JPS6352710A - Tool using synthetic diamond monocrystal - Google Patents

Tool using synthetic diamond monocrystal

Info

Publication number
JPS6352710A
JPS6352710A JP19764086A JP19764086A JPS6352710A JP S6352710 A JPS6352710 A JP S6352710A JP 19764086 A JP19764086 A JP 19764086A JP 19764086 A JP19764086 A JP 19764086A JP S6352710 A JPS6352710 A JP S6352710A
Authority
JP
Japan
Prior art keywords
crystal
wear
diamond
wear resistant
crystal orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19764086A
Other languages
Japanese (ja)
Inventor
Jiro Arakawa
荒川 次郎
Akio Hara
昭夫 原
Nobuo Urakawa
浦川 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19764086A priority Critical patent/JPS6352710A/en
Publication of JPS6352710A publication Critical patent/JPS6352710A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent uneven wear of tools by forming a rectangle so as to bring specific crystal faces to be two parallel crystal faces and setting a less wear resistant crystal orientation in the length direction and a more wear resistant crystal orientation in the breadth direction. CONSTITUTION:A synthetic diamond is cut to from a small monocrystal whose respective two parallel faces are a crystal face (110). Then, the two parallel faces are formed into a rectangular shape; in each face, a less wear resistant crystal orientation (100) and a more wear resistant crystal orientation (110) are set in the length and the breadth direction, respectively; a vertical hole is bored at the center. In that method, generated stresses reduce as the thickness of a diamond increases. Thus, a wear of a less wear resistant side is equalized to that of a more resistant side because the less wear resistant side in crystal orientations is thicker than the more wear resistant side. Therefore, uneven wear of tools is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属線の伸線ダイス、高圧水の噴出ノズル
など穴の中に物を通し、穴内面から面圧力を受けて加工
を行うダイヤモンド工具、特に合成ダイヤモンド単結晶
を用いた工具に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention involves passing an object through a hole such as a wire drawing die for metal wire, a high-pressure water jet nozzle, etc., and processing it by receiving surface pressure from the inner surface of the hole. This invention relates to diamond tools, particularly tools using synthetic diamond single crystals.

〔従来の技術〕[Conventional technology]

ダイヤモンド単結晶は現存する物質の中で最高の硬さを
有し、耐摩耗性が優れているため、バイト、ダイス、ド
レッサーなど色々な用途に使われている。しかし、これ
迄は全て天然ダイヤモンドが使われていた。合成ダイヤ
モンドは市場から強く要望されていたが、1985年本
出願人が発売開始したのが世界で最初であり、現在のと
ころ唯一である。
Single crystal diamond has the highest hardness of any existing material and has excellent wear resistance, so it is used in a variety of applications such as cutting tools, dies, and dressers. However, up until now, all natural diamonds had been used. Synthetic diamonds have been strongly desired by the market, and the applicant's commercialization of synthetic diamonds in 1985 was the first in the world, and is currently the only one in the world.

なお、当山願人の出願に係る特開昭59−229227
号公報においては、合成ダイヤモンド単結晶を用いた伸
線ダイスを提案し、結晶面(100)又は(111)に
垂直に穴をあけるものを開示している。この場合は、合
成されたダイヤモンドに(これを分断加工することなく
)直接穴をあけるようにしたものである。
In addition, Japanese Patent Application Laid-Open No. 59-229227, which was filed by applicant Toyama,
The publication proposes a wire-drawing die using a synthetic diamond single crystal, and discloses a die that makes holes perpendicular to the crystal plane (100) or (111). In this case, holes are directly drilled into the synthesized diamond (without cutting it).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

天然ダイヤモンドを用いた場合の問題点を、代表的な用
途である伸線ダイスについて述べる。
We will discuss the problems when using natural diamonds with respect to wire drawing dies, which are a typical application.

伸線ダイスは、第1図に示すように、ダイス穴2を設け
たダイヤモンド1をダイスケース3の中で焼結金属4に
より固定支持される。この固定を確実なものとするため
に、平行な上下2面5.5′が必要とされる。
In the wire drawing die, as shown in FIG. 1, a diamond 1 having a die hole 2 is fixedly supported in a die case 3 by a sintered metal 4. To ensure this fixation, two parallel upper and lower surfaces 5.5' are required.

ところで、天然ダイヤモンドは産出過程で溶解作用を受
ける為に、平滑な結晶面であることは少く、−+aに丸
味を帯びた曲面で、形状的にも第2図に示すように不揃
いである。そのため上下2面5.5′を作るに当っては
、通常、熟練者がルーパなどを用いて、表面に現われる
スジの状態とか、概略の外形形状を見て結晶面を判別し
ている。しかし、形状的に研摩のし易さ等に左右され、
実情は結晶面が(1,10)か(111)の何れになっ
ているかを判定することがむずかしく、上下2面5.5
′を特定の結晶面に全て整えることは困難であり、また
品質的にバラツキの大きいものしか作れなかった。
By the way, since natural diamonds are subjected to melting action during the production process, they rarely have smooth crystal faces, but rather curved surfaces with a -+a roundness, and are irregular in shape as shown in Figure 2. Therefore, when creating the upper and lower surfaces 5.5', an expert usually uses a looper or the like to determine the crystal plane by looking at the condition of the streaks appearing on the surface and the general external shape. However, depending on the shape and ease of polishing,
In reality, it is difficult to determine whether the crystal plane is (1,10) or (111), and the upper and lower surfaces are 5.5
It is difficult to arrange all of the crystals in a specific crystal plane, and only products with large variations in quality can be produced.

天然ダイヤモンドダイスにおける耐摩耗性は、現在迄結
晶面(110)か(111)の何れかを上下2面5.5
′とし、これに垂直にダイス穴2を明けた場合が良いと
され、(1,00)は劣るので避DJられている。しか
し、(1,10)と(111)と何れが良いかはバラツ
キの方が大きくて、十分に明らかではなかった。
Until now, the wear resistance of natural diamond dies is 5.5 on either the (110) or (111) crystal plane on the upper and lower sides.
', and the die hole 2 is made perpendicular to this, which is considered to be good, and (1,00) is inferior and is therefore avoided. However, it has not been sufficiently clear which is better, (1, 10) or (111), as the variation is larger.

更に、第3図に示すように、各結晶面について硬さ、摩
耗の異方性があり、矢印の長い方向は比較的軟くて摩耗
し易く、矢印の短い方向は硬くて、摩耗し難い。従って
結晶面に垂直なダイス穴の摩耗の傾向も第4図に示すよ
うに、(110)面では矢印の<100 >方向には比
較的に摩耗し易く、これに直角なく110 >方向には
摩耗し難く、楕円形の摩耗を呈する。(第4図で[10
0)と(100)或いは(110:lと(TIO)の様
に互いに反対方向は夫々<100 >或いは<1.1.
O)で代表している)(100)面では矢印の四方向に
比較的摩耗し易く、四角摩耗を呈する。又(11,1)
面では矢印の三方向に比較的摩耗し易く、三角摩耗を呈
する。この様に天然ダイヤモンドは結晶面、結晶方位に
よって摩耗傾向が相違し、伸線ダイスとしての耐摩耗性
は超硬合金などより蟲に高いが徐々に不均一な偏摩耗を
生しる。合成ダイヤモンド単結晶に於いても、上述の天
然ダイヤモンドの場合と同様な結晶面、結晶方位による
摩耗傾向を有する。
Furthermore, as shown in Figure 3, each crystal plane has anisotropy in hardness and wear, with the long direction of the arrow being relatively soft and easily worn, and the short direction of the arrow being hard and not easily worn. . Therefore, as shown in Figure 4, the tendency of wear of the die hole perpendicular to the crystal plane is relatively easy to wear in the <100> direction of the arrow on the (110) plane, and in the 110> direction that is not perpendicular to this. Resistant to wear and exhibits oval wear. (In Figure 4 [10
Opposite directions such as 0) and (100) or (110:l and (TIO)) are <100> or <1.1, respectively.
The (100) plane (represented by O) is relatively easy to wear in the four directions of the arrows, and exhibits square wear. Also (11,1)
The surface wears relatively easily in the three directions indicated by the arrows, exhibiting triangular wear. In this way, natural diamond has different wear tendencies depending on its crystal plane and crystal orientation, and although its wear resistance as a wire drawing die is much higher than that of cemented carbide, etc., it gradually develops uneven uneven wear. Synthetic diamond single crystals also have the same tendency to wear due to crystal planes and crystal orientations as in the case of natural diamonds described above.

合成ダイヤモンド単結晶は天然ダイヤモンドと違って合
成された大きい単結晶を分断して小学結晶とするので、
互いに平行な上下2端面を全て特定の結晶面(110)
に整える事は容易であり、更に」−下2端面に垂直なダ
イス穴の中心軸に対して、対称的形状の正多角形や円形
にする事も容易である。一方天然ダイヤモンドはこの点
では非対称形状である。
Unlike natural diamond, synthetic diamond single crystals are synthesized by dividing large single crystals into small crystals.
Both upper and lower end faces that are parallel to each other are all specified crystal planes (110)
Furthermore, it is easy to make it into a regular polygon or circle that is symmetrical with respect to the central axis of the die hole perpendicular to the two lower end faces. Natural diamonds, on the other hand, are asymmetrical in this respect.

以」二の様に、合成ダイヤモンド単結晶は上下2端面の
結晶面を整える事や、対称的形状とする事によって、伸
線加工時のダイス内圧により発生ずる応力をダイス内壁
の全円周にわたって均一化出来て、偏摩耗軽減では天然
ダイヤモンドより有利であるが、上述の結晶学的性質に
よる結晶方位による摩耗の傾向を支配する事は出来てな
かった。
As shown in ``2'' below, synthetic diamond single crystals are made by aligning the upper and lower crystal planes and by making them symmetrical in shape, so that the stress generated by the internal pressure of the die during wire drawing can be suppressed over the entire circumference of the inner wall of the die. It can be made uniform and has an advantage over natural diamond in terms of reducing uneven wear, but it has not been able to control the tendency of wear due to the crystal orientation due to the crystallographic properties mentioned above.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は天然ダイヤモンド又は合成グイヤモンドを用
いた工具における上記の問題を解決するために、超高圧
高温下で合成されたダイヤモンドを分断することにより
、平行な2面がいずれも結晶面(]、10)である小単
結晶体を形成し、上記の平行な2面を長方形としその面
内で長径方向を摩耗し易い結晶方位<100 >に短径
方向を摩耗し難い結晶方位<110 >になるように形
成し、その長方形の中心に垂直な穴を明け、この穴の中
心軸に対して側面が平行になるように形成した構成とし
たものである。
In order to solve the above-mentioned problems in tools using natural diamond or synthetic Guyamond, this invention splits diamond synthesized under ultra-high pressure and high temperature, so that two parallel faces are both crystal planes (], 10 ), and the above two parallel planes are rectangular, and within that plane, the major axis direction is the crystal orientation <100>, which is easy to wear, and the minor axis direction is the crystal orientation, <110>, which is difficult to wear. The rectangle has a perpendicular hole in the center thereof, and the side surfaces are parallel to the central axis of the hole.

以下、その内容を詳述する。The details are detailed below.

超高圧高温で合成ダイヤモンド単結晶体を造るには、0
.5wm位の大きさの種結晶を成長させる方法が採られ
る。種結晶より少し大きい位の単結晶を造っていてはコ
スI・的に高くつき、反対に余り大き過ぎても、コスト
的に高くなり、最適な大きさは4111位である。これ
を、レーザ又はブレードによる切断加工によって分割す
る方法がコスI・的に最も有利である。単結晶形状が揃
っているので、加工の際に分割された小単結晶の平行な
に下2面を全て、特定の結晶面(110)に整えること
ができる。
To create a synthetic diamond single crystal at ultra-high pressure and high temperature, 0
.. A method is adopted in which a seed crystal with a size of about 5 wm is grown. If the single crystal is slightly larger than the seed crystal, it will be expensive in terms of cost I. On the other hand, if it is too large, the cost will be high, and the optimal size is about 4111. The method of dividing this by cutting with a laser or a blade is the most advantageous in terms of cost. Since the single crystal shape is uniform, the two parallel bottom surfaces of the small single crystals that are divided during processing can all be aligned to a specific crystal plane (110).

第5図に示すように、上下2端面の(110)面を長方
形とし、その長径方向に比較的摩耗し易い結晶方位<1
00 >をとり、その短径方向に摩耗し難い結晶方位<
110 >をとる。この長方形の寸法は、長径/短径=
1.07〜1.5の範囲が適当で、下限1゜07はコス
ト的に安いが性能向上が余り期待出来ず、上限1.5は
反対に性能向上ではこれ以上高くてもそれ楔効果なくコ
スト的にも高くつくためである。
As shown in Figure 5, the (110) planes of the upper and lower end surfaces are rectangular, and the crystal orientation is <1, which is relatively easy to wear in the major axis direction.
00>, and the crystal orientation <
110 > is taken. The dimensions of this rectangle are: major axis / minor axis =
A range of 1.07 to 1.5 is appropriate; the lower limit of 1°07 is cheap in terms of cost, but little improvement in performance can be expected, and the upper limit of 1.5 is on the contrary, even if it is higher than this, there is no wedge effect. This is because the cost is also high.

尚、形状的に上述の長径、短径を満足する範囲内であれ
ば四隅を角取りした様な顔像形状であっても差し支えな
い。
It should be noted that the facial image may have a shape with the four corners rounded as long as the shape satisfies the above-mentioned major axis and minor axis.

以上の適切な長方形の中心に垂直にダイス穴を明けた場
合、長径側はダイヤモンドの肉厚が比較的大となり、反
対に短径側はダイヤモンドの肉厚が比較的小となる。こ
の肉厚の相違はダイス加工でマウント時の締め圧、およ
び伸線加工時の内圧作用による発生応力や変位に影響を
及ぼす。この際の比較検討には軸対称の有限要素法によ
る計算を用いるのが最も適当である。計算結果は実施例
1に示すように、ダイヤモンドの肉厚が大になる程ダイ
ス内圧作用による発生応力は減少傾向にある。特に、ダ
イス内面近傍での発生応力はダイス内壁面での摩耗機構
とも密接な関係があり、発生応力が低くなる程、ダイス
壁圧での摩耗の軽減に有効であると考えられる。
When a die hole is drilled perpendicularly to the center of the above-mentioned appropriate rectangle, the thickness of the diamond will be relatively large on the long diameter side, and on the contrary, the thickness of the diamond will be relatively small on the short diameter side. This difference in wall thickness affects the clamping pressure during mounting during die processing, and the stress and displacement caused by internal pressure during wire drawing. In this case, it is most appropriate to use calculations based on the axially symmetric finite element method for comparative studies. As shown in the calculation results in Example 1, as the thickness of the diamond increases, the stress generated due to the internal pressure of the die tends to decrease. In particular, the stress generated near the inner surface of the die is closely related to the wear mechanism on the inner wall surface of the die, and it is considered that the lower the generated stress is, the more effective it is in reducing the wear caused by the die wall pressure.

従って、ダイヤモンドの結晶方位で摩耗し易い側をダイ
ヤモンドの半径、即ち肉厚を比較的大きくする事に依っ
て結晶方位で摩耗し難い側と同等の摩耗になる様になし
、偏摩耗を出来る限り防止する事が出来る。
Therefore, by making the radius of the diamond, that is, the wall thickness, on the side that is more likely to wear due to the crystal orientation of the diamond relatively large, the wear can be made to be the same as the side that is less likely to wear due to the crystal orientation, and uneven wear can be minimized as much as possible. It can be prevented.

〔実施例1〕 超高圧高温下で合成されたダイヤモンド単結晶から分割
された小単結晶の上下2面が第5図に示すように長方形
で、その寸法が短軸側半径が0.7鶴と長軸側半径が0
.8m及び1.Q++mで厚みは何れも1.1flの場
合について、次の2通りの条件で考える。
[Example 1] As shown in Fig. 5, the upper and lower surfaces of a small single crystal divided from a diamond single crystal synthesized under ultra-high pressure and high temperature are rectangular, and the dimensions are such that the short axis radius is 0.7 mm. and the major axis radius is 0
.. 8m and 1. The following two conditions will be considered for the case where Q++m and the thickness are 1.1 fl in each case.

1つは長方形の中心に垂直にダイス穴が明けられる前に
焼結マウントが施され、周囲からダイヤモンド部へ締め
付は圧力(外圧)が作用した時と、2つ目は0.5韮φ
のダイス穴が明けられ、ダイヤモンド部へ伸線加工時に
内圧が作用した時の夫々について発生応力と変位を軸対
称の有限要素法によって計算した。計算に当たり、第6
図、第7図は夫々合成ダイヤモンド単結晶の長方形に関
する焼結マウント時と、伸線ダイスでの設定したモデル
を示す。尚、計算では焼結マウント時の外圧Q=110
 kg/x*”とし伸線ダイスの内圧P=220kg/
酊2とし厚み方向Z−0,35mmラインでの円周方向
応力σkg7m2、半径方向変位Ur(m)を解析した
。その結果を第8図と第9図に示す。
One is that a sintered mount is applied before a die hole is drilled perpendicular to the center of the rectangle, and the tightening is done when pressure (external pressure) is applied from the periphery to the diamond part.
The stress and displacement generated when a die hole was drilled and internal pressure was applied to the diamond part during wire drawing were calculated using the axially symmetric finite element method. When calculating, the 6th
7 and 7 respectively show the model set during sintering mounting and the wire drawing die for a rectangular synthetic diamond single crystal. In addition, in the calculation, the external pressure Q = 110 at the time of sintering mounting
kg/x*” and the internal pressure of the wire drawing die P = 220 kg/
The circumferential stress σ kg 7 m 2 and the radial displacement Ur (m) at the thickness direction Z-0, 35 mm line were analyzed for the thickness direction Z-0. The results are shown in FIGS. 8 and 9.

なお、各図のOライン下方は、マウント時の圧縮応力(
第8図)、および変位(第9図)を示す。
Note that the area below the O line in each figure is the compressive stress at the time of mounting (
Figure 8) and displacement (Figure 9).

図中r1は長方形の短軸側半径をr2、r3は何れも長
方形の長軸側半径を示す。
In the figure, r1 indicates the radius of the short axis of the rectangle, and r2 and r3 indicate the radius of the long axis of the rectangle.

先ず、焼結マウントではダイヤモンド半径が大きくなる
と圧縮応力や変位は増加傾向にあるが、その差は余り大
きくない。伸線ダイスの際ではダイヤモンド半径が大き
くなる程応力や変位は減少傾向である。何れも、ダイス
穴近傍で最大の値を示す。実際、伸線時の応力や変位は
焼結マウント時の応力値と、伸線内圧時の応力時との合
成応力になるので、伸線内圧時の応力と同様傾向になる
First, in sintered mounts, compressive stress and displacement tend to increase as the diamond radius increases, but the difference is not very large. During wire drawing dies, stress and displacement tend to decrease as the diamond radius increases. In both cases, the maximum value is shown near the die hole. In fact, the stress and displacement during wire drawing are a composite stress of the stress value during sintering mount and the stress during wire drawing internal pressure, so they tend to be similar to the stress during wire drawing internal pressure.

〔実施例2〕 合成ダイヤモンド単結晶の切断分割された小単結晶体が
六面体であり、その上下2面が結晶面(110)の長方
形で長径側か結晶方位<100 >で、単結晶が結晶方
位<110 > とした2種類、(A)1゜41mX1
,6in、(B) 1.4 mX1.8 tmで厚さは
何れも1.1flのものを造った。
[Example 2] A small single crystal of a synthetic diamond single crystal is a hexahedron, and its upper and lower two faces are rectangular with crystal planes (110), and the long axis side or crystal orientation is <100>, and the single crystal is a hexahedron. Two types with orientation <110>, (A) 1° 41m x 1
, 6 inches, (B) 1.4 m x 1.8 tm, each with a thickness of 1.1 fl.

又、比較品としては同じく上下2面が結晶面(110)
で正方形の1 、4 tm X 1.4 v+*で厚さ
が1.11を造った。これらの六面体単結晶の上下2面
に垂直にダイス穴を明は直径0.241m、直径0.2
15 xm、直径0.197 tmのダイスを製作した
。又、別に比較品の天然ダイヤモンドダイスの上記のダ
イスも製作した。
Also, as a comparison product, the upper and lower two surfaces are crystal planes (110).
I made a square 1.4 tm x 1.4 v+* with a thickness of 1.11. A die hole is perpendicular to the upper and lower sides of these hexahedral single crystals, with a diameter of 0.241 m and a diameter of 0.2 m.
A die with a diameter of 15 x m and a diameter of 0.197 tm was manufactured. In addition, we also manufactured the above-mentioned natural diamond dice for comparison.

これらのダイスでステンレスMA線5US304の湿式
伸線をすべて同し条件で行ったところ、ダイス寿命に至
る迄の伸線量は第1表に示す結果であった。
When wet wire drawing of stainless steel MA wire 5US304 was performed using these dies under the same conditions, the amount of wire drawn until the life of the die was reached was as shown in Table 1.

即ち、本発明品は比較品の合成ダイヤモンドに対し1.
07〜1.75倍の性能であり、比較品の天然ダイヤモ
ンドに対しては1.91〜2.91倍の性能が得られた
That is, the product of the present invention has 1.
The performance was 0.7 to 1.75 times higher, and the performance was 1.91 to 2.91 times higher than that of the comparative natural diamond.

第  1  表   ステンレス鋼1iUS304での
実例〔効果〕 以上のように、この発明の工具は、分断された合成ダイ
ヤモンドの小単結晶体を用いることにより、穴をあける
平行2面の結晶面として(110)を使用し、この結晶
面を長方形とし、その長径を摩耗し易い結晶方位<10
0 >側に、その短径を摩耗し難い結晶方位<110 
>側にする事によって、貫通した大工具のダイヤモンド
の肉厚が変わるようにした。これによって、天然ダイヤ
モンド及び合成ダイヤモンドが木来持っている結晶面、
結晶方位による硬さ、摩耗の異方性から来る貫通穴工具
の偏摩耗に対して合成ダイヤモンド単結晶で上述の長方
形をとる事によって、ダイヤモンドの肉厚の大きい方が
内圧による発生応力が比較的低く、よってダイス内壁面
の摩耗の軽減が出来て、偏摩耗を防止し性能を一層向上
させる効果がある。
Table 1 Example using stainless steel 1iUS304 [Effects] As described above, the tool of the present invention uses a small single crystal of fragmented synthetic diamond to form two parallel crystal planes (110 ), the crystal plane is rectangular, and the major axis is set in the crystal orientation <10 that is easy to wear.
0> side, the crystal orientation <110 that makes it difficult to wear out its short axis
By setting it to the > side, the thickness of the diamond that penetrated the large tool changed. As a result, the crystal planes that natural diamonds and synthetic diamonds have,
For uneven wear of through-hole tools due to hardness due to crystal orientation and anisotropy of wear, by forming the synthetic diamond single crystal into the above-mentioned rectangular shape, the stress generated by internal pressure is relatively reduced when the diamond wall is thicker. Therefore, it is possible to reduce wear on the inner wall surface of the die, prevent uneven wear, and further improve performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は天然ダイヤモンドを用いたダイスの断面図、第
2図は天然ダイヤモンドを示し、(a)は平面図、(b
)は正面図、第3図はダイヤモンI・結晶面の硬さ、摩
耗の異方性の説明図であり、矢印の長い方向は摩耗し易
く、短い方向は摩耗し難いことを示す。第4図のI〜■
図はダイヤモンドの結晶面に垂直なダイス穴の摩耗傾向
を示す説明図であり、  〔〕は結晶方位を示す。第5
図の(a)は上下2面が長方形の合成ダイヤモンド単結
晶の平面図、同(b)は正面図、第6図は合成ダイヤモ
ンドの焼結マウントのモデルの断面図、第7図は合成ダ
イヤモンドの伸線ダイスのモデルの断面図、第8回は円
周方向応力の解析結果のグラフ、第9図は半径方向変位
の解析結果のグラフである。 1・・・・・・天然ダイヤモンド、2・・・・・・穴、
3・・・・・・ダイスケース、4・・・・・・焼結金属
、5.5′・・・・・・面、6・・・・・・合成ダイヤ
モンド、6′・・・・・・天然ダイヤモンド、7・・・
・・・焼結金属。 特許出願人  住友電気工業株式会社 同 代理人  鎌  1) 文  二 祿 (Y)   で− 昭和62年 5月12日
Fig. 1 is a cross-sectional view of a die using natural diamond, Fig. 2 shows a natural diamond, (a) is a plan view, (b)
) is a front view, and FIG. 3 is an explanatory diagram of the hardness of Diamond I/crystal surface and the anisotropy of wear. The long direction of the arrow indicates that wear is easy, and the short direction indicates that wear is difficult. I~■ in Figure 4
The figure is an explanatory diagram showing the wear tendency of the die hole perpendicular to the diamond crystal plane, and [ ] indicates the crystal orientation. Fifth
Figure (a) is a plan view of a synthetic diamond single crystal with rectangular upper and lower sides, (b) is a front view, Figure 6 is a cross-sectional view of a model of a sintered synthetic diamond mount, and Figure 7 is a synthetic diamond. Figure 8 is a graph of the analysis results of circumferential stress, and Figure 9 is a graph of the analysis results of radial displacement. 1... Natural diamond, 2... Hole,
3...Dice case, 4...Sintered metal, 5.5'...Face, 6...Synthetic diamond, 6'...・Natural diamond, 7...
...Sintered metal. Patent Applicant: Sumitomo Electric Industries, Ltd. Agent: Kama 1) Written by Y. May 12, 1986

Claims (1)

【特許請求の範囲】[Claims] 合成ダイヤモンドの単結晶を分断することにより、平行
な2端面がいずれも結晶面(110)である小単結晶体
を形成し、上記の平行な2端面を長方形とし、その長径
方向を摩耗し易い結晶方位〈100〉に、その短径方向
を摩耗し難い結晶方位〈110〉になるように分断し、
その長方形面の中心に垂直な穴を設けると共に、その穴
の中心軸に対し側面を平行に形成したことを特徴とする
合成ダイヤモンド単結晶を用いた工具。
By dividing a single crystal of synthetic diamond, a small single crystal whose two parallel end faces are both crystal planes (110) is formed, and the two parallel end faces are rectangular, and the long axis direction is easily worn. The crystal orientation is <100>, and the short axis direction is divided into crystal orientation <110>, which is difficult to wear.
A tool using a synthetic diamond single crystal, characterized by having a perpendicular hole in the center of the rectangular surface, and having side surfaces parallel to the central axis of the hole.
JP19764086A 1986-08-22 1986-08-22 Tool using synthetic diamond monocrystal Pending JPS6352710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19764086A JPS6352710A (en) 1986-08-22 1986-08-22 Tool using synthetic diamond monocrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19764086A JPS6352710A (en) 1986-08-22 1986-08-22 Tool using synthetic diamond monocrystal

Publications (1)

Publication Number Publication Date
JPS6352710A true JPS6352710A (en) 1988-03-05

Family

ID=16377848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19764086A Pending JPS6352710A (en) 1986-08-22 1986-08-22 Tool using synthetic diamond monocrystal

Country Status (1)

Country Link
JP (1) JPS6352710A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642852A1 (en) * 1993-09-14 1995-03-15 General Electric Company Diamond wire-drawing die
EP0655285A1 (en) * 1993-11-05 1995-05-31 General Electric Company Optically improved diamond wire-drawing-die
US5571236A (en) * 1992-08-28 1996-11-05 Sumitomo Electric Industries, Ltd. Diamond wire drawing die
JP2002102917A (en) * 2000-09-27 2002-04-09 Allied Material Corp Diamond die
JP2008174247A (en) * 2007-01-16 2008-07-31 Lintec Corp Sheet pasting apparatus, and pasting method
WO2018025650A1 (en) * 2016-08-02 2018-02-08 株式会社アライドマテリアル Die device
CN112351843A (en) * 2018-06-27 2021-02-09 住友电工硬质合金株式会社 Tool with through hole, diamond member, and diamond material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571236A (en) * 1992-08-28 1996-11-05 Sumitomo Electric Industries, Ltd. Diamond wire drawing die
EP0642852A1 (en) * 1993-09-14 1995-03-15 General Electric Company Diamond wire-drawing die
EP0655285A1 (en) * 1993-11-05 1995-05-31 General Electric Company Optically improved diamond wire-drawing-die
US5465603A (en) * 1993-11-05 1995-11-14 General Electric Company Optically improved diamond wire die
JP2002102917A (en) * 2000-09-27 2002-04-09 Allied Material Corp Diamond die
JP2008174247A (en) * 2007-01-16 2008-07-31 Lintec Corp Sheet pasting apparatus, and pasting method
WO2018025650A1 (en) * 2016-08-02 2018-02-08 株式会社アライドマテリアル Die device
JPWO2018025650A1 (en) * 2016-08-02 2019-01-31 株式会社アライドマテリアル Dice equipment
CN112351843A (en) * 2018-06-27 2021-02-09 住友电工硬质合金株式会社 Tool with through hole, diamond member, and diamond material

Similar Documents

Publication Publication Date Title
JPS6121974A (en) Composite polycrystal diamond
JPS6352710A (en) Tool using synthetic diamond monocrystal
JP2012066336A (en) Cutting insert made of tungsten cemented carbide based super hard alloy, and method of manufacturing the same
Ding et al. Finite element investigation on the evolution of wear and stresses in brazed CBN grits during grinding
US4120742A (en) Capacitance type pickup stylus and method of producing same
US5560241A (en) Synthetic single crystal diamond for wire drawing dies
US7124967B2 (en) Fan jet nozzle for use with ultra high pressure liquid phase cleaning media for use in deflashing apparatus
JPS59175915A (en) End mill
CN107020395A (en) It is a kind of to be used for the cylindrical polycrystal diamond cutter with interior hole machined of all kinds of copper products
CN102059747A (en) Method for forming sapphire square hole
JPS59229227A (en) Die using single crystal of synthetic diamond
CN206839199U (en) It is a kind of that to be used for all kinds of copper products cylindrical with the polycrystal diamond cutter of interior hole machined
JP2004148471A (en) End mill using single crystal diamond
JPH11347807A (en) Cutting tool and cutting method for ductile cutting-resistant material
JP2686987B2 (en) Diamond cutting tool for mirror surface cutting
JPS63144903A (en) Specular face cutting tool
CN213534061U (en) Polycrystalline diamond compact
JP2555438Y2 (en) Plunger pump
JPH09295052A (en) Die for press brake
JP2007098423A (en) Circular punch for piercing
CN103551667B (en) Has the manufacture method of the annular saw of cutting blade cutter head
JPH02152704A (en) Industrial diamond tip and cutting tool therewith
JPS6339749A (en) Cutting method for ceramic
JPS60249506A (en) Cutting tool
CN116673800A (en) Polycrystalline diamond grinding method based on pressure regulation