JPS6352488A - Manufacture of avalanche photo diode - Google Patents

Manufacture of avalanche photo diode

Info

Publication number
JPS6352488A
JPS6352488A JP61195217A JP19521786A JPS6352488A JP S6352488 A JPS6352488 A JP S6352488A JP 61195217 A JP61195217 A JP 61195217A JP 19521786 A JP19521786 A JP 19521786A JP S6352488 A JPS6352488 A JP S6352488A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
inp
providing
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61195217A
Other languages
Japanese (ja)
Inventor
Hitoshi Unno
海野 仁志
Tetsuo Sadamasa
定政 哲雄
Fumihiko Kuroda
黒田 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61195217A priority Critical patent/JPS6352488A/en
Publication of JPS6352488A publication Critical patent/JPS6352488A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a highly concentrated portion of an impurity with satisfactory crystallinity by a method wherein a buried layer with satisfactory crystallinity is obtained by a process to provide a semiconductor layer having a large carrier concentration at a recessed part provided at the semiconductor layer. CONSTITUTION:After a mask has been installed on an n-InP layer 14 and a recess has been formed by a circular-shaped selective etching process, a miss transport is carried out by using raw materials of an InP and InCl3 at a raw material temperature of 670 lC and at a substrate temperature of 620 deg.C so that an InP layer 15 can be grown at the recess. After the mask has been removed, an n-InP layer 16 is grown. By installing a mask on the n-InP layer 16, a circular-shaped selective diffusion process is carried out, and a P type layer 17 is formed by introducing an element Cd. Then, an insulating film 18 is formed and an electrode 19 is formed so that a device can be manufactured.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野〕 この発明は長波長帯の受光素子に係シ、特にアバランシ
ェフォトダイオードの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a light receiving element in a long wavelength band, and particularly to a method for manufacturing an avalanche photodiode.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

(従来の技術) p−n接合に逆バイアスを印加し、光によって生じたキ
ャリアを雪崩増倍させて用いる所謂アバランシェフォト
ダイオード(APD)には高速応答、内部増幅作用、高
量子効率等の優れた特徴がある。
(Prior art) The so-called avalanche photodiode (APD), which applies a reverse bias to the p-n junction and avalanches multiplies carriers generated by light, has advantages such as high-speed response, internal amplification, and high quantum efficiency. It has some characteristics.

特にInP系材料を用いて光吸収層と′電流増倍層を独
立にもつAPDは長波長帯光伝送システムのキーコンポ
ーネントとして、近年さかんに研究開発が進められてい
る。
In particular, APDs, which are made of InP-based materials and have independent light absorption layers and current multiplication layers, have been actively researched and developed in recent years as key components of long wavelength band optical transmission systems.

この穆のAPDにおいて^あ電界を印加した除に発生す
る電界集中による局所ブレークダウン全防ぎ、又、動作
電圧を下げる為に、高濃度のn型埋め込み層を受光領域
内に設ける工夫がこれまでになされている。
In this APD, in order to completely prevent local breakdown due to electric field concentration that occurs when an electric field is applied, and to lower the operating voltage, it has been devised to provide a highly concentrated n-type buried layer within the light receiving area. is being done.

従来は、この高儂度の埋め込み層をシリコン(Si)セ
レン(S e ) 等にイオン注入する憂により形成し
ていた。しかし、イオン注入を行なう事によって結晶は
損傷を強く受け、イオン注入後の熱処理によっても、結
晶性の回復は、不充分であった。従ってイオン注入を行
った種晶層上へ結晶成長全行なっても良好な結晶が得ら
れなかった。
Conventionally, this high-temperature buried layer has been formed by ion implantation into silicon (Si), selenium (S e ), or the like. However, the crystal was severely damaged by the ion implantation, and even with heat treatment after the ion implantation, recovery of crystallinity was insufficient. Therefore, even if crystal growth was performed on the seed crystal layer into which ions were implanted, no good crystal could be obtained.

1檀品性の悪い層中にp−n接合を設けると、接合部に
印加される高電界のため、APDの破壊が多発しAPD
製造上の障害となっていた。
1. If a p-n junction is provided in a layer with poor quality, the high electric field applied to the junction will cause frequent destruction of the APD.
This was an obstacle in manufacturing.

(発明が解決しようとする問題点) APDの特性向上のため、イオン注入により、高不純物
a間層が作られているが、イオン注入によ)結晶が損傷
しそれが原因と思われる素子の不良が多発し九、これを
解決するtめに、本発明は結晶性の良い高不純物濃反層
を持ち、特性及び信頼性の良いAPD金得る事を目的と
する。
(Problem to be solved by the invention) In order to improve the characteristics of APD, a highly impurity interlayer is created by ion implantation. In order to solve this problem, the present invention aims to obtain APD gold having a high impurity concentration layer with good crystallinity, and having good characteristics and reliability.

〔発明の構成〕[Structure of the invention]

(問題点を解決する九めの手段) この発明は、形成し九半導体層に凹部を設け、該凹部に
キャリア4度の大きい半導体21を役ける工程により、
結晶性の良好な埋めこみ、iIt得てアバランシェフォ
トダイオードta造するものである。
(Ninth Means for Solving the Problems) The present invention provides a recessed portion in the formed semiconductor layer and a semiconductor 21 having a large carrier 4 degree in the recessed portion.
An avalanche photodiode can be fabricated by obtaining an embedment with good crystallinity.

(作用) イオン注入プロセスを用いて、n+層’i形成する従来
の方法に比べ1本発明においては結晶性の良いn中層が
得られる念め、局部ブレークダウンや、暗電流等が小さ
くなり、素子の特性及び信頼性が向上した。
(Function) Compared to the conventional method of forming an n+ layer by using an ion implantation process, the present invention provides an n-middle layer with good crystallinity, which reduces local breakdown, dark current, etc. The characteristics and reliability of the device have improved.

(実施例) 以下本発明を第1図を参照して説明する。第1図は、ア
バランシェフォトダイオードの断面図であり、次に述べ
るように構成した。まず、n型InP基@11 上KI
nGaAs及びInGaAsPのn型混合層12 、1
3t−InPに格子整合する様に結晶成長し念、混合層
のキャリア濃度は4刈Q15Cffl 1として厚さを
それぞれ3μm s 0.5μmとし次。
(Example) The present invention will be described below with reference to FIG. FIG. 1 is a sectional view of an avalanche photodiode, which is constructed as described below. First, the n-type InP group @11 upper KI
n-type mixed layer 12, 1 of nGaAs and InGaAsP
In order to grow the crystal so as to lattice-match it to 3t-InP, the carrier concentration of the mixed layer was set to 4, Q15Cffl 1, and the thickness was set to 3 μm and 0.5 μm, respectively.

次に混合層上にキャリア濃度2X10’3cm−”厚さ
l−mのn −InPn五層を成長した。
Next, five n-InPn layers with a carrier concentration of 2×10'3 cm-'' and a thickness of 1-m were grown on the mixed layer.

次にn −InPn五層の上にマスクを設けて円形状の
選択的エツチングを施こし、深さ0.7μmの凹部を形
成し九。
Next, a mask was provided on the five n-InPn layers, and circular selective etching was performed to form a recess with a depth of 0.7 μm.

凹部を設は九ウェハーに原料温度670℃ 基板温度6
20℃でInPとInCl5’z原料としてマストラン
スポートを行ない、凹部にInP層15を成長した。こ
の際n型ドーパントとして、St−加え、キャリア濃度
を3 X 10” cm−”とした。
The concavity was formed on the 9 wafers at a raw material temperature of 670°C and a substrate temperature of 6.
Mass transport was performed using InP and InCl5'z raw materials at 20° C. to grow an InP layer 15 in the recessed portion. At this time, St- was added as an n-type dopant, and the carrier concentration was set to 3 x 10''cm-''.

次にマスクを取り除き、キャリア濃度2X10”cm−
”厚さ2,2μmのn−InP層16t−成長した。
Next, remove the mask and reduce the carrier concentration to 2X10"cm-
``A 16t-n-InP layer with a thickness of 2.2 μm was grown.

次にInP層16にマスクを設けて円形状の選択的拡散
を行なり、拡散は560℃20分間P圧下でCd元素を
2μmの深さまで導入しP型層17を形成し比、拡散の
円形パターンは前記凹部15の円形パターンより大きく
設定した0次に絶縁膜18tl−CV D (Chem
ical  vapor  deposition )
 iにより形成し、711t極19を形成して素子を作
成しt。
Next, a mask is provided on the InP layer 16 to perform selective diffusion in a circular shape, and the diffusion is performed at 560° C. for 20 minutes under P pressure to introduce Cd element to a depth of 2 μm to form a P-type layer 17. The pattern is a zero-order insulating film 18tl-CVD (Chem.
ical vapor deposition)
i, and form the 711t pole 19 to create an element.

発明の第2の実施例 第2図t−参照して他の実施例を説明する。第2図はバ
ララシエフォトダイオードの断面図を示すもので次に述
べるように構成した。!ず HiMInP基板21上に
、順次n型InP第1層22゜n型1nGaAs第2層
23.n型InGaAsP第3層24.n形1nP’、
再4層25t″結晶成長した。各々のキャリア濃度及び
膜厚は、第1121はl×10”c+−’ + 1 μ
m 第2層22は3×10” ’ cm−” + 3μ
rrzJ 3 f?323は4 X 10” Cm−3
+第4鳴24fl、l X I O”cm t 1.8
μmとした。
Second Embodiment of the Invention Another embodiment will be described with reference to FIG. FIG. 2 shows a cross-sectional view of a Bararassie photodiode, which was constructed as described below. ! On the HiMInP substrate 21, an n-type InP first layer 22.degree., an n-type 1nGaAs second layer 23. n-type InGaAsP third layer 24. n-type 1nP',
A 4-layer 25t'' crystal was grown again.The carrier concentration and film thickness of each layer were l x 10''c+-' + 1μ for the 1121st layer.
m second layer 22 is 3×10"cm-" + 3μ
rrzJ 3 f? 323 is 4 x 10” Cm-3
+4th sound 24fl, l X I O”cm t 1.8
It was set as μm.

次に第4層上にマスクを設けて、円形状の選択的なエツ
チングを行ない、深さ2μmの凹部を形成した。
Next, a mask was provided on the fourth layer, and circular selective etching was performed to form a recess with a depth of 2 μm.

次に凹部中にキャリア濃度3 XIO” CI!1−”
のInP層26を放長しt。
Next, the carrier concentration in the recess is 3XIO"CI!1-"
The InP layer 26 of t is elongated.

次にW、4層上KInP、唱26より大きな円形上のマ
スクを設けて560℃15分間P圧下でCd元索を1.
5μmの深さまでP耐層27を形成した。
Next, a circular mask larger than W, KInP on the 4th layer, and Sho 26 was provided, and the Cd original cable was heated at 560°C for 15 minutes under P pressure.
The P resistance layer 27 was formed to a depth of 5 μm.

次に、?、縁膜を形成した0次に、絶縁膜28.電極2
9を形尺して素子を完成した。
next,? , an insulating film 28 . Electrode 2
9 was cut to size to complete the element.

〔発明の効果〕〔Effect of the invention〕

本発明はInP/InUaAs APDK適用し念とこ
ろ、結晶性の良好な高不純物8′−度部分を得ることが
でき、その上に成長したInPfJについても、イオン
注入を行なった層の上に成長したInP層に比べ良好な
結晶性のものが得られた。これにより得られた素子は、
劣下が少なく、高い@軸性を得られた。又、歩留り率も
向上し、非常に有効であり之。
The present invention was applied to InP/InUaAs APDK, and it was possible to obtain a highly impurity 8'-degree part with good crystallinity, and the InPfJ grown on it was also grown on the ion-implanted layer. A layer with better crystallinity than the InP layer was obtained. The device obtained in this way is
Less deterioration and high @axis properties were obtained. In addition, the yield rate is improved, making it very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に、本発明のアバランシェフォトダイオードの製
造方法の第1の芙施例を説明するための構成断面図、第
2図は本発明の第2の実施例を説明する為の構成断面図
である。 11921・ n型InPi板、12,23・ fll
ニジ、InGa ノ\S層、  13.24−n  型
 InGaAsP10.14+1t3.22s25・n
型InP、5.15.26−・・n+型InPドーピン
グ層、18.28・・・絶縁膜、19.29・・・電柵
。 代理人 弁理士  則 近 宵 佑 同     竹 花 喜久男
FIG. 1 is a cross-sectional view of the structure for explaining the first embodiment of the method for manufacturing an avalanche photodiode of the present invention, and FIG. 2 is a cross-sectional view of the structure for explaining the second embodiment of the present invention. It is. 11921・n-type InPi board, 12,23・fl
Niji, InGa\S layer, 13.24-n type InGaAsP10.14+1t3.22s25・n
Type InP, 5.15.26-... n+ type InP doping layer, 18.28... Insulating film, 19.29... Electric fence. Agent Patent Attorney Nori Yudo Chikayo Kikuo Takehana

Claims (3)

【特許請求の範囲】[Claims] (1)III−V族化合物半導体基板上に光吸収層を構成
する第1導電型の第1の半導体層を設ける工程と、該第
1の半導体層に接して該第1の半導体層より禁制帯幅が
大きい第1導電型の第2の半導体層を設ける工程と、該
第2の半導体層に接して該第2の半導体層以上に禁制帯
幅が大きい第1導電型の第3の半導体層を設ける工程と
、選択的に該第2の半導体層もしくは該第3の半導体層
もしくは該第3の半導体層より該第2の半導体層に至る
凹部を設ける工程と、該凹部に第1導電型で、該第3の
半導体層よりキャリア濃度が大きい第4の半導体層を設
ける工程を少なくとも含むアバランシェフォトダイオー
ドの製造方法。
(1) A step of providing a first semiconductor layer of a first conductivity type constituting a light absorption layer on a III-V group compound semiconductor substrate, and a step of providing a first semiconductor layer of a first conductivity type constituting a light absorption layer, and a step of providing a second semiconductor layer of a first conductivity type having a large band width; and a third semiconductor of the first conductivity type having a forbidden band width larger than that of the second semiconductor layer in contact with the second semiconductor layer. a step of selectively providing the second semiconductor layer or the third semiconductor layer or a recess extending from the third semiconductor layer to the second semiconductor layer; A method for manufacturing an avalanche photodiode, including at least the step of providing a fourth semiconductor layer having a higher carrier concentration than the third semiconductor layer.
(2)前記化合物半導体基板をInP、該第1の半導体
層をInGaAs又はInGaAsP、該第2の半導体
層をInGaAsP又はInP、該第3の半導体層をI
nP、該第4の半導体層をInPとする特許請求の範囲
第1項記載のアバランシェフォトダイオードの製造方法
(2) The compound semiconductor substrate is InP, the first semiconductor layer is InGaAs or InGaAsP, the second semiconductor layer is InGaAsP or InP, and the third semiconductor layer is I
2. The method for manufacturing an avalanche photodiode according to claim 1, wherein the fourth semiconductor layer is InP.
(3)前記第4の半導体層を設けた後、表面より第2導
電型のドーパントを選択的に拡散もしくはイオン注入す
る事により、該第4の半導体層内に接合を設ける工程を
有する特許請求の範囲第1項記載のアバランシェフォト
ダイオードの製造方法。
(3) A patent claim comprising the step of providing a junction in the fourth semiconductor layer by selectively diffusing or ion-implanting a second conductivity type dopant from the surface after providing the fourth semiconductor layer. A method for manufacturing an avalanche photodiode according to item 1.
JP61195217A 1986-08-22 1986-08-22 Manufacture of avalanche photo diode Pending JPS6352488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61195217A JPS6352488A (en) 1986-08-22 1986-08-22 Manufacture of avalanche photo diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61195217A JPS6352488A (en) 1986-08-22 1986-08-22 Manufacture of avalanche photo diode

Publications (1)

Publication Number Publication Date
JPS6352488A true JPS6352488A (en) 1988-03-05

Family

ID=16337410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61195217A Pending JPS6352488A (en) 1986-08-22 1986-08-22 Manufacture of avalanche photo diode

Country Status (1)

Country Link
JP (1) JPS6352488A (en)

Similar Documents

Publication Publication Date Title
EP0043734B1 (en) Avalanche photodiodes
CA1261450A (en) Avalanche photodiode with double guard ring
US5157473A (en) Avalanche photodiode having guard ring
US4949144A (en) Semiconductor photo-detector having a two-stepped impurity profile
EP0163546B1 (en) Process for fabricating an avalanche photodiode and an avalanche photodiode thus-obtained
US5942771A (en) Semiconductor photodetector
JPH02202071A (en) Semiconductor photodetector and manufacture thereof
US4346394A (en) Gallium arsenide burrus FET structure for optical detection
KR100303471B1 (en) Avalanche photodetector device and method for manufacturing the same
JPS63955B2 (en)
JPS6352488A (en) Manufacture of avalanche photo diode
JPH0658972B2 (en) Lateral pin heterojunction device and method of forming same
JPH0157509B2 (en)
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPH02253666A (en) Semiconductor photodetector
JPS61220481A (en) Manufacture of semiconductor light receiving device
JP2004179404A (en) Semiconductor light receiving device and its manufacturing method
JPH0231509B2 (en)
JPS58170073A (en) Semiconductor device
JPH065786B2 (en) Semiconductor device
JPS61102783A (en) Manufacture of semiconductor light receiving element
JPH02170580A (en) Pin photodiode
JPH0548143A (en) Manufacture of semiconductor light receiving element
JPH04155872A (en) Semiconductor photodetective element
JPH01255282A (en) Manufacture of photodetector using superlattice structure