記焼結体からなることを特徴とする摺動部材の製造方法。A filling step of filling a mold with mixed powder obtained by mixing Fe powder, WS 2 powder, graphite powder and binder;
A molding step of pressing the mixed powder in the mold to form a powder compact;
It comprises a sintering step in which the powder compact is heated to form a sintered body,
And Fe-S phase Fe and the WS 2 Fe-W phase W in is Deki reacts powder and the Fe powder of Fe and S of the WS 2 powder of said Fe powder has Deki reacted A method for producing a sliding member, comprising: the sintered body having at least a part of a sliding portion dispersed in a base material made of Fe or Fe alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241063A JP4232080B2 (en) | 2002-08-21 | 2002-08-21 | Sliding member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241063A JP4232080B2 (en) | 2002-08-21 | 2002-08-21 | Sliding member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004076136A JP2004076136A (en) | 2004-03-11 |
JP4232080B2 true JP4232080B2 (en) | 2009-03-04 |
Family
ID=32023669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002241063A Expired - Fee Related JP4232080B2 (en) | 2002-08-21 | 2002-08-21 | Sliding member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4232080B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013027936A (en) * | 2012-10-24 | 2013-02-07 | Tpr Co Ltd | Support member |
-
2002
- 2002-08-21 JP JP2002241063A patent/JP4232080B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004076136A (en) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0872296B1 (en) | Self-lubricating sintered sliding material and method for manufacturing the same | |
JP4891421B2 (en) | Powder metallurgy mixture and method for producing powder metallurgy parts using the same | |
JP2799235B2 (en) | Valve seat insert for internal combustion engine and method of manufacturing the same | |
WO2005024076A1 (en) | Sintered sliding material, sliding member, connection device and device provided with sliding member | |
JP2003268414A (en) | Sintered alloy for valve seat, valve seat and its manufacturing method | |
JP5588879B2 (en) | Pre-alloyed copper alloy powder forged connecting rod | |
JP2001081501A (en) | Powder mixture for powder metallurgy, ferrous sintered compact, and manufacturing method therefor | |
JP2013533379A (en) | Nitrided sintered steel | |
CN100564563C (en) | Sintered sliding material, sliding component and the device that is suitable for this sliding component | |
US20090129964A1 (en) | Method of forming powder metal components having surface densification | |
JPH1171651A (en) | Ferrous sintered alloy for valve seat | |
US4435482A (en) | Sliding member and process for producing the same | |
JP2001523763A (en) | High density molding method by powder blending | |
JP4232080B2 (en) | Sliding member and manufacturing method thereof | |
JP3186816B2 (en) | Sintered alloy for valve seat | |
US4623595A (en) | Sliding member and process for producing the same | |
JPH09235646A (en) | Sintered sliding member and its production | |
JP2000337511A (en) | Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance and heat conductivity | |
JP6550224B2 (en) | Sliding member and method of manufacturing the same | |
JPH0645833B2 (en) | Method for manufacturing aluminum alloy-based composite material | |
JPH0665734B2 (en) | Metal-based composite material with excellent friction and wear characteristics | |
JPH03189066A (en) | Porous metal reinforced material and combined body thereof | |
JP2000038624A (en) | Ferrous sintered body | |
JP2000282192A (en) | Wear resistant ring for piston ring made of free graphite precipitated ferrous sintering material excellent in wear resistance | |
JP2000328109A (en) | Piston ring wear resistant ring made of free graphite precipitated ferrous sintering material excellent in wear resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131219 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |