JPS6352697B2 - - Google Patents

Info

Publication number
JPS6352697B2
JPS6352697B2 JP56060601A JP6060181A JPS6352697B2 JP S6352697 B2 JPS6352697 B2 JP S6352697B2 JP 56060601 A JP56060601 A JP 56060601A JP 6060181 A JP6060181 A JP 6060181A JP S6352697 B2 JPS6352697 B2 JP S6352697B2
Authority
JP
Japan
Prior art keywords
radiation
cylindrical measuring
measuring section
rotating disk
void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56060601A
Other languages
Japanese (ja)
Other versions
JPS57175247A (en
Inventor
Sunao Narabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56060601A priority Critical patent/JPS57175247A/en
Publication of JPS57175247A publication Critical patent/JPS57175247A/en
Publication of JPS6352697B2 publication Critical patent/JPS6352697B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Description

【発明の詳細な説明】 本発明は高温・高圧の蒸気及び水が流れる原子
炉やボイラー等の配管内の気体と液体の比率を測
定するボイド率計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a void ratio meter that measures the ratio of gas to liquid in piping of nuclear reactors, boilers, etc. through which high-temperature, high-pressure steam and water flow.

蒸気と水の様に気相と液相の混合流体を二相流
と言い、配管断面内の二相流中の蒸気の比率をボ
イド率と言う。ボイド率は二相流を取り扱う原子
炉やボイラーでは重要な測定項目の1つとなつて
いる。
A mixed fluid of gas and liquid phases, such as steam and water, is called a two-phase flow, and the ratio of steam in the two-phase flow within a pipe cross section is called the void ratio. Void fraction is one of the important measurement items in nuclear reactors and boilers that handle two-phase flow.

従来の放射線を利用したボイド率計の構成は第
1図に示したようになつている。すなわち、円筒
状測定部1をはさんで、X線源2、及びX線検出
器3が配置され、X線ビーム4はコリメータ5に
よつて細い平行ビームになるように絞られてい
る。そして円筒状測定部1の中を透過してスリツ
ト6からX線検出器3に入射する。X線検出器3
からの出力信号は信号ケーブル7を通じて図示し
ない信号処理回路に送られる。なお、第1図中符
号8で示したものは、円筒状測定部1の中を流れ
ている液体中に混在している蒸気の泡である。
The configuration of a conventional void ratio meter using radiation is shown in FIG. That is, an X-ray source 2 and an X-ray detector 3 are placed with the cylindrical measuring section 1 in between, and the X-ray beam 4 is focused by a collimator 5 into a narrow parallel beam. The light then passes through the cylindrical measuring section 1 and enters the X-ray detector 3 through the slit 6. X-ray detector 3
The output signal is sent to a signal processing circuit (not shown) through a signal cable 7. Note that what is indicated by the reference numeral 8 in FIG. 1 is vapor bubbles mixed in the liquid flowing inside the cylindrical measuring section 1.

このように構成された従来のボイド率計におい
て、円筒状測定部1内が空の時及び水で満たされ
ている時のX線検出器の出力電圧をそれぞれ、IA
ボルト、IWボルト、また円筒状測定部内を測定す
べき二相流が流れている時のX線検出器の出力電
圧をIXとすると、ボイド率αは次式で与えられ
る。
In the conventional void ratio meter configured in this way, the output voltage of the X-ray detector when the cylindrical measuring section 1 is empty and when it is filled with water is expressed as I A
volt, I W volt, and the output voltage of the X-ray detector when the two-phase flow to be measured is flowing inside the cylindrical measuring section is I X , the void ratio α is given by the following equation.

α=ρW/ρW′−ρV′・ln(IX/IW)/ln(IA/IW
) −ρW−ρW′/ρW′−ρV′ ここでρWは水の密度、ρW′は高温水の密度、
ρV′は蒸気の密度である。
α=ρ W /ρ W ′−ρ V ′・ln(I X /I W )/ln(I A /I W
) −ρ W −ρ W ′/ρ W ′−ρ V ′ where ρ W is the density of water, ρ W ′ is the density of high-temperature water,
ρ V ′ is the vapor density.

このボイド率αは、X線ビーム4が円筒状測定
部1内に存在する多数の蒸気泡8を横切る長さを
それぞれ、l1,l2,…li,…,lnとし円筒状測定部
1を横切るX線ビーム4の長さをlDとすると、次
式のαと等価である。
This void ratio α is determined by assuming that the lengths of the X-ray beam 4 across the large number of vapor bubbles 8 existing in the cylindrical measuring part 1 are l 1 , l 2 , ... li, ..., ln, respectively. Letting the length of the X-ray beam 4 that traverses l D be equivalent to α in the following equation.

α=〔oi=1 li〕/lD つまりX線ボイド率計によつて測定されるガイ
ド率はX線ビームが横切る二相流体の長さlDに対
する蒸気泡を横切る長さの合計の比率である。こ
のようなガイド率を特に局所ボイド率と言う。
α=[ oi=1 li]/l D In other words, the guiding ratio measured by the X-ray void meter is the sum of the length across the vapor bubble relative to the length of the two-phase fluid traversed by the X-ray beam l D This is the ratio of Such a guide rate is particularly called a local void rate.

いまX線源2とX線検出器3、コリメータ5お
よびスリツト6を一体に動かせ円筒状測定部1の
中心軸に垂直な平面内で上下に、例えば第2図に
示すとうり上方に移動すると、X線ビーム4の高
さxにおけるボイド率α(x)が同様に得られる。
このα(x)をビーム高さx=−r0からx=+r0
まで次式でlD=2√0 22の重みをつけて積分
し、円筒状測定部の断面積A=πr0 2で除すと、断
面内平均ボイド率が得られる。
Now, if the X-ray source 2, X-ray detector 3, collimator 5, and slit 6 are moved together up and down within a plane perpendicular to the central axis of the cylindrical measuring section 1, for example, upward as shown in FIG. , the void fraction α(x) at the height x of the X-ray beam 4 is similarly obtained.
This α(x) is calculated from the beam height x=-r 0 to x=+r 0
By integrating the following equation with a weight of l D =2√ 0 22 and dividing by the cross-sectional area A = πr 0 2 of the cylindrical measurement part, the average void fraction in the cross section can be obtained.

=〔∫+r 0-r02√0 22 ・α(x)dx〕/πr0 2 このようにすることによつて正確な断面内平均
ボイド率が得られるが、従来のボイド率計は第
3図に示す様に、固定1本ビームまたは第4図に
示す様に固定3本ビーム等のものが多く、また線
源も取扱いが不便で、線束の低いγ線源が用いら
れることが多かつた。固定3本ビーム程度では断
面内平均ガイド率は二相流の流動様式によつては
測定誤差が多い時には25%以上も生じるため、実
用上大きな問題となつていた。
= [∫ +r 0-r0 2√ 0 22・α(x)dx]/πr 0 2By doing this, an accurate average void fraction within the cross section can be obtained, but the conventional void fraction meter Most of them have one fixed beam as shown in Figure 3 or three fixed beams as shown in Figure 4, and the radiation source is also inconvenient to handle, so a gamma ray source with low flux is used. There were many. With three fixed beams, the average guide rate within the cross section can exceed 25% depending on the flow pattern of the two-phase flow and when there are many measurement errors, which has become a big problem in practice.

本発明は上記の点に鑑みてなされたもので、局
所ボイド率分布を求め、正確な断面内平均ボイド
率を高速過渡現象においても得ることができる
放射線ガイド率計を提供することにある。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a radiation guide rate meter that can obtain a local void fraction distribution and obtain an accurate average void fraction within a cross section even in high-speed transient phenomena.

すなわち、本発明は円筒状測定部をはさんで配
置された放射線源及び放射線検出器において、円
筒状測定部と放射線検出器との間に複数個のスリ
ツト孔を有する回転円盤を配置し、回転円盤上の
スリツト孔によつて形成される放射線ビームが円
筒状測定部を下から上へ走査することにより局所
ガイド率分布を求め正確な断面内平均ボイド率を
高速過渡現象においても得ることができる放射線
ガイド率計である。
That is, in the present invention, in a radiation source and a radiation detector arranged with a cylindrical measurement part in between, a rotating disk having a plurality of slit holes is arranged between the cylindrical measurement part and the radiation detector, and the rotation By scanning the cylindrical measuring section from bottom to top with the radiation beam formed by the slit hole on the disk, the local guide rate distribution can be determined and accurate average void fraction within the cross section can be obtained even in high-speed transient phenomena. It is a radiation guided rate meter.

以下、第1図と同一部分は同一符号で示す第5
図を参照して本発明の一実施例を説明する。
Hereinafter, parts that are the same as those in Figure 1 are designated by the same reference numerals.
An embodiment of the present invention will be described with reference to the drawings.

本発明の放射線ボイド率計は円筒状測定部1を
はさんで配置された放射線源2及び放射線検出器
3において円筒状測定部1と放射線検出器3との
間に回転円盤9を配置している。ここで放射線源
2はX線であつてもガンマ線であつてもあるいは
他の放射線であつても円筒状測定部を透過できる
放射線源であれば良い。また放射線検出器3は放
射線源2から出る放射線を検出できるものであれ
ば良い。回転円盤9には同一円周上に等間隔に複
数個のスリツト孔10があけてあり、放射線源2
から出た放射線はスリツト孔10を通過したもの
のみが細い放射線ビーム4となり、放射線検出器
3に到達する。この放射線ビームは円筒状測定部
1を通過する際に円筒状測定部内の二相流の局所
ガイド率に応じて減衰する。回転円盤9が回転す
るのに応じてスリツト孔10を通過する放射線ビ
ーム4は、第6図に示す通り、円筒状測定部1の
下端から上端へと走査される。回転円盤9は第7
図に示すように同一円周上に等間隔に複数個のス
リツト孔10があけてあり、1つのスリツト孔が
円筒状測定部1を走査し終わると次に次のスリツ
ト孔が走査を始めるように間隔が選定してある。
回転円盤9は直接駆動電動機11によつて回転さ
れ、直接駆動電動機11は位相ロツクループ制御
回路12により一定の回転速度で回るように制御
される。また、回転円盤9の外周部は、つば状に
薄くなつており一定の間隔をおいて複数個の小孔
13があいており、光センサー14により、小孔
を通過する光のパルスを電気信号に変換し、パル
スカウント回路15により、回転円盤の回転角を
測定できるようになつている。なお、カウントし
た回転角に対応する信号は、360゜回転するごとに
リセツトしてゼロにもどすように構成されてい
る。また円筒状測定部1は金属ベリリウムを使用
している。金属ベリリウムは放射線の減衰が少な
いのでこれを用いると円筒状測定部1内の二相流
の状況が測定しやすく、測定精度が向上する。ま
た、走査時間も短くて済むので高速の過渡現象に
おいても局所ガイド率分布を求め、正確な断面内
平均ガイド率を得ることができるので好都合であ
る。さらに、本発明の放射線ガイド率計では、回
転円盤を用いて放射線ビームの走査を行なつてい
るため、機械的な振動の発生が少なく高速な走査
が可能である。むしろ現在の技術レベルでは走査
速度の最大値は放射線検出器3の応答速度によつ
て制限されているのが現状である。放射線検出器
3としては、NaI(Tl)シンチレーターと光電子
増倍管を一体に構成したものを使用する。なおシ
ンチレーターの外径は円筒状測定部の内径より大
きいことが測定原理上必要である。
The radiation void rate meter of the present invention has a radiation source 2 and a radiation detector 3 arranged with a cylindrical measuring part 1 in between, and a rotating disk 9 is arranged between the cylindrical measuring part 1 and the radiation detector 3. There is. Here, the radiation source 2 may be X-rays, gamma rays, or other radiation as long as it can pass through the cylindrical measuring section. Further, the radiation detector 3 may be of any type as long as it can detect radiation emitted from the radiation source 2. A plurality of slit holes 10 are formed in the rotating disk 9 at equal intervals on the same circumference, and the radiation source 2
Only the radiation that passes through the slit hole 10 becomes a narrow radiation beam 4 and reaches the radiation detector 3. As this radiation beam passes through the cylindrical measuring section 1, it is attenuated depending on the local guidance rate of the two-phase flow within the cylindrical measuring section. As the rotary disk 9 rotates, the radiation beam 4 passing through the slit hole 10 is scanned from the lower end to the upper end of the cylindrical measuring section 1, as shown in FIG. Rotating disk 9 is the seventh
As shown in the figure, a plurality of slit holes 10 are drilled at equal intervals on the same circumference, and when one slit hole finishes scanning the cylindrical measuring part 1, the next slit hole starts scanning. The interval is selected.
The rotating disk 9 is rotated by a direct drive motor 11, and the direct drive motor 11 is controlled by a phase lock loop control circuit 12 to rotate at a constant rotation speed. The outer periphery of the rotating disk 9 is thin like a brim and has a plurality of small holes 13 at regular intervals, and an optical sensor 14 converts pulses of light passing through the holes into electrical signals. The rotation angle of the rotating disk can be measured by the pulse count circuit 15. Note that the signal corresponding to the counted rotation angle is configured to be reset and returned to zero every time it rotates 360 degrees. Further, the cylindrical measuring section 1 uses metal beryllium. Since metallic beryllium has little attenuation of radiation, its use makes it easy to measure the state of the two-phase flow within the cylindrical measuring section 1, improving measurement accuracy. In addition, since the scanning time is short, it is possible to determine the local guide rate distribution even in high-speed transient phenomena and obtain an accurate average guide rate within the cross section, which is advantageous. Furthermore, since the radiation guide rate meter of the present invention uses a rotating disk to scan the radiation beam, high-speed scanning is possible with less mechanical vibration. Rather, at the current state of the art, the maximum value of the scanning speed is currently limited by the response speed of the radiation detector 3. As the radiation detector 3, one in which a NaI (Tl) scintillator and a photomultiplier tube are integrated is used. Note that it is necessary for the measurement principle that the outer diameter of the scintillator is larger than the inner diameter of the cylindrical measuring section.

以上に説明したように本発明の放射線ボイド率
計は、円筒状測定部内の二相流の局所ガイド率分
布や断面内平均ガイド率を高速過渡現象において
も精度良く測定することができる。また、回転円
盤を用いているため、振動が少なくなめらかに走
査を行なうことができる。また機構上の難点も少
ないので、実施も容易である。なおこの実施例で
は円筒状の測定部を用いたが本発明はこれに限定
されるものではなく角筒等の筒状であつても、ま
た箱型であつても良く特に形状に限定されること
はない。
As explained above, the radiation void rate meter of the present invention can accurately measure the local guide rate distribution and the cross-sectional average guide rate of the two-phase flow in the cylindrical measuring section even in high-speed transient phenomena. Furthermore, since a rotating disk is used, scanning can be performed smoothly with little vibration. Furthermore, since there are few mechanical difficulties, it is easy to implement. Although a cylindrical measuring section was used in this embodiment, the present invention is not limited to this, and may be a square tube or other cylindrical shape, or a box-like shape, and is particularly limited to the shape. Never.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のボイド率計の原理を示す概略構
成図、第2図はX線ビームの高さxにおける局所
ガイド率α(x)の測定原理を示す概略構成図、
第3図は従来の1ビームガイド率計を示す概略構
成図、第4図は従来の3ビームガイド率計を示す
概略構成図、第5図は本発明の一実施例を示す斜
視図、第6図は本発明の測定原理を示す縦断面
図、第7図は本発明に係る回転円盤部位の構成を
X線検出器側から示す正面図である。 1…円筒状測定部、2…放射線源、3…放射線
検出器、6…放射線ビーム、5…コリメータ、6
…スリツト、7…信号ケーブル、8…蒸気泡、9
…回転円盤、10…スリツト孔、11…直接駆動
電動機、12…位相ロツクループ制御回路、13
…小孔、14…光センサー、15…パルスカウン
ト回路、16…配管取付用フランジ、17…高圧
ケーブル、18…外枠。
FIG. 1 is a schematic configuration diagram showing the principle of a conventional void rate meter, FIG. 2 is a schematic configuration diagram showing the measurement principle of the local guide rate α(x) at the height x of the X-ray beam,
FIG. 3 is a schematic configuration diagram showing a conventional one-beam guide rate meter, FIG. 4 is a schematic configuration diagram showing a conventional three-beam guide rate meter, and FIG. 5 is a perspective view showing an embodiment of the present invention. FIG. 6 is a longitudinal sectional view showing the measurement principle of the present invention, and FIG. 7 is a front view showing the configuration of the rotating disk portion according to the present invention from the X-ray detector side. DESCRIPTION OF SYMBOLS 1... Cylindrical measurement part, 2... Radiation source, 3... Radiation detector, 6... Radiation beam, 5... Collimator, 6
...Slit, 7...Signal cable, 8...Steam bubble, 9
... Rotating disc, 10... Slit hole, 11... Direct drive motor, 12... Phase lock loop control circuit, 13
...small hole, 14...optical sensor, 15...pulse count circuit, 16...flange for piping installation, 17...high voltage cable, 18...outer frame.

Claims (1)

【特許請求の範囲】 1 筒状測定部と、この筒状測定部をはさんでそ
れぞれ配置された放射線源及び放射線検出器と、
前記筒状測定部と前記放射線検出器との間に配置
された複数のスリツト孔を有する回転円盤とを具
備してなる放射線ボイド率計において、前記スリ
ツト孔は前記回転円盤に円周等配に設けられ、前
記回転円盤は一定速度で回転するための制御装置
および回転角の検知手段を備え、さらに前記放射
線検出器からの出力信号を取り込み局所ボイド率
分布および断面内平均ボイド率を演算する信号処
理回路を備えたことを特徴とする放射線ボイド率
計。 2 前記筒状測定部は金属ベリリウムで形成され
てなる特許請求の範囲第1項記載の放射線ボイド
率計。
[Claims] 1. A cylindrical measuring section, a radiation source and a radiation detector respectively arranged across the cylindrical measuring section,
In the radiation void rate meter comprising a rotating disk having a plurality of slit holes disposed between the cylindrical measuring section and the radiation detector, the slit holes are arranged at equal intervals on the circumference of the rotating disk. The rotating disk is provided with a control device for rotating at a constant speed and a rotation angle detection means, and further includes a signal for receiving an output signal from the radiation detector and calculating a local void fraction distribution and an average void fraction in the cross section. A radiation void rate meter characterized by being equipped with a processing circuit. 2. The radiation void rate meter according to claim 1, wherein the cylindrical measuring section is made of metal beryllium.
JP56060601A 1981-04-23 1981-04-23 Radiation void factor meter Granted JPS57175247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56060601A JPS57175247A (en) 1981-04-23 1981-04-23 Radiation void factor meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56060601A JPS57175247A (en) 1981-04-23 1981-04-23 Radiation void factor meter

Publications (2)

Publication Number Publication Date
JPS57175247A JPS57175247A (en) 1982-10-28
JPS6352697B2 true JPS6352697B2 (en) 1988-10-19

Family

ID=13146922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56060601A Granted JPS57175247A (en) 1981-04-23 1981-04-23 Radiation void factor meter

Country Status (1)

Country Link
JP (1) JPS57175247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311989A (en) * 1988-04-20 1989-12-15 Outboard Marine Corp Titling fixture for outboard motor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
GB0309383D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray tube electron sources
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
US8804899B2 (en) 2003-04-25 2014-08-12 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
GB0816823D0 (en) 2008-09-13 2008-10-22 Cxr Ltd X-ray tubes
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
US9791590B2 (en) 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350564A (en) * 1964-12-23 1967-10-31 Charles F Bonilla Void detection utilizing neutron attenuation
JPS49108896A (en) * 1973-01-05 1974-10-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350564A (en) * 1964-12-23 1967-10-31 Charles F Bonilla Void detection utilizing neutron attenuation
JPS49108896A (en) * 1973-01-05 1974-10-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311989A (en) * 1988-04-20 1989-12-15 Outboard Marine Corp Titling fixture for outboard motor

Also Published As

Publication number Publication date
JPS57175247A (en) 1982-10-28

Similar Documents

Publication Publication Date Title
JPS6352697B2 (en)
Shollenberger et al. Gamma-densitometry tomography of gas holdup spatial distribution in industrial-scale bubble columns
CA1302590C (en) Arrangement for examining a body comprising a radiation source
US4596926A (en) Formation density logging using multiple detectors and sources
US5394453A (en) Device for measuring the pulse transfer spectrum of elastically scattered X-ray quanta
De Vuono et al. Design of an isotopic CT scanner for two phase flow measurements
US4463263A (en) Positron-annihilation-radiation transmission gauge
US4705944A (en) Formation density logging while drilling
CA1236591A (en) Method and apparatus for crack detection and characterization
US4369368A (en) Level measuring device
JP2731415B2 (en) Mass measuring device per unit volume of volume of elemental substance
US6134289A (en) Thermal neutron detection system
US4562584A (en) Apparatus for measuring void ratios by using radiation
Narabayashi et al. Measurement of transient flow pattern by high speed scanning X-ray void fraction meter
US3699338A (en) Oscillating monitor for fissile material
US4409480A (en) Method and system for the testing and calibration of radioactive well logging tools
JPH01227050A (en) Method and apparatus for measuring density and others of object
JPH0245145B2 (en)
US3154684A (en) X-ray analysis system with means to detect only the coherently scattered X-rays
US3473021A (en) Radioactive sensor for measuring liquid levels
JPH04269697A (en) Non-destructive inspection device for reactor fuel rod
US3470372A (en) Fog density measurement by x-ray scattering
GB2179442A (en) Formation density logging using two detectors and sources
JP5398670B2 (en) Neutron measuring device
Simons et al. An Investigation into the Usefulness of" Figure of Merit" as a Criterion of a Collimating System